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Abstract—We revisit the analysis and design of masked cryp-
tographic implementations to prevent side-channel attacks. Our
starting point is the (known) observation that proving the security
of a higher-order masked block cipher exhaustively requires
unrealistic computing power. As a result, a natural strategy is
to split algorithms in smaller parts (or gadgets), with as main
objectives to enable both simple composition (as initiated by
Barthe et al. at CCS 2016) and efficient implementations.

We argue that existing composition strategies allow either
trivial composition with significant overheads or optimized com-
position with more analysis efforts. As a result, we first introduce
a new definition of Probe Isolating Non-Interference (PINI) that
allows both trivial composition and efficient implementations.
We next prove general composition theorems for PINI gadgets
that considerably simplify the analysis of complex masked im-
plementations. We finally design efficient multiplication gadgets
that satisfy this definition. As additional results, we exhibit a
limitation of existing compositional strategies for the analysis
of Multiple-Inputs / Multiple-Outputs (MIMO) gadgets, extend
Barthe et al.’s definition of Strong Non-Interference (SNI) to deal
with this context, and describe an optimization method to design
efficient MIMO-SNI (sub)circuits. Our results allow proving the
security of a recent masked AES implementation by Goudarzi
and Rivain (EUROCRYPT 2017). From the implementation view-
point, PINI implementations reach the level of performance of
the best composable masking schemes for the AES Rijndael, and
outperform them by significant factors for lightweight ciphers.

I. INTRODUCTION

Side-channel attacks such as differential power analysis [24]
are a significant threat to security devices implementing cryp-
tographic functionalities. Masking is among the most popular
countermeasures to prevent such attacks. Its working principle
is to split each sensitive data x manipulated by an imple-
mentation into a randomized sharing (x0, . . . , xd−1) such that
x = x0⊕· · ·⊕xd−1, and to perform the computations on those
shares only by replacing each operation (e.g., Boolean gate) by
a gadget that performs the operation over randomized sharings.
Under now well understood (noise and independence) leakage
assumptions, masking guarantees that the security of a masked
implementation against any side-channel attack grows expo-
nentially in the number of shares [17], [18].

a) State-of-the-art: In the current state-of-the-art, mask-
ing schemes usually come with a security proof in the so-
called probing model [22], [28]. In its simplest definition,
t-probing security requires that the observation of up to t
intermediate computations in the implementation does not
reveal anything about the sensitive variables. It has later been
shown that while locally sufficient, this definition does not

ensure secure composition [15]. Admittedly, a security proof in
the (abstract) probing model is only a first step in the analysis
of a masked implementation. Various physical defaults can
contradict probing security [25], [1]. Yet, it is a necessary first
step since an insecurity in the probing model usually leads to
powerful concrete attacks [14], [26].

Many solutions have been introduced in order to mitigate
this issue, but none of them is both generic and efficient.
Genericity (that we also name trivial composition) means that
a solution can be easily applied to any circuit for any t
using a simple circuit transformation that maps each logic
gate to a masked gadget implementing that kind of gate
(independently of the structure of the circuit). Efficiency is
harder to characterize in a binary way, hence we rely on
two criteria: the number of shares d should be minimal (i.e.,
d = t + 1), and linear operations should be implemented
trivially, by implementing these operations share by share.

Based on this observation, the problem we tackle in this
paper is: Can we define generic composition rules for d =
t + 1 masking such that the trivial implementation of linear
functions is directly composable (i.e, does not need to be
refreshed) without causing significant overheads for the non-
linear operations?

b) Contribution: We answer this question positively by
introducing a new security notion that we denote as Probe
Isolating Non-Interference (PINI), which is satisfied by linear
operations and enjoys the useful property that any composition
of PINI gadgets is PINI. In contrast with the (Strong) Non-
Interference (NI/SNI) definitions of Barthe et al. [3] that rely
on the the number of probes in a target implementation, PINI
rather relies on their position (i.e., the shares’ indices). We
then show that this approach is applicable by designing mul-
tiplication gadgets that are PINI. As a result, we can trivially
analyze complex masked circuits, where all linear operations
are trivially implemented and all non-linear operations are
PINI. We apply our results to analyze the composition strategy
of Goudarzi and Rivain [19], which can be viewed as a trivial
composition that uses as non-linear element a special “double-
SNI” multiplication gadget. We prove that this gadget is PINI,
leading to a direct formal proof that the composition strategy
of [19] is secure.

In order to confirm that the trivial PINI composition also
leads to efficient implementations, we next compare the per-
formances of masked block cipher implementations based on
PINI with other published solutions. Since it is currently the
most efficient approach for masking, we use bit-level imple-
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mentations (such as the software bitslice AES by Goudarzi
and Rivain [19]) for this purpose, which leads us to a couple
of additional observations of independent interest.

First, we analyze the limitations of the SNI definition given
in [3] for composition in such bit-level implementations (such
limitations apply for any gadget with multiple inputs and
multiple outputs). We define Multiple-Input Multiple-Output
Strong Non-Interference (MIMO-SNI) as the natural extension
of SNI that allows composition in this case. Interestingly, it
turns out that such cases are not problematic in the PINI
framework, and we show that any MIMO-SNI gadget is
actually PINI.

Second, the optimized composition of complex circuits such
as bit-level AES S-boxes requires significantly more efforts
than its counterpart in F256 studied by Belaı̈d et al. [6]. We
propose a solution to this problem, by representing the circuit
to mask as a “computation graph”, and describe how to express
the definitions of NI, SNI and MIMO-SNI as graph properties,
leading to an algorithm (implemented as an open-source tool)
to minimize the number of SNI gadgets.

We finally illustrate that PINI gadgets lead to excellent
performance often improving over state-of-the-art solutions,
by comparing various masked block ciphers according to the
use of only SNI gadgets, the double-SNI strategy, our MIMO-
SNI optimization, the recent Tight Private Circuit (TPC) ap-
proach [7] and the PINI framework. We use the AES block ci-
pher as well as some lightweight block ciphers (Noekeon [16],
PRESENT [8] and Fantomas [21]). The results allow us to
conclude that our tools enable both trivial composition and
efficient masked implementations. We use abstract metrics
(amount of randomness, operation count) to measure algorith-
mic improvements, independently of the implementation (e.g.,
software, FPGA, ASIC). For AES, the TPC approach and the
PINI framework lead to the best performances. For lightweight
ciphers, the PINI approach outperforms all existing solutions
by significant factors (2 to 4), making it a particularly relevant
solution for lightweight ciphers submitted to the ongoing NIST
competition.

This paper is organized as follows. Section II recalls the
notion of masked circuit and gadget, along with the relevant
security notions. We also explain the so-called “probe propaga-
tion framework” used to build intuition about those notions. In
Section III, we introduce the PINI definition and its properties.
We instantiate it with two gadgets in Section IV, which com-
pletes the main contribution of this paper. Section V details the
limitations of SNI, introduces the notion of MIMO-SNI and
covers the design of the optimized MIMO-SNI AES S-box.
Related work is reviewed in Section VI. Finally, Section VII
briefly compares the performance of various implementation
strategies and concludes.

II. PRELIMINARIES

A. Masked gadgets

We work with circuits and use the definition of [22]. A
deterministic circuit C is a Directed Acyclic Graph (DAG)
whose vertices are gates, inputs or outputs, and whose edges
are wires carrying elements of Fq . A randomized circuit is a

circuit augmented with random gates. A random gate is a gate
with fan-in 0 that produces a random output, uniformly and
independently of everything else afresh for each invocation of
the circuit.

Let x∗ = (xi)i=0,...,d−1 be a d-sharing of a sensitive
variable x if x =

∑d−1
i=0 xi. The index i is named the share

index. A set A is a set of share indices if A ⊂ {0, . . . , d− 1},
and we denote xA := {xi : i ∈ A}. We say that the sharing
x∗ is fresh if any tuple of at most d − 1 of its shares is
distributed uniformly and independently of any other element
under consideration.

A gadget G with m inputs and n outputs working with
d shares implementing a function f : Fm

q → Fn
q :

(x0, . . . , xm−1) 7→ (y0, . . . , yn−1) is a circuit with md inputs
grouped into m d-sharings denoted (x∗,0, . . . , x∗,m−1) and nd
outputs grouped into n sharings denoted (y∗,0, . . . , y∗,n−1). A
gadget must be correct. That is, if xj =

∑d−1
i=0 xi,j for all j,

then yj =
∑d−1

i=0 yi,j for all j and for any value of the outputs
of the random gates.

