A Stealthy Hardware Trojan based on a Statistical Fault
Attack

Charles Momin, Olivier Bronchain, and Francois-Xavier Standaert

UCLouvain, Louvain-la-Neuve, Belgium
charles.momin@uclouvain.be
olivier.bronchain@uclouvain.be
francois—-xavier.standaert@uclouvain.be@uclouvain.be

Abstract. Integrated Circuits (ICs) are sensible to a wide range of (passive, active,
invasive, non-invasive) physical attacks. In this context, Hardware Trojans (HTSs), that
are malicious modifications of a circuit by an untrusted manufacturer, are one of the most
challenging threats to mitigate. HT's aim to alter the functionality of the infected chip in
a malicious way, e.g. under specific conditions known by the adversary. Fault attacks are a
typical attack vector. However, for a HT to be exploitable by an adversary, it also has to be
stealthy. For example, a HT that would directly inject exploitable faults in a block cipher
may be spotted by analyzing its functional behavior (i.e. the positions and the distribution
of the faulty values appearing). In this paper, we propose a stealthy HT instance leading
to successful and hidden Statistical Fault Attacks (SFA). More precisely, the faults are
injected when the chip in running under condition for which metastabilty occurs (i.e. with
a increased clock frequency), leading to the apparition faults at random positions within
the target implementation. In addition, an internal bit is set to a value known only by
the adversary, allowing him to perform efficient SFA. Compared to classical SFA, the HT
uses its control on the target to circumvent behavioral detection tests. Indeed, it also adds
computation errors in the early rounds of the target cipher which are not exploitable via
SFA.

Keywords: Stealthy Hardware Trojans, Statistical Fault Attacks.

1 Introduction

Hardware Trojans (HTs) are intentional and malicious alterations of a circuit’s specifications
that lead to a modification of its functionalities. As for their software counterparts, they can lead
to damaging attacks against systems that may be used in sensitive applications (e.g. sensors,
encryption engines, ...).

As mentioned in the taxonomies from [8,4, 31], HTs usually deliver their malicious function-
ality (i.e. the payload) either under specific conditions (i.e. the trigger), as shown by various
examples in the literature [20, 18], or continuously (i.e. always on), as exposed in [23,22]. They
may be implemented by adding or removing logic gates (i.e. functional alterations) or/and by
modifying physical parameters of the existing logic (i.e. parametric alterations).

As explained in [16] for Path Delay HTs and generalized here, the design of HT's is driven by
two main objectives. First, the triggerability assures that the HT can be launched with a high
probability under a secret manipulation (i.e. physical or digital) known only by the adversary.
Second, the stealthiness assures that the HT is triggered with extremely low probability under
honest and/or randomly chosen manipulations of the chip.

Due to their wide range of payload and trigger possibilities, HTs are a serious threat to
consider in the design and manufacturing process of Integrated Circuits (ICs). Especially, taking

into account that the latter has become increasingly globalized over the last 20 years, more and
more insertion vectors are emerging [28]. In this context, HTs force verification processes to
perform additional tests in order to guarantee a chip’s correct behavior. As surveyed in [29],
these tests may range from simple functional specification verification to complex side-channel
analysis such as proposed in [32,3,26, 1]. Another approach aims to prevent an adversary to
properly perform specific types of trigger mechanisms at the cost of additional logic gates, as
done in [30, 12].

In this paper, we present a new instance of HT that allows an informed adversary to per-
form a stealthy Statistical Fault Attacks (SFA) against any AES implementation following a
pipelined architecture. Based on functional and parametric modifications, our instance of HT
exploits timing violations in the early cipher rounds and leverages Boolean addition to hide
a (potentially suspicious) fault in the set bit model. Our results based on a proof-of-concept
FPGA implementation show that it can be implemented with a limited amount of logic while
allowing the HT to escape functional detection mechanisms. To the best of our knowledge, this
is the first stealthy HT with digital payload against a block cipher implementation based on
metastability.

