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Abstract—We apply membership inference attacks in the con-
text of preference data exploited by recommendation systems
and show that they can lead to “fidelity leakages”. These
leakages allow one service provider to determine whether
or not its users are faithful. We first provide experimental
results based on real-world data made available by Spotify
that confirm the feasibility of such attacks and allow us to
put forward their influencing parameters. We then discuss the
challenges for interpreting and mitigating fidelity leakages.

1. Introduction

Membership Inference Attacks (MIA) aim at detecting
if some individuals’ data has been used to estimate a sta-
tistical model (e.g., to train a machine learning algorithm).
By exploiting the dependencies between the training data
and the model results, they may involuntarily leak some
information about individuals. MIA have attracted a grow-
ing attention over the last years, due to a large panel of
potential applications exposing privacy risks. For example,
in 2008, Homer et al. described how to determine whether
or not an individual’s DNA data was part of a modeling
phase [6]. They experimentally showed the feasibility of
MIA based on the distance between the individuals’ data
and the DNA-based estimated model. More recently, Backes
et al. showed that such attacks also threaten the privacy
of individuals contributing their microRNA expressions to
scientific studies [1]. Other works investigated MIA in the
context of machine learning algorithms and classification
data, e.g., [9], [11], [3], [4]. Pyrgelis et al. specifically
studied their impact for location privacy [8]. Finally, a few
papers focused on protection mechanisms [10], [7].

From a more formal viewpoint, many of these works also
point out the difficulty to rigorously evaluate MIA [11], [3],
[5], [12], [7]. One reason is that the feasibility of MIA is
tightly connected to the presence of outliers in the data and
the risk of overfitted models (both issues being generally
hard to assess). Another problem is that some types of false
positives are also impossible to avoid in MIA. For example,
two individuals leading to exactly the same data could lead
to conclude that one individual’s data was used for training
a model while it was his twin’s data that was used.

The contributions of this paper are twofold.
Our first contribution is to apply MIA in the specific

context of recommendation systems, where they can lead to
so-called fidelity leakages. Say that two song providers (e.g.,
Spotify and a competitor) embed a recommendation system.
Spotify’s goal is to determine whether some of its users

are also registered with its competitor. For this purpose, it
can use the data of its users to challenge the competitor’s
recommendation system and mount a MIA. In case of
success, it can conclude that some users may utilize both
services and decide to apply a special treatment to them.

We illustrate the theoretical feasibility of such attacks
against real-world data by exploiting a database made avail-
able by Spotify. For this purpose, we split the database in
two and consider half the data to be owned by Spotify and
half the data to be owned by an hypothetical competitor.
We then put forward both concrete risks of fidelity leakages
through simple statistical metrics and the usual difficulty to
interpret these risks in a mathematically sound manner. We
additionally show that these risks are anyway bounded by
the accuracy of the competitor service provider’s recommen-
dation system (i.e., one cannot perform a MIA with better
success than the probability of correct recommendation).

Our second contribution is to give a more quantitative
turn to our analyzes, and to discuss the challenges in ensur-
ing actual users that none of the service providers they are
registered with can exploit fidelity leakages. For illustration,
let us consider Spotify as the adversarial service provider
and its competitor as the target one. In this case, users essen-
tially want to be convinced that the data used by the target
service provider to estimate its recommendation system is
sufficient (i.e., leads to a well generalized statistical model)
so that the dependencies between the training data and the
model results are not exploitable. Previous works such as the
one of Song et al. already showed that the statistical distance
between the training data and test data is a good indicator
of the feasibility of MIA [10]. We push this intuition one
step further and describe a heuristic solution in order to
approximate the number of songs collected per user that can
rule out the possibility that Spotify exploits fidelity leakages
thanks to simple information theoretic quantities.

One important consequence of these investigations is
that without additional privacy enhancing mechanisms (e.g.,
mixnets), preventing such MIA would require users to trust
that Spotify limits the amount of data that can be linked to
each of them within small (pseudonymized) “sessions”, so
that users with a lot of data appear as multiple (unlinkable)
sessions to Spotify. Furthermore, the maximum session size
depends on the generalization of the target’s model. So
mitigating fidelity leakages in this way requires an unlikely
interaction between the different service providers a user is
registered with, considering that each service provider can
play the role of both an adversary and a target.