We additionally use the following notations: xi,∗ = {xi,j :
0 ≤ j ≤ m − 1}, xA,∗ = {xi,j : i ∈ A, 0 ≤ j ≤ m − 1}
where A is a set of share indices, and x∗,∗ = {xi,j : 0 ≤ i ≤
d− 1, 0 ≤ j ≤ m− 1}. When it is not clear from the context,
we explicitly denote the gadget G to which the inputs or the
outputs are related with a superscript as xGi,j , yGi,j .

For any linear function f , there is a trivial implementation
gadget which requires no random gates and consists in apply-
ing the function independently to each share: yi,∗ = f(xi,∗)
for i = 0, . . . , d − 1. This also applies to affine functions
(subtracting the offset (d− 1)f(0) to one share).

In this article, we are primarily interested in composing
gadgets, that is, connecting gadgets together to build more
complex gadgets.

Definition 1 (Gadget composition): A gadget composition
G over d shares is a directed acyclic graph (DAG) whose
vertices are composing gadgets (which are gadgets over d
shares) or inputs/outputs, and edges are connections between
those gadgets. For each composing gadget, there is a one-to-
one mapping between its m inputs and the incoming edges
of the associated vertex. Furthermore, each outgoing edge is
associated to an output of the gadget (there can be multiple
edges associated to the same output). Output vertices (resp.,
input vertices) have one (resp., zero) incoming edge and zero
(resp., any number of) outgoing edge(s).
A gadget composition can be instantiated by mapping each
vertex to the corresponding gadget or d inputs/outputs, and
each edge to d wires (which connect the composing gadgets).
The inputs and outputs of the composing gadgets are erased
in the instantiation process. We use the term composite gadget
to refer to the instantiation of a gadget composition.

B. Probing model and security definitions

In the t-probing model, an adversary can choose a set P of t
probes, which are wires in the target circuit. It has then access
to the values carried by each of the chosen wires. A gadget
G is t-probing secure if the output of any t-probing adversary
is independent of the sensitive variables (x0, . . . , xm−1) when
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(d) With two probes, the random
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Fig. 1: Simulatability examples. All outputs (bold, red) are
probed. Inputs needed for simulation are circled in blue.

all the input sharings are fresh. The parameter t is known as
the security order. In the best situation, which is often studied
in the literature and which we target, t = d− 1 (e.g., [28], [6]
in software, [13], [20] in hardware), but this is not always the
case: t can also be smaller than d− 1 (e.g., for composability
reasons [22], or in order to mitigate physical defaults such
as glitches [27]). The trivial implementation of any linear
function with d shares is always d− 1-probing secure.

One important limitation of t-probing security is that it
is not sufficient to ensure composability: the connection of
t-probing secure gadgets is not necessarily t-probing se-
cure [15]. This has lead Barthe et al. to introduce stronger
notions of security that enable composability in [3]. In order to
define them, we use the simulatability framework put forward
by Belaı̈d et al. in [6], illustrated in Figure 1. Intuitively, a set
of probes is simulatable knowing some input shares if there
exists a simulator (which is specific to that set of probes) that
(knowing the said input shares) can generate simulated probes
that have the same statistical distribution as the true probes.
Simulatability means that the true probes are independent of
the input values that are not given to the simulator. As extreme
cases, if probes can be simulated using no input values, then
the probes are independent on the inputs of the gadgets. On the
other hand, any set of probes can trivially be simulated using
all the input values: the simulator can run the gadget itself.
Note that the notion of (I,O)-Non-Interference introduced
in [3] is equivalent.

Definition 2 (Simulatability): Let P = {p1, . . . , pl} be
a set of l probes of a gadget C and CP the tuple of
values of the probes for an execution of C. Let I =
{(i1, j1), . . . , (ik, jk)} ⊂ {0, . . . , d−1}×{0, . . . ,m−1} be a
set of input wires of C. A simulator is a randomized function
S : Fk

q → Fl
q . The set of probes P can be simulated with the

set of input wires I if and only if there exists a simulator S
such that for any inputs x∗,∗, the distributions CP (x∗,∗) and
S(xi1,j1 , . . . , xik,jk) are equal, where the probability is over
the random coins in C and S.

We can now define Non-Interfering (NI) gadgets and Strong
Non-Interfering (SNI) gadgets. We note that for now, those
notions are limited to gadgets with only one output. We take
the definitions from [6] and denote probes on shares of a

1-NI Mul.

(a)

1-NI Mul.

(b)

1-SNI Mul.

(c)

1-SNI Mul.

(d)

Fig. 2: Masked multiplication gadget with d = 2 shares.
The arrows indicate the adversarial probes (there is thus one
internal probe in the multiplication in (2a) and (2c), and one
output probe in (2b) and (2d). The red snake wires are the
inputs needed for simulation. Each internal probe requires
knowledge of one share of each input to be simulated in
both NI and SNI cases (2a, 2c). Simulating an output probe
requires knowledge of one share of each of the inputs for the
NI gadget (2b) while it requires no input knowledge for the
SNI gadget (2d).

gadget’s outputs as output probes, and probes on any wire
of the gadget including inputs and outputs as internal probes
(therefore any output probe is also an internal probe). The
definitions are illustrated in Figure 2.

Definition 3 (Non-Interference): A gadget with one output
sharing is t-NI if and only if every set of t′ ≤ t internal probes
can be simulated with at most t′ shares of each input.
For a gadget with d > t shares, satisfying t-NI is strictly
stronger than t-probing security. Indeed, the inputs required
by the simulator are independent of the sensitive variables,
which implies that the simulated probes are likewise inde-
pendent of the sensitive variables, and the adversarial probes
have the same distribution as the simulated probes thanks to
indistinguishability. t-NI is however not a necessary condition
for probing security, because it requires indistinguishable
simulation for any value of the input shares, not only for any
value of the sensitive variables, which sometimes makes the
simulation of probing secure gadgets impossible (e.g., in first-
order threshold implementations, where non-linear gadgets
leverage the input shares in order to reduce the randomness
requirements [27]). The trivial implementation of any linear
function is NI: the simulator can use the xi,∗ values for all
the i’s for which there is a probe in the evaluation of f(xi,∗).

Next, t-SNI gadgets guarantee independence between the
input and output shares, even in presence of a t-probing
adversary.

Definition 4 (Strong Non-Interference): A gadget with one
output sharing is t-SNI if and only if for every set I of t1
internal probes and every set O of t2 output probes such that
t1 + t2 ≤ t, the set of probes I ∪O can be simulated with t1
shares of each input.
There are many designs of gadgets that implement elementary
field operations and are NI or SNI. The most studied ones
are NI and SNI field multiplication and SNI refresh gadgets
(which implement the identity function in a SNI fashion) [22],
[6]. Barthe et al. showed that it is possible to build secure
composite gadgets based on NI and SNI gadgets [3].

Proposition 1: A composite gadget G is t-NI if all its
composing gadgets are t-NI, and all outputs of composing
gadgets (and input vertices) are connected to at most one edge
not connected to the input of a SNI refresh gadget.
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Fig. 3: Implementation of (x+ y)(x+ z) masked with d = 2
shares, with input sharings (x0, x1), (y0, y1) and (z0, z1). The
circuit is made of a 1-SNI multiplication with linear circuits
at its inputs (two trivial implementations of the addition). The
circuits illustrate (a) the limitation of SNI input composability
and (b) a simple fix. The arrows indicate the adversarial probes
(there is thus one internal probe in the multiplication) and the
red snake wires are the propagated probes. The R box is a
1-SNI refresh gadget.

This result gives a simple way to securely compose gadgets.
However, it usually requires the use of many (expensive)
refresh gadgets [19]. One important reason of these overheads,
which is also the seed of our following investigations, is that
the trivial implementation of a linear function is not SNI. It
naturally suggests the quest for a security definition that allows
simple composition, as Proposition 1, while also leveraging the
efficiency and probing security of trivial implementations for
linear functions, as an interesting research challenge.

C. Probe propagation framework

In this section, we describe an intuitive interpretation of the
simulatability definition first used in [6], that we next call the
probe propagation framework, and discuss its application to
the NI and SNI notions.