2 Background

This section begins with an overview of Faults Attacks (FAs) and goes then further into the
details of SFAs. It ends with an explanation of the metastability effect that may be observed in
synchronous designs.

2.1 Faults Attacks

FAs are active attacks that take advantage of computation errors. First introduced against
public key cryptosystems in [7], they have been generalized shortly after against any secret key
cryptosystems with the apparition of the Differential Fault Analysis (DFA) proposed in [6]. A
fault can be seen as a localised change A in the value of an internal state s to a faulty value
sf, such that A = s @ sy. When he performs a DFA, an adversary makes some assumptions on
the fault model and possesses pairs of correct and faulty ciphertexts. For each key candidate, he
decrypts the pairs and checks if the differences between the internal states corresponds to what
he expects. Faults can also be used to gain information when they are ineffective (i.e. A = 0)
leading to so-called Ineffective Fault Attack (IFA)[9]. An adversary able to set the value of a bit
then learns the value of the latter during an encryption process if no computation error occurs
when he injects the fault. Other techniques expoit the data-dependent nature of the induced
faults under specific conditions (i.e. fault sensitivity) [21, 15].

Besides, a Statistical Fault Attacks (SFA) [14] (SIFA for the ineffective case [11]) is a method
taking advantage of faulty values that follow a biased distribution (i.e. that is not uniformly
distributed) in order to recover the secret key used in symmetric cryptosystems such as the
Advanced Encryption Standard (AES)[10]. For each key candidate, an adversary decrypts some
faulty ciphertexts and checks the distribution bias of the internal states bits. Since the AES is
designed following the confusion-diffusion paradigm, the internal states of the final rounds are
supposed to be uniformly distributed for different plaintexts. It follows that the key candidate
giving the highest bias is assumed to be the correct key. Depending on its power, an adversary
may have a perfect control, partial control or no control on the faults he induces. The complexity
in term of required faulty ciphertexts depends on the bias of the faults distribution and thus on
the ability of the adversary to inject accurate faults.

2.2 Metastability

In synchronous designs, each computation is processed at a given rate driven by the clock fre-
quency. The circuit can be represented by a sequence of combinatorial logic operations separated
by registers. At each positive edge of the clock signal, the data at the input of a register is trans-
ferred to the output of the latter and feeds the next combinatorial logic block. In a practical
implementation, the delay over the path taken by the data between two registers (i.e. the prop-
agation delay) mainly depends on the logical depth of the combinatorial elements composing
the path. If the propagation delay between two registers is longer than the clock period T,
the stability of the data outputted by the register is not assured. Precisely, the setup timing
constraint is expressed as follows:

Tc > tpcq + tpcd + tsetu;n

where)4 is the propagation delay between the input and the output of the register, t,.q is the
propagation delay of the combinatorial logic and ¢sesup is & technology-dependent delay that is
required by the register to properly handle the data. If this constraint is not met, the data at
the output of the register is said to be in a metastable state (i.e. has not defined logical value)
for a short period before stabilizing to a uniformly distributed value.

3 Stealthy HW Trojans and Unsuspicious Fault Patterns

FAs are powerful tools for performing key recovery attacks. Yet, they require that the adversary
is able to induce faults with a certain level of accuracy. Depending on the targeted error model,
this requires an initial phase of reverse engineering and a specific setup. When considering HT's,
straightforward faults injection mechanisms can be implemented in the infected chip. However,
due to their particular behaviors, these faults can be analyzed by verification algorithms in order
to detect the malicious circuit modifications.

In this section, we propose a HT that induces faults and hides them so that they have no
specific (i.e. detectable) patterns while still enabling SFA. First, we explain the objectives we are
aiming for in order to insert faults in the context of so-called stealthy FA and how we fulfill these
with an HT. Then, we describe the architecture of the latter and conclude with implementation
results.