Figure 1. The fidelity leakages’ threat model: high-level view.

2. Notations

We first define a set of users as U = {u1, u2, . . . , unu
},

with nu the number of users. We denote random variables
with uppercase letters (e.g., U ), sets with calligraphic ones
(e.g., U) & events with lowercases (e.g., u). In our inves-
tigations, we consider the users of some service provider
– we will take the case of a music provider embedding
a recommendation system as running example. The service
provider has a database of songs S = {s1, s2, . . . , sns

}, with
ns the number of songs. In this context, recommendations
to users are based on analyzing the transition between songs
for each user. Therefore, we define the jth observations
from user ui as oij = {sij , sij+1, tij}. When clear from the
context we use the subscript i to denote a link to user ui.
Concretely, sij and sij+1 represent two consecutive songs
within a session (i.e., a list of consecutive songs for a given
user), which are usually (but not mandatorily) different; tij
correspond to complementary timing data about the users’
behavior while listening to the song sij (e.g., skipping
information, pauses, listening hour). The observations of a
user i are then contained in a set Oi =

⋃ni

j=1 oij , with ni

the number of observations from user i. Finally, the database
of all the observations is defined as D =

⋃
i∈U Oi.

3. Threat model

Our threat model is depicted in Figure 1, where the left
and right parts of the figure represent two service providers.
One is the adversary (trying to infer the fidelity of its users),
the other one is the target. The adversary owns a subset of
users denoted as UA ⊆ U . The target service provider also
owns a subset of users denoted as UT ⊆ U . The adversary
aims at finding the users from UA that are also present in UT
(i.e., users in UA

⋂
UT ). We call the detection of such users

a fidelity leakage, since it allows the adversary to apply a
special (positive or negative) treatment to those unfaithful
users (e.g., in order to keep them as clients).

To detect the fidelity of users, the adversary has access to
a few objects. The first one is the database of observations
of its own users UA denoted as DA =

⋃
i∈UA

Oi. Note
that a similar database, DT from UT is possessed by the
targeted service provider but is not directly accessible by the
adversary. The other objects are the statistical models used
for recommending songs. Namely, both service providers
have a public recommendation system to suggest next songs
to their respective users based on a previous song (and
possibly some complementary timing data). We next denote
them as m : (s, t) 7→ s′, with s, s′ ∈ S the previous and
next songs and t the timing data. We further use mA for
the adversary’s model which is trained on the set DA, and
mT for the target’s model which is trained on the set DT .
To make explicit the fact that a user comes from DA, we
denote the jth observation from user i that belongs to UA
as oA

ij = {sAij , sAij+1, t
A
ij}. So the adversary has access to his

database DA, his model mA and the target model mT via
queries. For all oA ∈ DA, he can query the target’s model
to obtain responses mT (s

A, tA). Based on these responses
and for each of his users, he can try to infer whether or not
there is a chance that the user is also part of UT .

4. Simple evaluation metrics

Fidelity leakages occur in case a successful MIA can
be applied to preference data. For any user u ∈ UA,
the goal of the adversary is to infer whether this user is
in the competitor’s set UT , leading to the four possible
success/failure cases included in Table 1. Informally, the
True Positive (TP) rate is the proportion of users correctly
reported as an unfaithful ones; the False Positive (FP) rate



Reality Guess

Success u ∈ UA
⋂

UT → u ∈ UT True Positive (TP)
u /∈ UA

⋂
UT → u /∈ UT True Negative (TN)

Failure u ∈ UA
⋂

UT → u /∈ UT False Negative (FN)
u /∈ UA

⋂
UT → u ∈ UT False Positive (FP)

TABLE 1. POTENTIAL FIDELITY LEAKAGES’ SUCCESS & FAILURES.

is the proportion of users wrongly reported as unfaithful
ones; the True Negative (TN) rate is the proportion of users
correctly reported as faithful ones; finally, the False Negative
(FN) rate is the proportion of users wrongly reported as
faithful ones. We say that an attack is a potential success in
case of true positive or negative. Otherwise it is a failure. So
overall, the attack’s (potential) success rate is the proportion
of users that are correctly classified by the adversary.