We start with the simple circuit example of Figure 3 which
performs a multiplication of dependent values (masked with
d = 2 shares). There is one adversarial (internal) probe in
the SNI multiplication gadget and we show how to prove (or
fail to prove) that the probe is not an attack in the 1-probing
model (i.e., that it is independent of the sensitive inputs) by
demonstrating that it is possible to simulate it using at most
one share of each of the inputs. (Analyzing all possible sets of
probes would prove 1-probing security. More efficient ways of
making such proofs are discussed in the following sections.)

According to the SNI definition, it is possible to perfectly
simulate the adversarial probe by knowing one share of each of
the inputs of the SNI multiplication. Let those required shares
be the red snake wires in the circuit (the set of wires shown
is an arbitrary example, the shares required by the simulator
depend on the position of the adversarial probe). Those wires
are called propagated probes. The proof then works by ob-
serving that if it is possible to simulate the propagated probes,
then the adversarial probe can be simulated.

In our example of Figure 3a, we can propagate the probes
one step further: a probe at the output of an addition can be
simulated with probes on the two inputs of the addition. But
then, we obtain all two propagated probes on the input sharing

of x. As a result, we cannot prove that the circuit is probing
secure.

In order to circumvent this impossibility, the circuit of
Figure 3b (which has the same functionality as the circuit of
Figure 3a), implements a simple fix: there is a 1-SNI refresh
gadget on one of the inputs of the multiplication gadget. The
propagated probe at the output of the refresh gadget can then
be simulated using no input of the gadget (thanks to the SNI
property), which makes the circuit secure against this probe.
As a result, this composite gadget is 1-NI (and thus 1-probing
secure) thanks to Proposition 1.

Summarizing, the main idea of the probe propagation
framework is to prove the security of an implementation by
replacing the adversarial probes with propagated probes that
can be used to simulate the adversarial probes, and by iterating
the process until the propagated probes are all at the inputs of
the circuit. The conclusion is then easy. More precisely, the
propagation of probes always happens backwards in the circuit
(probes on the outputs of a gadget are simulated by probes on
the inputs of the gadget), and the definitions of NI and SNI
can be expressed with the following set of simple rules.

a) Probe propagation rules:
• For a NI gadget with no probes on its output shares and
ni probes inside the gadget, there are propagated probes
on no + ni shares of each input.

• For a SNI gadget with no probes on its output shares and
ni probes inside the gadget, there are propagated probes
on ni shares of each input. Hence, SNI gadgets (and SNI
refreshes) stop the propagation of probes.

There are then three probe propagation conditions to verify, in
order to guarantee security against the considered adversarial
probes (this is an application of the type system from [3]).

b) Probe propagation security conditions:
1) For some parameter t < d, all the gadgets must satisfy

t-NI (or multiple-output variants discussed later such as
PINI or MIMO-SNI).

2) For any edge in the gadget composition graph, there
cannot be propagated probes on more than t shares (out
of the maximum d).

3) For all SNI gadgets, the following must hold: ni+no ≤ t
(ni and no are the number of internal and output probes,
respectively). Note: For NI gadgets, this condition is
redundant with the second probe propagation condition
applied to input sharings.

III. TRIVIAL COMPOSITION & PINI
In this section, we introduce a new definition of Probe

Isolating Non-Interference (PINI) which is directly satisfied
by the trivial implementation of any linear function and enjoys
a simple and practical composition property: any composite
gadget whose composing gadgets are all PINI is itself PINI.

We then show that this new definition allows us to build
a trivial masking compiler that only requires a PINI im-
plementation for each of the non-linear gates of interest.
This compiler instantiates the given PINI non-linear gadgets,
trivial implementations of the linear functions, and then makes
the appropriate connections. In addition to simplicity, this
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technique is cost-efficient, since it uses no refresh gadgets.
In particular, for bit-level implementations, this compiler only
needs a PINI multiplication gadget (i.e., an AND gate) for
which we provide efficient instances in the next section.
Another interest of the PINI definition is that it applies (and
its properties apply) easily to gadgets with multiple outputs,
which is not the case for NI/SNI, as will be discussed in
Section V-A.

A. Intuition and probe propagation framework

The main idea behind the PINI definition is to take into
account not the number of probes (or of required inputs for
simulation) as in the NI/SNI definitions, but instead their
position (i.e., the shares’ indices). The whole circuit can then
be cut into d circuit shares that are not interconnected, except
for non-linear gadgets. If we neglect those gadgets, the circuit
is t-probing secure (for t < d): the adversary can only probe t
of the circuit shares, hence it has no information about at least
d− t ≥ 1 circuit shares, which contains at least one share of
each input. Non-linear PINI gadgets then behave in the probing
model as if they had no connection between circuit shares (i.e.,
they can be simulated as such), which allows implementing
non-linear functions while keeping the previous circuit sharing
intuition.

In the probe propagation framework, probes propagate
through PINI gadgets in a way that respects the isolation of
the circuit shares. Output probes propagate to all input shares
with the same share index (i.e., inside the same circuit share).
Internal probes in non-linear PINI gadgets are more subtle
since they cannot be trivially associated to a circuit share,
because there is no circuit share isolation inside those gadgets
(the isolation is only simulated). However, we can let those
probes carry the same intuition as the output probes: each
internal (adversarial) probe gives knowledge of at most one
circuit share to the adversary. This preserves the feature that
the adversary has knowledge of at most t of the d circuit
shares, which we formalize with a new probe propagation
rule.

• Each output probe on a PINI gadget propagates to all
the input shares that are in the same circuit share as the
output probe. Each internal probe propagates to all the
input shares that are in one additional circuit share (this
circuit share may depend on the position of the probes).

No new probe propagation security condition is needed: if
there are too many probes (internal and output), they propagate
to the inputs (thanks to the previous rule), and violate the
second security condition.

The way PINI works is illustrated in Figure 4, which takes
the case discussed in the previous section (where a refresh
was needed to prove security), and a new case not handled by
(S)NI definitions: a gadget with multiple outputs.

In Figure 4a, there is one internal probe which propagates
to one share of each input of the multiplication as it is the
case for (S)NI multiplications. However, the propagated probes
have the same share index (they are in the same circuit share),

1-PINI non-lin.

(a) Linear operation at in-
put.

1-PINI non-lin.

(b) Linear operation at output.

Fig. 4: Examples of PINI circuits masked with d = 2 shares.
The rectangle gadget implements a non-linear function. The
arrows indicate the adversarial probes and the red snake wires
are the propagated probes.

hence probe propagation through the linear operation does not
violate the second probe propagation security condition.

In Figure 4b, the two propagated probes at the output of
the S-box have the same share index, hence they propagate to
only one circuit share.

B. Formalization: definition and properties

We now give the formal definition of PINI, and prove
security and composability properties. For this purpose, we
first show the link between the notion of circuit share and the
notations of Section II. Namely, for a gadget with inputs xi,j
and outputs yi,j , all the inputs and outputs in the circuit share
i are xi,∗ and yi,∗.

In the following definition, the set A is the set of share
indices (i.e., the circuit shares) that are probed through output
probes, and B is the set of circuit shares requested to simulate
the internal probes. The set of shares required to simulate all
the probes is thus A ∪B.

Definition 5 (Probe-Isolating Non-Interference): Let G be
a gadget over d shares and P a set of t1 probes on wires of
G (called internal probes). Let A be a set of t2 share indices.
G is t-Probe-Isolating Non-Interfering (t-PINI) iff for all P
and A such that t1 + t2 ≤ t, there exists a set B of at most
t1 share indices such that probes on the set of wires P ∪ yGA,∗
can be simulated with the wires xGA∪B,∗.
The following proposition shows that any PINI gadget is
probing secure.

Proposition 2: Any t-PINI gadget (with a number of shares
d > t) is t-probing secure.

Proof: Any set of at most t probes can be simulated with
at most t shares of each input. Thanks to the independent
input encodings, this set of input shares is independent of all
the sensitive input values.
We now look at composability properties for PINI gadgets.

Proposition 3 (PINI composability): Any composite gadget
made of t-PINI composing gadgets is t-PINI.

Proof: We build a PINI simulator that takes as input a
set of probes P and a set of share indices of probed output
shares A. Without loss of generality, we assume that there is
no probe on wires connecting composing gadgets (hence there
are only output probes and probes inside composing gadgets),
since such probes can be considered to be inside one of the
gadgets connected to the wire.