3.1 Stealthy FAs: Objectives

As mentioned in the background, FAs are possible to perform if the adversary knows some
information about the model of the injected faults. More into the details, computation errors are
defined by their locations (i.e. which bits in the state are targeted) and by their distributions.
Considering the AES-128 as a target, various divide-and-conquer attacks exploiting different
faults models and with different complexities have been proposed, as the DFA surveyed in [2]
or the SFAs from [14,11]. Based on the literature, one may observe that fault(s) are usually
injected at some point during the three last rounds in order to be exploitable (i.e. to provide
easily exploitable information on the secret key). The accuracy of the fault locations depend on
the considered attacks: some DFAs require a specific error pattern, such as one faulty bit per
byte before the SubBytes of the 9th round in [17]; some are more liberal and can exploit one
faulty byte per column before MixColumn of the 9th round or 1 byte before the MixColumn of
the 8th round in [27]. The same holds for the faults distributions: these may vary from uniform
to fixed-value distributions depending on the attacks.

Based on this state-of-the-art, an adversary may naturally take advantage of HTs in order
to inject faults. However, depending on the running conditions of the chip, the latter may be
expected to appear of not. As a result, the faults injected by a HT can seem suspicious to an
evaluator if they present systematic exploitable patterns under specific environmental conditions.
Following, the design goal of the HT adversary is to inject faults that do not imply detectable
deterministic behaviors while still allowing to perform a FA.

3.2 Threat Model

We consider as an adversary a malicious manufacturer in charge of producing chips that im-
plement the AES specifications. The latter is able to perform any kind of circuit modifications
(i.e. functional and parametric) and aims to induce stealthy exploitable faults in the design.
In practice, the proposed Trojan requires adding logic to a given core and to ensure that the
critical path of the resulting implementation is the one of his choice. While this is a strong
threat model, it can be introduced at many stages of the supply chain such as in malicious and
obfuscated third-parties IPs, corrupted design houses or malicious foundries.

Once manufactured, the chips are deployed in some systems to which the adversary has
physical access. It is assumed that he is able to tweak the system in order to control the clock
frequency of the infected chip. Again, this is admittedly a strong threat model (which is usually
the case with hardware Trojans). Yet, we note that is was already used in [13]. Besides, such
a fine grain control is the same as when exploiting static power in side-channel analysis: in
this case as well, the clock needs to be precisely controlled by replacing the external crystal
with another waveform generator, as done in [25, 19, 5]. In general, claims about the practical-
relevance of HTs are always difficult since there are limited public reports on actual exploits
based on HTs. Yet, our view is that it is the multiplication of attack vectors (more than the
concrete relevance of a single HT') that makes this threat critical. Hence, the investigation of
such HTs, especially when able to bypass certain types of (here functional) verifications, are
important for the understanding of this field of research.

3.3 Trojan Principle

We now describe a new HT that injects both exploitable and unsuspicious faults in an AES
implementation, and allows thus to perform a stealthy FA. We first present our main design
choices and follow with the HT description.

Computation errors are rare under nominal running conditions. Any fault occurring in this
context (as shown in Fig. 1a) can be attributed to two different phenomenons: either because
of a defective circuit or because of malicious modifications. In order to avoid trivial detection,
the HT could first lead the chip to inject faults only when such non-nominal running conditions
are detected, as depicted in Fig. 1b. In this work, the non-nominal conditions are obtained by
increasing the clock frequency above the maximum one. Yet, while some faults are expected to
appear in such configuration, those that are induced could still be classified as suspicious by an
evaluator because of recognizable patterns.

In order to improve the stealthiness of the HT, the faults must therefore appear as being
random (i.e., uniformly distributed). For this purpose, the HT is composed of three main mech-
anisms.

First, uniformly distributed outputs are induced. This can be achieved by injecting random
faults at random places of the full targeted internal state, as depicted in Fig. 2a. More practically,
a delay is introduced on the paths of early rounds state computations (i.e. rounds that cannot
be targeted with an efficient divide-and-conquer FA) in order to make these the critical path of

the system. Because of the metastability effect and the confusion-diffusion paradigm, one may
expect to observe uniformly distributed values for the internal states of the final rounds when
the clock frequency is sufficiently increased.