As will be detailed next, we use the term potential suc-
cess because the interpretation of these metrics is difficult.
For example, a true positive can generally be due to both a
fidelity leakage and to a well generalized target model.

We note that the impact of a failure is quite different de-
pending on the cases. For example, a false positive typically
implies a risk to apply a special treatment to a faithful user
(so a financial loss in case of a commercial offer). It can
happen if two different individuals present in DA and DT

have very similar preferences and therefore observations. By
contrast, a false negative rather comes with a risk that an
unfaithful user leaves the service in favor of a competitor.

We note also that the concrete estimation of these met-
rics requires an omnipotent evaluator who can access both
the adversary and the target’s databases. Next, they will
be evaluated in function of the size of the target database,
that an evaluator can make vary from the maximum size to
arbitrarily small ones by simply dropping observations.

5. Experimental setup

We now describe how we evaluated the threat model of
Section 3 in a concrete setting. Since, as just mentioned, the
estimation of our metrics requires an omnipotent evaluator,
we analyzed the data of a single service provider that we
split in two equal parts to emulate two databases DA and
DT . The main advantage of this emulation is that it also
allows us to control the proportion of shared users between
the two databases, which is an important attack parameter.
The impact of this emulation is discussed in Section 8.

5.1. Spotify/CrowdAI dataset

The data we investigated comes from the music service
provider Spotify. Its users can access a large panel of
songs and listen to playlists they make or that are made
by other users. It offers various options such as shuffling
songs, skip songs, . . . The users’ preferences and listen-
ing behavior are recorded in a large database. In order to
improve its recommendation system, Spotify published a
pseudonymized version of a small part of its database on
the CrowdAI platform (https://www.crowdai.org/challenges/
spotify-sequential-skip-prediction-challenge). To protect the

privacy of the users, the dataset contains a list of sessions
with up to 20 songs each, so that it is not possible to
link multiple sessions to a single user. In our experiments,
we consider each session as originating from a single user.
From each session, we get a list of songs (so the transitions
between them) and complementary timing information.

The original data set contains around 125 millions ses-
sions and 2 billions listenings. For simplicity, we only kept
full sessions (i.e., with 20 songs) including at least 16 songs
listened entirely. We also focused on sessions that came from
personal playlists which we expected to be more reflective of
user preferences. We finally reduced the number of different
songs considered (so that we have a sufficient number of
transitions observed for all the songs). This number was set
to 229 based on the ratio between the number of sessions
and the number of songs, leading to an exploitable database
of 11,156 sessions for a total of 223,120 listenings. We note
that this data preprocessing was only aimed to obtain a good
rate of correct predictions for our recommendation system,
as would be the goal of an actual system provider.

5.2. Recommendation system

In order to make the threat model of Section 3 con-
crete, we need to choose a statistical model for the target
recommendation system: its goal is to predict a transi-
tion (i.e., a next song based on a previous song and the
timing information). In practice, we used a Random For-
est model implemented in the scikit-learn Python library
(https://scikit-learn.org/stable/), and we set the number of
decision trees parameter to 20. This choice is motivated by
its simplicity (of both implementation and interpretation).1

5.3. Metrics estimation

We estimate our metrics by directly challenging the
target model mT with observations from the adversary’s
database DA. Whenever there is a match between the target
model’s prediction and the adversary’s data for a user ui,
the adversary considers the transition as coming from a
potentially unfaithful user. This corresponds to the “Guess”
part of Table 1. The guess is then classified as a true positive,
true negative, false positive or false negative by checking
whether the user is in the target database DT (which is only
possible if the evaluator has full access to this database).