Let us order gadgets from output to input (in reverse
topological sort order for the gadget composition DAG) and
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denote them G1, . . . , Gl. We build iteratively the sets Ai which
are sets of circuit shares needed to simulate probes inside
gadgets G1, . . . , Gi−1 and output probes.

Let Pi be the set of probes inside the gadget Gi. Let
A1 = A be the set of share indices of the output probes.
By induction, let Ai+1 = Ai ∪ Bi, where Bi is obtained
by running the PINI simulator for gadget Gi, with set of
probes Pi and output share indices set Ai (this is possible
since |Pi| + |Ai| ≤ t). Let B = Al+1\A be the set of
input share indices required to the oracle for the simulation
(in addition to the shares with indices in A, always given).
Simulation is performed from Gl to G1: the PINI simulator
for Gi simulates yGiAi,∗ and has access to xGiAi+1,∗ (obtained
from oracle and/or other PINI simulators). We now have to
show that the simulator respects the cardinality constraints of
PINI, that is: |B| ≤ t1 =

∑l
i=1 |Pi|. This is obtained by

induction on the inequality |Ai+1| ≤ |Ai|+ |Bi| ≤ |Ai|+ |Pi|
and by the observation that A ⊂ Al+1.
We finally prove that the trivial implementations of linear
gadgets are PINI.

Proposition 4: The trivial implementation of a linear func-
tion is t-PINI for any t.

Proof: The simulator requires access to inputs from all
the circuit shares in which there is a probe. Simulation is then
trivial.

IV. PINI MULTIPLICATION GADGETS

Given the results in the previous section, the main remaining
challenge to leverage the trivial composition of PINI gadgets
is to instantiate PINI field multiplications. We next propose
two solutions for this purpose. The first one is based on the
composition of existing (SNI) gadgets while the second one
is a new design.

A. Goudarzi and Rivain double-SNI gadget

This gadget is based on an implementation strategy used
in [19], where only SNI multiplications are used, and one
input of every multiplication gadget is refreshed in a SNI
manner. Goudarzi and Rivain claim (without proof) that linear
operations can then be implemented in the trivial way, leading
to a trivial composition using double-SNI multiplications (Al-
gorithm 1) for every non-linear gadget. We next show that the
AES implementation using this strategy is secure by showing
that the double-SNI multiplication gadget is PINI.

Algorithm 1 Double-SNI multiplication gadget over d shares. Rd

and Muld are SNI t-refresh and t-SNI multiplication gadgets over d
shares, respectively.

Require: (ai)i , (bi)i ∈ Fd
q such that

∑
i ai = a,

∑
i bi = b.

Ensure: Output (ci)i ∈ Fd
q such that

∑
i ci = a · b.

(xi)i ← Rd

(
(ai)i

)
;

(ci)i ← Muld
(
(xi)i , (bi)i

)
;

Intuitively, this result comes from the fact that each probe
inside the gadget of Algorithm 1 propagates to at most one
share of one of the inputs, and output probes do not propagate,
which implies PINI.

Proposition 5: Any double-t-SNI multiplication gadget is
t-PINI.

Proof: Let us assume that there is a set P1 of probes on
the output of the gadget (i.e., probes on (ci)i), a set P2 of
probes inside the SNI multiplication gadget and a set P3 of
probes inside the SNI refresh gadget, such that |P1|+ |P2|+
|P3| ≤ t. Any probe on (xi)i is counted as a probe inside the
SNI multiplication gadget.

Using the simulator for the SNI multiplication gadget, we
can simulate the sets of probes P1 and P2 using a set P4

of shares of (xi)i and a set P5 of shares of (bi)i, such that
|P4| ≤ |P2| and |P5| ≤ |P2|. Then, using the simulator for the
SNI refresh gadget, we can simulate the sets of probes P3 and
P4 using a set P6 of shares of (ai)i such that |P6| ≤ |P3| (since
|P3| + |P4| ≤ t). Overall, we can simulate all the adversarial
probes using the sets of input shares P5 and P6.

Since |P2|+|P3| is the number of internal probes and |P5|+
|P6| ≤ |P2|+ |P3|, the PINI simulator can request knowledge
of all the input shares whose index is the one of a share in
P5 or P6. Hence, the PINI simulator knows the values of the
shares in P5 and P6 and can use the two SNI simulators to
complete the simulation.

B. PINI1: a more efficient field multiplication

We next introduce in Algorithm 2 a new PINI multipli-
cation gadget for d shares. It is a variation of the ISW
multiplication [22] and has the same randomness requirement
(i.e., d(d− 1)/2 field elements). Compared to the double-SNI
multiplication gadget, it is thus more efficient.

We defer the proof that this algorithm is d − 1-PINI to
Appendix A, but we give here the intuition behind it. The
only probes that violate the PINI definition (i.e., probes that
require knowledge of inputs from more than one circuit share
to be simulated) in the ISW multiplication are partial products
aibj , which are intermediate values of the computation of
zij = rij + aibj . This issue can be solved by using a
fresh random element r′ij and computing the same result as
zij = (rij + air

′
ij) + ai(r

′
ij + bj). None of the intermediate

values in this computation require the knowledge of both
ai and bj to be simulated. Such a technique requires more
random field elements, but it can be optimized by using
only the rij’s and not fresh r′ij’s, since the computation
zij = (1 + ai)rij + ai(rij + bj) enjoys the same security
and correctness as the previous expression.

This algorithm can be adapted to require only linear memory
by re-ordering the operations: for each generated rij , compute
directly zij and zji, and update ci and cj . The intermediate
values depending on rij can then be dropped. This does not
change the set of possible probes, hence the security proof is
still valid.

V. COMPOSITION OF LARGER GADGETS

In this section, we aim to study a representative example
of larger gadget to estimate the cost of using our trivial
composition for small (PINI) gadgets compared to other state-
of-the-art solutions. We take the bit-level (i.e., manipulated
elements are in F2, not F256) S-box of Boyar, Matthews and
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Algorithm 2 PINI1 multiplication gadget over d shares

Require: Factors a, b ∈ Fq such that
∑

i ai = a and
∑

i bi = b
Ensure: Output (ci)i ∈ Fd

q such that
∑

i ci = a · b.
for i = 0 to d− 1 do

for j = i+ 1 to d− 1 do
rij

$←− Fq; rji ← rij ;
for i = 0 to d− 1 do

for j = 0 to d− 1, j 6= i do
sij ← bj + rij ;
p0ij ← (ai + 1) · rij ;
p1ij ← ai · sij ;
zij ← p0ij + p1ij ; ( zij = rij + ai · bj )

for i = 0 to d− 1 do
ci ← ai · bi +

∑d−1
j=0,j 6=i zij ;

Peralta [9] that is used in [19] for this purpose. In order
to obtain fair comparisons, we then follow the optimized
approach to composition introduced by Belaı̈d et al. [6],
which has been shown to provide better performances than
the straightforward application of Proposition 1. Doing so, we
face two additional challenges.

First, in order to exploit optimized S-boxes, we require that
such S-boxes lead to a secure circuit when composed with the
trivial implementation of the AES linear layer. We observe
that the SNI definition is not sufficient to reach this goal, and
we introduce a natural extension of SNI that allows such a
composition. It essentially extends SNI to a multiple-input and
multiple-output setting (hence the name MIMO-SNI for the
proposed extension).

Next, we observe that the optimization of a complex circuit
such as the bit-level S-box in [9] is computationally intensive,
and cannot be exhaustively analyzed like the F256 S-box
investigated in [6]. So we propose an automated heuristic
based on linear programming to mitigate this limitation.

A. Multiple-Input-Multiple-Output SNI

a) Multiple-Output SNI (MO-SNI): A first issue with
the SNI definition is its specialization to single-output gad-
gets (whereas a bit-level AES S-box has eight output bits).
Therefore, we need to extend this definition to multiple-output
gadgets. Two natural extensions can be considered for this
purpose: (i) the gadget tolerates at most a total of t probes for
all the outputs, or (ii) it tolerates up to t probes for each of
the outputs.

The next example shows that the first option is not sufficient
to ensure composability with linear layers. In order to simplify
the discussion, we take a simple case of 2-bit non-linear
functions (i.e., each gadget has two inputs and two outputs)
masked at order t = 1 (i.e., d = 2), but our reasoning applies
to any gadget (e.g., the 8-bit S-boxes of the AES) and any
order.