Second, keeping in mind that the errors should be exploitable, additional faults following
biased distributions and targeting some specific bits are injected in an exploitable round state.
The practical locations of the latter are the first bits of each column of the state before the
Mixcolumn operation of the 9th round such that a divide-and-conquer attack by parts of 32 bits
is possible. The stuck-at-0 fault model (i.e. unique value is 0) enjoys the benefits of a significant
distribution bias and is thus used in order to allow performing an efficient SFA.

Finally, to ensure the stealthiness of these biased bits, a linear combination of some random
bits known by the adversary is added (i.e. XOR-~ed) to these in order to keep their distributions
uniform. Bits from the previously computed ciphertext are used in practice, as shown in Fig. 2b.
These can be assumed being random because of the random behavior of the internal state before
the 9th round. Since the outcome of a XOR between 0 and a bit is the bit, we directly use the
Boolean hiding bits computed as the faulty values injected.

Additionally, these injections are only performed if random faults in the early rounds ef-
fectively appear. If it was not the case, an evaluator could recover the specific location of the
fault as well as the biased distribution of it. For this purpose, a specific mechanism checking for
fault injections in early rounds is used to compute a trigger signal that is fed to the HT logic.
In this context, the faulty behavior of the chip seems unsuspicious while it allows an informed
adversary to perform a SFA by increasing to clock frequency of the chip and by using different
faulty ciphertext computed on-the-fly.

H fclk E fclk>fmetastability

= Fur R8
V Faults exploitable V Faults exploitable

= X Faults not expected RY VFauIts expected

: X Faults pattern visible : X Faults pattern visible

v Biased distribution \ Biased distribui
ciphertext visible ciphertext lased distribution

visible
(a) Nominal (b) Non-nominal.

Fig. 1: Detectable fault injection under various environment conditions.

3.4 Practical Implementation

The HT architecture presented here holds for an unrolled implementation of the AES. Neverthe-
less, these results can be easily extended to other architectures (e.g. loop) possibly at the cost
of limited additional logic. The HT is divided in four main parts: the injection of the random
faults, the trigger mechanism, the injection of the biased faults and the linear addition. As seen

E fclk>fmelustability

R ; fclk>fme[astability
FRND 3 R3 Faults exploitable
HT RND
m HT Faults expected
| \/
Biased distribution
hidden
SR 9
BIAS
SR 9 For
X Faults non exploitable / R |
=l eob'e..0b
V Faults expected ! my
V Faults pattern hidden
MC 9 Biased distribution
. hidden e
\j V ciphertext
ciphertext

(b) Exploitable.
(a) Not exploitable.

Fig. 2: Hard-to-distinguish malicious faults.

on Fig. 3, the injection of the random faults and the trigger signal computation are closely
linked. Delay is added over the logical paths at the end of an early (e.g. the 3rd) round and the
corresponding delayed signals are fed to the input registers of the next (e.g. 4th) round. The
delay introduction is however not restricted to an unique round and could be distributed over
different early rounds in order to gain stealthiness. To detect if a random fault occurs, n; extra
registers are tapping the signals without delay. At the clock edge, the values of the initial and
the extra registers are mutually compared using a XOR operation and any difference is detected
by applying an OR operation on all the outputs of the comparisons. The resulting trigger signal
is then transferred to the 9th round using a dedicated register at each pipeline level.

The second fault injection as well as the Boolean addition are controlled by the trigger signal.
From an adversarial viewpoint, setting a bit to 0 and XOR-ing it with a value that is known (to
the adversary) boils down to set the bit to this value. Taking into account such considerations,
the biased fault injections are implemented with muxes controlled by the trigger signal in the
9th round, as depicted in Fig. 4. The faulty values provided to the muxes are finally computed
by performing a XOR operation between ny bits of the ciphertext whose positions are known
by the adversary.