6. Experimental results

We next apply our threat model and metrics to the data
described in the previous section. We start with a prelimi-
nary evaluation of our prototype recommendation system
and then discuss fidelity leakages. In all our MIA experi-
ments, we considered two parameters. First, the size of the
target database (measured in number of 20-song sessions),
which is the main parameter influencing the generalization

1. Preliminary experiments launched with other statistical tools and
parameters did not significantly affect our main conclusions.

https://www.crowdai.org/challenges/spotify-sequential-skip-prediction-challenge
https://www.crowdai.org/challenges/spotify-sequential-skip-prediction-challenge
https://scikit-learn.org/stable/
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Figure 2. Potential fidelity leakages: true positives’ rate.

of the target model. Second, the amount of common users in
DA and DT , which would be fixed & unknown by the ad-
versary in a real attack, and that we can vary in our emulated
databases (to improve the understanding of the results).

6.1. Preliminaries

Before analyzing fidelity leakages, we evaluate the qual-
ity of our recommendation system based on random forests.
We estimated the rate of correct predictions that our rec-
ommendation system reaches by leveraging 10-fold cross-
validation (9/10th of the data used to build the model, 1/10th
of the data used to test it). Concretely, we reach a prediction
rate of approximately ≈ 60% (which is to be compared
with a random guess of 1

229 ). We further observed that
the fraction of common users does not significantly impact
the accuracy of the recommendation system, as expected.
Besides, we checked that further increasing the database size
would not significantly improve this prediction rate (which
already saturates when all observations are used).

6.2. Fidelity leakages

We now move to the estimation of the simple metrics
introduced in Section 4. We start with the analysis of true
positives, which is the most concretely-relevant metric to
evaluate, since it directly impacts the commercial answer a
service provider could impose to its users. The results of this
experiment are given in Figure 2, which leads to two im-
portant observations. First, the true positive rate increases in
function of the fraction of common users: the more common
users, the more fidelity leakages can be detected. Second,
this true positive rate saturates to ≈ 60%, which actually
corresponds to the accuracy of the target’s recommendation
system. The latter is interesting and actually intuitive: since
fidelity leakages essentially exploit the similarities between
the target’s model and adversary’s observations, it requires
that the target’s model is sufficiently predictive of the users’
true preferences in the first place. For example, a recom-
mendation system outputting random songs would not allow
detecting fidelity leakage better than a random guess.
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Figure 3. Potential fidelity leakages: false positives’ rate.

The false positive rate in Figure 3 provides a com-
plementary view to Figure 2 . It is also impacted by the
percentage of common users, but in an inverse manner:
more common users reduce the amount of false positives.
A concrete adversary would typically like to minimize this
metric since it may lead to wasted promotional offers.

Note that the steps in these two Figures’ curves are only
due to the (technical) way we emulate DA and DT (i.e., we
have more observations when more users are shared).

Interpretation. The experiments in this section confirm
the theoretical feasibility of MIA against recommendation
systems that can lead to fidelity leakages. Yet, as usual with
MIA, the interpretation of the previous (simple) evaluation
metrics is difficult. In particular, it is in general hard to de-
termine whether (for example) a true positive in Figure 2 is
due to an unfaithful user or to a well generalized model. Typ-
ically, a concrete adversary would have a stronger suspicion
of unfaithful user for such a true positive if it occurs for an
outlier observation of his database DA which, as mentioned
in introduction, is in general hard to assess rigorously. This
is why we refer to these results as potential fidelity leakages
(which is the best that can be easily estimated). Motivated
by this hard to assess risk, we next investigate how simple
information theoretic tools can give a more quantitative turn
to our analyses, and serve as a better basis in order to discuss
the main challenges in preventing fidelity leakages.