We consider a linear operation between two outputs of a
non-linear gadget (depicted in Figure 5). The adversary has
t probes on one output of the linear operation. The probes
propagate to 2t probes on the output of the non-linear gadget.
Hence, the extension (i) of the SNI definition is not sufficient,
and we prefer extension (ii), which we next call MO-SNI.

Non-lin.

Fig. 5: Multiple-output non-linear gadget with linear layer at
the output: this circuit is insecure with SNI’s MO extension
(i) for the non-linear gadget, while it is secure for extension
(ii). Example for d = 2 and 2 bit gadget.

b) Multiple-Input (MI): A already discussed in Sec-
tion II-C, in general a non-linear SNI gadget cannot have a
linear layer at its input without refreshing some of these inputs.
Therefore, we introduce a stronger constraint: the simulator
must be able to simulate the probes using one input share per
probe, while it is one input share per input and per probe for
(S)NI.

c) Multiple-Input-Multiple-Output SNI (MIMO-SNI):
The combination of the MO-SNI definition with the MI
constraint gives the MIMO-SNI notion, that we first introduce
in the probe propagation framework, and then define formally.
There is a new probe propagation rule for MIMO-SNI gadgets
(to cover the MI-SNI part of the definition):
• For a MIMO-SNI gadget with at most no probes on

each output and ni internal probes, there is a total of
ni propagated probes on the input shares.

There is then a fourth probe propagation security condition,
which is the condition for SNI gadgets adapted to MO-SNI:

4) For any MIMO-SNI gadget with at most no probes on
each output and ni internal probes, the following must
hold: ni + no ≤ t.

Definition 6 (MIMO-SNI): Let Oi be a set of share indices
for i = 0, . . . , n− 1. A gadget is t-MIMO-SNI if and only if
for any set I of t1 internal probes and any sets Oi such that
there exists a t2 that satisfies t1 + t2 ≤ t and |Oi| ≤ t2 for
i = 0, . . . , n−1, the set of probes I ∪yO0,0∪· · ·∪yOn−1,n−1
can be simulated with at most t1 input shares.
This definition is very strong, in fact it is strictly stronger than
PINI, as shown in the next proposition.

Proposition 6: Any t-MIMO-SNI gadget is t-PINI.
Proof: The MIMO-SNI simulator can be used as a PINI

simulator, with the set of share indices B sent to the PINI
oracle being made of the indices of the t1 input shares required
by the MIMO-SNI simulator.
This proposition shows that MIMO-SNI benefits from the
same composability properties as PINI: a MIMO-SNI S-box
can thus be trivially composed with linear layers. Despite it is
stronger than PINI (which is already sufficient to compose se-
curely), an interesting feature of MIMO-SNI is that this notion
can be obtained by combining NI and SNI elementary gadgets
in an optimized composition similar to the one proposed in [6]
(see next).

Additional remark. The previous definitions are quite con-
nected to the recent work of Belaı̈d et al. on Tight Private
Circuits (TPC) [7], in which the AES S-box is probing-
secure and its outputs are all outputs of SNI gadgets. This
property is similar to MO-SNI: it guarantees independence
between outputs, and between outputs and inputs; but it is



8

weaker than MO-SNI: it does not require simulatability. The
authors show that despite the weaker definition, it can be
securely composed with linear layers to build a t-probing-
secure circuit. This weaker requirement enables more efficient
implementations than [19]: S-boxes only requires 32 SNI
multiplication gadgets, and no refresh gadgets in this case.
However, it does not enable trivial composition. First, this
composability result is limited to full linear layers (which
results in a need to refresh the key scheduling even if it is
linear). Second, the analysis of the S-box itself is not trivial
(it requires circuit-specific analysis to prove its security).

B. Building large MIMO-SNI gadgets from small (S)NI gad-
gets

In order to fairly assess the interest of the PINI framework
with respect to state-of-the-art solutions, and to allow sound
performance comparisons in the next section, we now tackle
the problem of building a large MIMO-SNI gadget by compo-
sition of smaller (S)NI gadgets. For a given functionality, we
try to minimize the amount of SNI gadgets in the implemen-
tation in order to reduce its complexity. In other words, we
investigate the optimized composition approach mentioned in
the introduction as a natural competitor to the trivial one.

For this purpose, we first show how to express this opti-
mization based on the properties of a graph describing the
computations to perform. We then apply this optimization
to the AES S-box in F256 (confirming the results in [6])
and to the bit-level AES S-box of Boyar, Matthews and
Peralta [9], bringing significant improvements over the double-
SNI strategy in [19].

1) Connecting composability to computation graph prop-
erties: We introduce a new computation graph model based
on the gadget composition DAG in order to explicitly put into
evidence the cases where a sharing is used multiple times. The
computation graph restricts the gadget composition DAG by
forbidding the connection of more than one edge to an output
of a gadget or an input gate. To handle the forbidden cases,
we add a new Splitn gadget which has one input, n identical
outputs and performs no operations (it only connects input
to outputs). For simplicity, we assume that all the composing
gadget are NI operation gadgets with one output (in practice
mostly additions and multiplications), SNI refresh gadgets
(with one input and one output) or Splitn gadgets. SNI gadgets
are thus modeled as NI ones followed by a SNI refresh.
Given a computation graph resulting from our optimization,
an implementer can then replace NI multiplications followed
by a SNI refresh by (sometimes more efficient) SNI multi-
plications. This modeling is without loss of generality since
it is equivalent from the probing model viewpoint and the
respective costs of the different gadgets of a private circuit
are parameters of the optimizations.

Using the link between computation graph and the probe
propagation framework and capitalizing on the fact that SNI
refresh gadgets stop the propagation of probes, we can simply
remove them (and their incident edges) from the graph to
build a simplified graph. The probes inside the refresh gadgets
can be reported to gadgets connected to their input, hence the

simplified graph is equivalent to the original graph regarding
security in the probing model.

Definition 7 (Simplified computation graph): The simplifi-
cation of the computation graph G is the graph that is obtained
from G by removing all SNI refresh vertices and their incident
edges.

Let us now analyze under which condition a simplified
computation graph represents a NI composite gadget, leverag-
ing the probe propagation framework. Since we only have NI
gadgets in a simplified computation graph, the only case where
the probe propagation security conditions are not respected is
when there are more than t propagated probes on one share.
Since there are at most t adversarial probes, violation of the
security condition means that a single adversarial probe is
duplicated, that is, it propagates to the same share through to
different paths. We can thus derive a sufficient NI condition
for simplified computation graphs: no probe should propagate
backwards from a node to another one through two different
paths. In other words, for any pair of vertices there should be at
most one (directed) path between them. It can be seen that this
condition cannot be weakened while guaranteeing security for
any NI composing gadgets: if probes can propagate backwards
through two paths from a node A to a node B and if the
adversary has t probes on the output of A, up to 2t shares of
the output of B could be required to simulate.

We now formalize this security condition with the following
propositions (which generalize the proof that the AES inver-
sion is t-SNI in [6]). For this purpose, we first define a property
for composite gadgets and their simplified computation graph,
which specifies the NI condition of the previous paragraphs.

Definition 8 (Single-Path-NI-Built gadget (SP-NIB)): A
composite gadget G is SP-NIB if it is implemented with only
NI gadgets and SNI refreshes, and if for any pair of vertices
u, v in the corresponding simplified computation graph there
exists at most one path from u to v.

Proposition 7: Let G be a composite gadget. If G is SP-NIB
(as per Definition 8), then it is t-NI.

Proof: For each edge i in the computation graph, there
is a number of adversarial probes ai, a number of propagated
probes pi and a total number of probes si. The sum of the ai’s
is at most t. For all i, si = ai+pi. For each edge, the number

of propagated probes is either 0 if the node at the end of the
edge is a refresh or an output gate, or the sum of the total
number of probes of the outgoing edges of the vertex at the
end of the edge otherwise (i.e., for split or NI gadgets). The
probes inside a NI gadget are not considered since they can
equivalently be replaced with probes on output shares of the
gadget. Furthermore, the probes on output gates are modeled
as adversarial probes on the edges connected to those gates.

If for each input edge i (i.e., an edge connected to an input
gate), a simulator knows si well-chosen shares, then it can
simulate all the probes of the adversary by using the simulator
for each gadget in order to get the required intermediate values.

We now prove that the SP-NIB hypothesis implies that for
all input edges i, si ≤ t. This proves that the gadget is NI
thanks to the previous observation.
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We use a small lemma for this purpose: for all edges i,
pi =

∑
j αijaj where αij is the number of paths from the

output node of i to the input node of j in the simplified
computation graph. This can be proven by backwards induc-
tion on the graph: if all the outgoing edges of a node satisfy
this property, it is also satisfied for all the incoming edges to
this node if the node is a refresh, split or NI operation. As a
base case, this is trivially satisfied for output edges (i.e., edges
connected to an output gate).

Next, we observe that for any i, αii = 0: there is no path
from the output node of i to the input node of i (otherwise the
graph is not a DAG). The previous lemma is thus strengthened
to pi =

∑
j 6=i αijaj .

To conclude the main proof, we observe that the main
hypothesis implies that αij ≤ 1 for all pairs of edges (i, j),
hence si = aipi =

∑
j 6=i αijaj ≤

∑
j aj ≤ t.

We now give similar computation graph properties that
guarantee SNI and MIMO-SNI. Intuitively, a composite gadget
is SNI if no probes can propagate from any output to any input
(i.e., there must be no path from an input to an output).

Proposition 8: Let G be a composite gadget. If the gadget
is SP-NIB and if for any input node u and any output node
v, there is no path from u to v, then the gadget is t-SNI.

Proof: Looking at the proof of Proposition 7, we observe
that, under the current stronger hypothesis, αij = 0 for all
input edges i and output edges j. Hence for all input edges i,
si ≤ t1 where t1 is the number of internal probes.
For MIMO-SNI, we additionally require that no probe can
propagate to two inputs simultaneously (otherwise, t internal
probes could propagate into strictly more than t input probes).
Furthermore, there must be no composing gadget to which
probes could propagate from two different outputs: otherwise,
up to t probes could propagate from each output, resulting into
up to 2t propagated probes on the output of the composing
gadget.

Proposition 9: A composite gadget G is t-MIMO-SNI if it
satisfies the three following conditions. (i) G is SP-NIB. (ii)
For any pair of output nodes u1, u2 there is no node v such
that there is a path from v to u1 and a path from v to u2. (iii)
For any pair of input nodes u1, u2 there is no node v such
that there is a path from u1 to v and a path from u2 to v.

Proof: We first have to prove that for all edges i, si ≤ t.
Under the current hypothesis, the lemma from the proof of
Proposition 7 is strengthened: for any edge i,

∑
j∈Oe αij ≤ 1

where Oe is the set of output edges. Furthermore, for any i,
j, αij ≤ 1. This implies that si ≤ t1 + t2 ≤ t, taking the
definitions of t1 and t2 from the MIMO-SNI definition.

Second, we have to prove that
∑

i∈Ie si ≤ t1 where Ie is
the set of input edges. We know that for all j,

∑
i∈Ie αij ≤ 1

and for output edges j,
∑

i∈Ie αij = 0. Hence
∑

i∈Ie si ≤∑
j 6∈Oe aj = t1.
2) Optimizing the AES S-box in F256: Using the previous

graph formalization, we built a tool [11] that checks if a
circuit is (MIMO-)(S)NI. If we want to build a SNI S-box
with the multiplication chain from [6], there are 16 wires on
which we could insert a refresh. This number is sufficiently
small to make an exhaustive search, which confirms the result
of [6] and shows that it is the only solution with only three

refresh elements (up to the permutation of refresh gadgets with
the (·)2α power gadgets): two refresh gadgets and one SNI
multiplication. ([6] actually mentions two SNI multiplications
are needed, but it was observed by Jean-Sébastien Coron that
one is enough during Adrian Thillard’s PhD defense.) It also
shows that two refresh gadgets is the minimum possible, even
with all multiplications implemented as SNI gadgets.

3) Optimizing the bit-level AES S-box of Boyar et al.: We
now optimize the implementation of a bit-level AES S-box.
We take the logic circuit by Boyar et al. in [9] and search,
starting from an implementation with NI gadgets, where it
is required to add SNI refresh elements to get a MIMO-SNI
implementation.

Due to the large size of the non-linear part of the AES S-Box
(more than 124 wires), it is not possible to apply exhaustive
search as done for the S-Box in F256. We instead re-write this
problem as a mixed integer linear optimization problem, for
which there exists solvers with efficient heuristics. The formu-
lation of the optimization problem is explained in Appendix B
and implemented in [11].

We ran the optimization with a uniform cost for all edges,
which is sound if we assume that the cost of replacing a NI
operation with a SNI one is the same as adding a SNI refresh.
This assumption is valid for state-of-the-art gadgets at very
high order (as confirmed Section VII). The optimization solver
gave a solution with 41 SNI elements and a lower bound of 34
SNI elements (after two hours of running time). In comparison,
the implementation of Goudarzi and Rivain in [19] uses two
SNI elements per AND gate, totaling 64 SNI elements.

The same technique can be applied to other S-boxes, which
gives 7 SNI elements for the Noekeon S-box (4 bit), 8 SNI
elements for the Present S-box (4 bit) and 17 SNI elements for
the Fantomas S-box (8 bit). Thanks to the lower gate count of
those S-boxes, the solver is able to find an optimal solution.

VI. RELATED WORK

In this section, we compare our new composition strategies
to other strategies from the literature.

First, the seminal masking transformation of Ishai et al. [22]
is composable. The composition proof is based on the obser-
vation that if a share index i belongs to the set of shares I
required for simulation (for both inputs of a multiplication
gadget), then the output with share index i can be simulated.
This constraint also appears in the PINI definition. However,
Ishai et al. require a number of shares at least d = 2t+1 (for
security at order t). The additional requirements in the PINI
definition improve this bound to d = t+ 1.

All the composition schemes we discuss next use d = t+1
masking. The strategy of Goudarzi and Rivain [19], for
instance, is based on trivial composition but uses a more
complex multiplication gadget, namely the double-SNI con-
struction, where both the multiplication and the refresh are
based on the ISW multiplication gadget. However, they do
not prove that the composite circuit is probing secure (see
Section IV-A).

A more formal and generic composition framework has
been put forward by Barthe et al. in [3] through the NI and
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Any circ. Simplicity d = t+ 1 Triv. Lin.
Verification tool 7 7 3 (3)
ISW [22] 3 3 7 3
Only SNI [3] 3 3 3 7
MIMO-SNI (this work) 3 7 3 3
TPC [7] 3 7 3 3
Double-SNI [19] 3 3 3 3
PINI (this work) 3 3 3 3

TABLE I: Characteristics of masking strategies:
• Any circuit: the method works for complex circuits (e.g., by

enabling composition of smaller gadgets) and any masking
order.

• Simplicity: the masking transformation is a straightforward
gate-to-gadget translation without more global analysis.

• d = t+ 1: the number of shares is minimal.
• Trivial linear: no refresh gadget inside linear layers.

SNI definitions. Their main composition result (Proposition 1)
is simple, but leads to poor performance (see Section VII):
it requires refresh gadgets to protect linear operations. The
NI and SNI definitions are used by Belaı̈d et al. [6] as the
basis for building a more efficient F256 AES S-box circuit.
This approach is the basis for the techniques developed in
Section V.

Recently, Belaı̈d et al. [7] introduced the Tight Private
Circuit (TPC) composition strategy. It is based on the use
of SNI multiplication gadgets and a careful analysis of the
structure of non-linear layers, in order to insert SNI refresh
gadgets where needed. This approach allows to greatly reduce
the number of refresh gadgets needed for masking the AES
compared to previous approaches. It exploits the circuit shares
isolation property of the linear operations, as well as the
bijectivity of the XOR operations with respect to one of its
inputs. One (slight) downside of the TPC strategy is that
it is specialized to block ciphers with a given (admittedly
very usual) structure. More importantly, it requires some
specific optimizations leading to better or worse performances
depending on the cipher to protect (see the next section). It also
requires to add some refresh gadgets in linear key schedules
(as frequently used in lightweight cryptography).

We note that for hardware implementations, other ap-
proaches have been introduced to deal with hardware partic-
ularities such as glitches, notably the Threshold Implementa-
tions [27] (TI) and the Domain Oriented Masking (DOM) [20].
Those approaches have no formal proof of composability. In
the DOM approach, the notion of domain is similar to what we
call a circuit share. They however analyze more the physical
propagation of glitches inside or across domains whereas the
probe propagation framework is based on statistical depen-
dency propagation. We do not analyze glitch-resistance in the
PINI framework and leave it as an interesting open problem.