7. Mitigating fidelity leakages

Following the previous caveats, an important intuition
behind all MIA is that their interpretation depends on the
convergence of the statistical model (e.g., recommendation
system) of the target service provider, which depends on the
size of its database. We next investigate the possibility to
use this intuition in order to bound the risk that Spotify
can detect fidelity leakages by querying its competitor’s
recommendation system. In this respect, a starting point
is the fact that MIA exploit the correlation between the
adversary’s observations in DA and a target model mT

estimated from DT . So in order to bound the risk that such
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Figure 4. Evolution of M̂I(H;O).

attacks succeed, a natural approach is to bound the statistical
distance between the distribution of the observations in DA

and DT . Intuitively, if these distributions get close, it implies
that the models should better generalize and MIA should
become more difficult. This intuition is exactly the one
exploited by Song et al. in [10], who used the Kullback-
Leibler (KL) divergence as a distance metric and show that
a small KL divergence implies harder to mount MIA.

We next use the Mutual Information with a similar
motivation, and because it allows us to make results and
claims slightly more interpretable and quantitative. For this
purpose, we start by defining a new (binary) random variable
H which stands for data Holder and can take values A or
T . We then define the estimated Mutual Information (MI)
between the data holders and their observations as:

M̂I(H;O) = 1 +
∑

h∈{A,T}

Pr[h] ·
∑
o∈Dh

P̂r[o|h] · log2
(
P̂r[h|o]

)
.

Concretely, P̂r[o|h] is estimated by building histograms for
the observations; P̂r[h|o] is computed via Bayes.

A small mutual information implies that given some
observations, it is hard to tell whether they come from
the distribution of the target or the one of the adversary
(so MIA should be hard to mount): MI(H;O) = 0 would
formally rule out that such attacks are possible at all. We
use this metric because it directly gives an indication of the
number of observations that would be needed to tell apart
the distributions A and T thanks to Fano’s inequality [2].
Namely, the average number of samples needed to reach this
goal with good probability is bounded as N ≥ 1

MI(H;O) .

We report the evolution of the estimated MI in function
of the size of the target database in Figure 4. As expected,
it is decreasing with the size of the database. Indeed, as this
size increases the distributions of the observations estimated
from DA and DT become more and more similar.2 In other

2. The MI with 100% of common users is not equal to zero because
we stopped its evaluation before using all the data (i.e., before the trivial
situation where DA = DT ). For smaller amounts of data, the sets DA and
DT are randomized which allows better reflecting model generalization.

words, asymptotically the data of both service providers
should tend towards the same distribution which reflects
all user’s true preferences. As a side-remark, it is worth
observing that the fraction of common users influences the
estimated MI values. Yet, this time it only does it because
increasing the fraction of common users increases the size
of the target database. Asymptotically, the MI should tend
towards zero independent of this fraction. So the main
security parameter is the size of the target database.

Interpretation. We now discuss the heuristic interpretation
of the previous results (a discussion of its theoretical limi-
tations comes in the next section). For this purpose, let us
assume that the size of the target database is such that we
observe an estimated MI of 0.2, meaning that a set of 10
(random) observations should be enough to distinguish the
distributions of DA and DT . Let us further assume that the
adversary has more than 10 observations for a user for which
he wants to challenge the fidelity. Two cases can happen:

1) The adversary can attribute these observations to his
distribution only (i.e., he can distinguish the two dis-
tributions with confidence). Then, he can conclude that
this user is not unfaithful with the target competitor.

2) The adversary cannot attribute these observations to a
single distribution. Then, (i) he cannot rule out the
possibility of an unfaithful user, but (ii) he cannot
decide whether his failure is due to a lack of fidelity
or a well generalized model with confidence either.

Eventually, the limitations of this approach remain close to
the ones of the simpler metrics in the previous section: it is
hard to interpret a true positive, which may be due to fidelity
leakages or to model generalization. The main (positive) dif-
ference is that it is now possible to conservatively guarantee
that no fidelity leakages are possible up to a certain number
of observations collected per user. For this purpose, it is
(roughly) sufficient to require that the estimated MI is small
enough, so that the bound on N is large enough.

8. Discussion & Conclusion

We finally discuss our results in more general terms,
together with assumptions and interpretation issues.