A completely different approach for composing masked
gadget is based direct verification of t-probing security of the
composite circuit using automated tools [2]. Circuit verifica-
tion is a computationally expensive problem, hence those tools
are limited in circuit size and masking order.

The main features of these compositional strategies are
summarized in Table I.

Finally, a related work [12] introduces other gadgets that
satisfy the PINI definition, one of those (PINI2) improving
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Fig. 6: Cost estimates for AES128 encrypt implementations.

the randomness cost at very high orders.

VII. PERFORMANCE COMPARISON

We conclude the paper by briefly discussing the perfor-
mance aspects of various compositional strategies introduced
in the literature (including ours).

For this purpose, we consider state-of-the art gadgets at
each order (order-specific and generic constructions) for each
property needed: SNI refresh, NI multiplication, SNI multi-
plication and PINI multiplication (whose costs are given in
Appendix C). Namely, the refresh gadgets are taken from [4],
the NI multiplications and SNI multiplication come from [22],
[6], [5], the PINI1 multiplication comes from this work (Al-
gorithm 2), while the PINI2 multiplication was introduced
in [12]. For the construction of a SNI multiplication, we
observe that for sufficiently high orders (d ≥ 12), the mul-
tiplication of Belaı̈d et al. followed by a SNI refresh has a
lower cost than the multiplication of Ishai, Sahai and Wagner,
which justifies the assumptions made for the optimization in
Section V-B3.

Next, we analyze the strategies on various block ciphers.
We take AES with the bit-level implementation of Boyar,
Matthews and Peralta masked at various orders as a first
realistic case study (since it is the basis for the best-reported
masked software performances in [19]). We also consider
lightweight block ciphers, which are arguably more relevant
for embedded devices where masking is needed and when
performance is a constraint: PRESENT (with 80 bit key) and
Noekeon (with 4 bit S-boxes), and Fantomas (8 bit S-boxes).

A synthetic evaluation is shown for each compositional
strategy and each block cipher in Figures 6, 7, 8 and 9
(the data is also given in tables in Appendix C for power-
of-2 d). For this purpose, we use a simple model where
the cost is the number of F2 operations, assuming that the
generation of one random F2 element has the same cost as
80 F2 operations. This model is admittedly abstract and based
on the PRNG performances on a particular ARM Cortex M4
processor mentioned in [23]. We note that our conclusions are
stable for a wide range of PRNG costs, and refer to [12] for
more empirical confirmations of these comparisons.

The implementations considered use the following ap-
proaches: using only SNI gadgets (SNI multiplications and
SNI refresh after each linear operation, Proposition 1); Tight
Private Circuits (TPC) strategy from [7]; optimized MIMO-
SNI S-boxes (see Section V-B); trivial composition using
Double-SNI multiplication gadgets [19]; and trivial composi-
tion using PINI gadgets. For the PINI strategies, we included
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Fig. 8: Cost estimates for PRESENT encrypt implementations
(80 bit key).

an implementation with the PINI1 multiplication gadget and
another one with the PINI2 gadget, which performs better at
high orders.

For lightweight ciphers, the PINI strategy performs best
(by taking the best amongst PINI1 and PINI2), reducing
cost by a factor of roughly 2 compared to the Double-SNI
strategy, which comes second in performance.1 The difference
in performance observed between the strategies is mainly due
to the difference in number of refreshings needed.

The AES case is particular: it is a sweet spot for the TPC
strategy which then reaches performance similar to PINI. This
is due to the large number of AND gates in the AES S-box
(32 [10], whereas Fantomas, Noekeon and PRESENT have
respectively 11, 4 and 4). This reduces the relative cost of
the refreshing of the key schedule (needed for TPC and not
for competing strategies). Moreover, contrary to lightweight
ciphers, the non-linear part of the AES S-box ends with a full
layer of AND gates, avoiding the need of additional refreshing
for the TPC strategy (for which the S-boxes must end with a
full SNI layer).

1For asymptotic d, the PINI gadgets are worse than Double-SNI or TPC
since they require more arithmetic operations (overhead scaling as d2),
which makes the cost of refresh gadgets (d log d) asymptotically negligible.
However, this has no significant impact at practical masking orders for bit-
level masking. Performance evaluations in larger fields (e.g., F256) where
multiplication cost is larger is left to future work.
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Fig. 9: Cost estimates for Fantomas encrypt implementations.

These results confirm that PINI is a good strategy to
build masked circuits. First, it enjoys the trivial composition
property, which leads to simplicity (such as dealing with
only one kind of gadget, while e.g., other strategies need
rules to decide whether to use NI/SNI multiplications and
SNI refresh gadgets). Second, PINI leads to high-performance
implementations that reduce by 2 the cost of lightweight block
cipher implementations. We believe those results are timely
for enabling the comparison of side-channel resistant imple-
mentations in the ongoing NIST competition in lightweight
cryptography, and are in general relevant to the security and
efficiency of any embedded cryptographic implementation,
which are important building blocks of many secure systems.

Finally, we recall that such performance comparisons (e.g.,
between the MIMO-SNI, TPC and PINI approaches) are
dependent on the cost of the (state-of-the-art) gadgets used.
Hence, the search of more optimized such gadgets is an
interesting scope for further research, to further refine our
understanding of cost-optimized masked implementations.

Acknowledgments. Gaëtan Cassiers and François-Xavier Standaert are resp.
Research Fellow and Senior Associate Researcher of the Belgian Fund for
Scientific Research (FNRS-F.R.S.). This work has been funded in part by the
ERC project 724725.

REFERENCES

[1] J. Balasch, B. Gierlichs, V. Grosso, O. Reparaz, and F. Standaert. On
the cost of lazy engineering for masked software implementations. In
CARDIS 2014, Revised Selected Papers.

[2] G. Barthe, S. Belaı̈d, F. Dupressoir, P. Fouque, B. Grégoire, and
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APPENDIX A
PINI1 SECURITY PROOF

Proposition 10: The multiplication gadget of Algorithm 2
is d− 1-PINI.

Proof: Let us build a PINI simulator: first, given a
set of probes P and probed output shares A, Algorithm 3
gives the set of required input shares X = A ∪ B. All the
probes that depend only on input shares with index in X
and on randomness are computed as specified by Algorithm 2
(required randomness is generated). If some zij or sij appears
in the expression of some probe and cannot be computed from
known inputs, it is assigned a fresh random (we say that the
simulator cheats on that value) and evaluation continues until
all probes are computed.

Let us now show that this algorithm produces the same
probe distribution as Algorithm 2. The behavior of the simu-
lator is identical to the behavior of the gadget, except for some
zij and sij . If the simulator cheats on zij , then zij or a sum
in which it appears is probed, and there is no probe on zji
(or their intermediate values, or a sum in which it appears) or
on intermediate values of the computation of zij . Therefore,
rij is only observable through zij , which means that zij is
behaves like a uniform random variable independent of all
other variables, which is what the simulator generates. For sij ,
the same argument applies: if the simulator cheats, then rij
is only observable through sij (or probes depending on sij),
hence sij behaves as a uniform independent random variable.

APPENDIX B
MIMO-SNI S-BOX OPTIMIZATION PROBLEM

The AES S-Box of is made of three parts: a top lin-
ear transformation, a middle non-linear transformation and

Algorithm 3 Input shares chooser for the simulator of PINI1
multiplication

Require: Set of probes yG
A,∗ ∪ P

X ← ∅;
for i = 0 to d− 1 do

if ai, ai + 1, bi, ai · bi or ci is probed then
X ← X ∪ {i};

else if there exists k such that
∑k

j=1 zij is probed then
X ← X ∪ {i};

for j = 0 to d− 1 do
if there are at least two probes on intermediate values of
computation of zij (these values are rij , pkij , skij and zij)
then

X ← X ∪ {i, j};
else if there is one probe on an intermediate value of the
computation of zij then

if i ∈ X or j ∈ X then
X ← X ∪ {i, j};

else
X ← X ∪ {i};

B ← X \A;
Ensure: |B| ≤ |P |

a bottom linear transformation. Since our goal is to have a
probing secure implementation of the AES, we do not need to
have a full MIMO-SNI S-box. Having only the middle non-
linear transformation MIMO-SNI is enough since the top and
bottom linear transformations can be considered as combined
with the other linear operations of the AES (i.e., ShiftRow,
MixColumns and AddRoundKey) when applying MIMO-SNI
composability.

The non-linear transformation is made of 30 XOR gates and
32 AND gates, hence it contains more than 2 ·(30+32) = 124
wires. This means that it is impossible to apply the exhaustive
search used for the S-Box in F256. We therefore reformulate
our graph optimization problem into a integer linear program-
ming problem, for which there exists numerous solvers. This
does not guarantee that we can find an optimal solution with
a reasonable amount of resources, but solvers have efficient
heuristics to find good solutions and can prove lower bounds
for the solution. Since we take care that our representation as
an optimization problem admits as acceptable solutions all the
possible implementations of the considered logic circuit, we
are able to provide upper and lower bounds on the cost of the
optimal implementation.

We write the linear optimization problem in the following
way. A binary variable ei is associated to each edge i of the
graph, indicating if it is cut (i.e., if a refresh is inserted). All
the paths in the graph are then computed and a binary variable
pj is assigned to each path j, again indicating if it is cut. A
path is cut if any edge in the path is cut. It implies a first
general constraint pj ≤

∑
i ei (the sum is over the edges in

the path).
We can then add the various constraints related to Non-

Interference properties. First, to enforce NI, for each pair of
vertices (u, v) all but one paths from u to v must be cut. Let
J be the set of paths from u to v,

∑
j∈J pj ≥ |J |−1. Next, to

enforce SNI, when u is an input node and v an output node,
the constraint becomes

∑
j∈J pj ≥ |J |. For the MI part we
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need: for any node u, let J be the set of paths from any input
node to u,

∑
j∈J pj ≥ |J | − 1. Finally, for the MO part we

need: for any node u, let J be the set of paths from u to any
output node,

∑
j∈J pj ≥ |J | − 1.

The objective function to be minimized is a weighted sum
of the ei variables. The weigh associated to each variable is
the cost of adding a refresh on the corresponding edge. This
cost can be any metric, such as the amount of random bits
required, the computation time, etc. Since each edge has a
distinct associated cost parameter, this is the point where we
can take into account that the cost of adding a SNI refresh
gadget may not be the same as replacing a NI multiplication
with a SNI multiplication.

This simple way of writing our problem has two limitations.
First, there are many paths in the computation graph (in the
order of magnitude of 105 for the AES S-box) which leads to
many variables and constraints in the optimization problem.
This can be mitigated by grouping paths into clusters that
share common parts and associating them to a single variable.

The second issue is related to split nodes: there are multiple
trees of binary split nodes that represent the split of a value
in more than two parts, and all these representations do not
give equivalent possibilities for inserting refresh elements. Fur-
thermore, no tree can provide all the optimization degrees of
freedom. Since it would be impractical to run the optimization
for all the possible trees, we instead modified the optimization
problem. Each split node is replaced by a set of split nodes that
form a fully connected DAG and constraints are set to ensure
that a constant number of added edges is cut, which ensures
that the added edges do not distort the objective function.

APPENDIX C
COST OF MASKED IMPLEMENTATIONS

The randomness and field operations cost for SNI refresh,
NI & SNI multiplication, and PINI multiplication gadgets are
given in Table II for some small orders. The cost formula for
any order are given next:
• Randomness (the formula for RSNI

ref (d) is O(d log d)):

RSNI
ref (d) = 2 bd/2c+RSNI

ref (bd/2c) +RSNI
ref (dd/2e)

RNI
mul(d) =

⌊
(d− 1)2/4

⌋
+ d− 1

RSNI
mul (d) = min

(
d(d− 1)/2,RNI

mul(d) +R
SNI
ref (d)

)
RPINI

mul1 (d) = d(d− 1)/2

RPINI
mul2 (d) =

⌊
(d− 1)2/4

⌋
+ 2d− 1

• Additions:

ASNI
ref (d) = 2RSNI

ref (d)

ANI
mul(d) = 2RNI

mul(d) + d(d− 1)

ASNI
mul (d) = 2RSNI

mul (d) + d(d− 1)

APINI
mul1 (d) = 2RPINI

mul1 (d) + 2d(d− 1) + d

APINI
mul2 (d) = 2RPINI

mul2 (d) + 4d(d− 1)

• Multiplications:

MSNI
ref = 0

MNI
mul = d2

MSNI
mul = d2

MPINI
mul1 = d(2d− 1) + d

MPINI
mul2 = d(2d− 1) + d

The cost for whole encryptions are given in Tables III, IV,
V and VI. The cost metric used is explained in Section VII.

d SNI refresh NI mul. SNI mul. PINI1 mul. PINI2 mul.

R
an

do
m

el
em

en
ts

2 1 1 1 1 3
3 3 2 3 3 6
4 4 4 6 6 9
5 8 5 10 10 13
6 12 11 15 15 17
7 13 15 21 21 22
8 16 19 24 28 27

16 32 71 103 120 87
32 96 271 367 496 303
d RSNIref RNImul RSNImul RPINImul1 RPINImul2

A
dd

iti
on

s

2 2 4 4 8 14
3 6 10 12 21 36
4 8 20 24 40 66
5 16 30 40 65 106
6 24 52 60 96 154
7 26 72 84 133 212
8 32 94 104 176 278

16 64 382 446 736 1134
32 192 1534 1726 3008 4574
d ASNIref ANImul ASNImul APINImul1 APINImul2

M
ul

tip
lic

at
io

ns

2 0 4 4 6 6
3 0 9 9 15 15
4 0 16 16 28 28
5 0 25 25 45 45
6 0 36 36 66 66
7 0 49 49 91 91
8 0 64 64 120 120

16 0 256 256 496 496
32 0 1024 1024 2016 2016
d MSNI

ref MNI
mul M

SNI
mul MPINI

mul1 MPINI
mul2

TABLE II: Randomness and field operations cost of known
gadgets.

d All-SNI TPC MIMO-SNI Double-SNI PINI1 PINI2
2 2548960 689200 1282880 1135280 648880 1711280
3 7556760 1977480 3758520 3315720 1837320 3469320
4 11176480 3737440 6112160 5521760 3601760 5304160
5 21162040 6283960 11033400 9852600 5942200 7740600
8 44568000 14811840 24310720 21949120 16419520 16560320

16 119638400 60126080 79123840 74400640 69703040 55354240
32 392354560 213817600 270810880 256641280 286862080 198068480

TABLE III: Cost metric for AES 128 bit encryption.

d All-SNI TPC MIMO-SNI Double-SNI PINI1 PINI2
2 1943552 558080 516096 390144 234496 574464
3 5761536 1605120 1479168 1101312 628224 1150464
4 8034304 2492416 2324480 1820672 1206272 1751040
5 15647232 4563456 4227584 3219968 1968640 2544128
8 31985664 9818112 9146368 7131136 5361664 5406720

16 73732096 29396992 28053504 24023040 22519808 17928192
32 231682048 98676736 94646272 82554880 92225536 63811584

TABLE IV: Cost metric for Noekeon encryption.

d All-SNI TPC MIMO-SNI Double-SNI PINI1 PINI2
2 1237520 535928 556264 383408 223200 573128
3 3668664 1563888 1624896 1106328 619380 1156920
4 5254128 2447760 2529104 1837680 1205280 1766008
5 10101784 4489048 4651736 3268888 1980900 2573248
8 20933184 9707712 10033088 7267392 5446080 5492456

16 51913096 29462152 30112904 24581512 23034240 18308104
32 166677576 99324744 101277000 84682824 94636800 65390408

TABLE V: Cost metric for PRESENT 80 bit encryption.

d All-SNI TPC MIMO-SNI Double-SNI PINI1 PINI2
2 864240 453912 469656 375192 214680 565272
3 2562156 1331172 1378404 1095012 607140 1145700
4 3779472 2138160 2201136 1823280 1189680 1751472
5 7165116 3882492 4008444 3252732 1962300 2555772
8 15070176 8504928 8756832 7245408 5420640 5467104

16 40206144 27075648 27579456 24556608 23006400 18271296
32 131649024 92257536 93768960 84700416 94673280 65371392

TABLE VI: Cost metric for Fantomas encryption.
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