Outliers’ behaviors. Our heuristic analysis puts forward
risks of fidelity leakages. Yet, the MI is an average metric
and it is expected that user dependencies will be observed in
practice. Interestingly, and as suggested in Section 6.2, the
presence of outliers is generally going to be an advantage
for the adversary service provider, increasing the practical
relevance of the MIA threat model. Typically, challenging
the target recommendation system with the observations of
users with “non-average” behavior increases the chance that
a true positive is due to an unfaithful user rather than a gen-
eralized model. Unfortunately, this cannot be analyzed with
the data released by Spotify, since the observations are only
available in short (20-song) pseudonymized sessions (i.e.,
not enough to detect an outlier behavior with a sufficient
number of observations, so that our probabilistic approach



applies). However, the general trend to store more and richer
data reflecting users’ behaviors in various contexts can only
increase the privacy concerns that MIA raise.

Impact of our emulated setup. The assumptions that both
the adversary’s and the target’s databases and models are
converging towards the same ground truth is admittedly
simplifying. In practice, it is expected that their sampling
may remain (at least slightly) different, possibly making the
attacks more challenging to perform. Yet, in view of the
large amounts of data collected by current recommendation
systems (see next), it seems difficult to rule out the risk
of fidelity leakages based on this argument. Similarly, the
risk of fidelity leakages is increasing with the quality of the
target service provider’s recommendation system, but this is
in line with its natural incentive (to please its users).

Countermeasures. Based on the exhibited risks, it seems
natural that users could want to be convinced that no fidelity
leakages can be exploited against them. Taking the example
of Spotify, a first step in this direction is to be convinced that
it cannot leak fidelity information to competitors – which is
a natural goal for any service provider. For this purpose, a
solution is to perform exactly the self-evaluation of Section 7
and to approximate the number of observations per user
N that would prevent any fidelity leakage to be exploited
(possibly taking outliers into account). The challenge is that
Spotify should then convince its users that no competitor
has more than N observations about them. For this purpose,
a direct solution would be that the competitors store their
data as small (pseudonymized) sessions, so that users with
a lot of data appear as multiple (unlinkable) sessions to the
competitors themselves. Furthermore, the opposite situation
should also be satisfied: the competitors should perform a
self-evaluation of their model generalization, which would
then impose a maximum session size to Spotify. As men-
tioned in introduction, such an interaction seems unlikely.
Limiting the storage to small sessions (yet sufficient to build
an efficient recommendation system) however appears as a
good practice, even if not perfectly quantified thanks to con-
structive interaction. Alternatively, avoiding trusting system
providers to behave in such a privacy-respecting manner
would require the implementation of mixnets, allowing users
to determine the length of the sessions they want to allow.

We note that admittedly, the (significant) overheads that
both types of solutions imply are in good part due to the
theoretical difficulty to separate fidelity leakages from good
generalization, which for now seems inherent to MIA.

Data asymmetries. Since the efficiency of MIA mostly
depends on the amount of data accumulated by service
providers, it is also worth underlining that data asymmetries
(i.e., adversaries with significantly more data than their po-
tential targets) make the risk of fidelity leakages significantly
more critical. On the one hand, an adversary with a lot of
data should have facilities to identify “outlier users” and
also has a lot of data per user (so potentially very large
N values) to attack. On the other hand, a target with less
data will have stronger incentives to aggressively exploit its

data to optimize its recommendation system, which should
increase the risk of model overfitting and therefore fidelity
leakages. Taking our case study of music recommendation,
published figures suggest that established players (e.g., such
as Spotify) enjoy such a dominating position.3

Conclusion. Conceptually, our results put forward the possi-
bility that service providers exploit fidelity leakages against
their users, thanks to a new application of MIA. We believe
this is an important privacy concern since fidelity is not
something that users want to leak. Technically, our results
put forward a significant gap between the concrete peculiar-
ities that make the attack results difficult to interpret and
the difficulty to obtain strong security guarantees against
such attacks. On the one hand, MIA results can only reveal
risks of fidelity leakages and it is not possible (at least with
existing tools) to separate such leakages from a good model
generalization with high confidence. On the other hand,
making sure that such risks cannot be exploited requires
strong limitations on the service providers’ side (i.e., a limit
on the number of observations that can be linked to each
user) or more control on the user’s side (i.e., mixnets).
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