3.5 Trojan Stealthiness Properties and Implementation Results

Regarding the properties stated in the introduction, the following discussion holds for HT's that
are based on the architecture described above. First, the adversary may benefit from different
stealth-related features. The main one is that the faulty behavior of the chip is unsuspicious.
As a reminder, faults are expected to appear under the trigger condition (i.e. a clock frequency
increase). Moreover, these faults appear as being non-exploitable when trying to perform FAs.
Indeed, non-biased behaviors of the targeted internal state are observed. In particular, faults
appear to be uniformly distributed across all bits, as shown in Fig. 5. The same holds for the

Legit logic Trojan Logic

R3 Logic

128 — ny

delay | E b, "By " bo

-
F
\
\H

R4 Logic |

trig

Fig. 3: Trigger and random faults injection mechanisms.

values of the latter that seem to follow a uniform distribution. It results that, to functionally
discover the malicious nature of the computation errors, an informed evaluator has to recover the
positions of the bits involved in the computation of the linear combination used to hide the biased
faults. Although this can be done by trying all the possible combinations, the complexity of such
a strategy equals to c4 = (ffg) and is represented in Fig. 6. An adversary trying to functionally

hide the HT aims to maximize the latter. Considering that a complexity of 264 is hard enough, the
resulting parameter value ny = 16 is used for the HT implementation. Under this configuration,
it appears that the malicious circuitry can only be functionally detected by using time-consuming
strategies, which motivates or even make the use of alternative methodologies mandatory. For
example, side-channels’ based detection mechanisms may be appropriate to get around the
problem.

In this context, the footprint of the HT in the design is of paramount importance. We next
show that it is more or less negligible depending on the size of the malicious circuitry inserted.
First, the delay is free in term of logic gates. So the trigger and the Boolean hiding mechanisms
are the most important parts to assess the impact of our HT on the total cost in comparison
to a non-infected implementation. As shown in Table 1, the increased logic with ny = 16 only
goes up to 2.28%. Whether such a small modification can be effectively detected in the physical
properties of the chip (i.e. the power consumption, the EM emissions,. ..) is an interesting open
problem.

We note that in practice, unitary chip verifications with a high time complexity are unlikely
to be performed due to the cost they generate. As a result, smaller parameters values can be
used in order to reduce the HT impact on the side-channel leakages. For instance, using ny = 6
allows to implement the HT using on average 0.37% less additional logic than the cases with
ny = 16, and still implies a time complexity of 232 for the verification process.

SB,SR Logic

128lal 127 | MC,AK oglaliog 128

t’f’ig}{g ‘)Di

Fig. 4: Biased faults injection and hiding mechanisms.

Table 1: Logic cost of the HT.
For ny = 16|Honn. |n; = 4|n; = 8ny = 16|n; = 32

f=b1®—ba®---

TDL ny
RO] R9 M [rio

128

Slice reg. |10370{10383|10387| 10395 | 10411

LUTs 1111611393 | 11588 | 11552 | 11421
A Slice reg.| 0.0% [0.12%(0.16%| 0.24% | 0.39%
ALUTS | 0.0% |2.49%[4.24%| 3.92% | 2.74%

A glob. 0.0% [1.35%2.28%| 2.14% | 1.61%
For ny =6 |ny = 1jny = 4|ns = 8|ny = 16|n; = 32
Slice reg. |10380|10383|10387| 10395 | 10411

LUTs 11321 (1141711477 | 11358 | 11382
A Slice reg.| 0.1% |0.12%|0.16% | 0.24% | 0.39%
ALUTS [1.84%|2.71%3.25%| 2.18% | 2.39%

A glob. 1% [1.46%|1.76%| 1.24% | 1.42%

0.7

—— Prlerror]

>, 0.6 1 Pr[b=1|error]
E 0.5 V"‘\/\I\f‘r\!\v'w/\-'\,«v'_,V\IVV‘VVI\/\\ A \/V\VV\AV/A‘A /-MAL/V\ \j‘\)
o
& 0.4

0.31— T T T T T T

0 20 40 60 80 100 120

Internal state bit index

Fig. 5: Behavior of internal bits distributions.

On, =1—0.75",

EB bn,f

ciphertext

Besides, the triggerability is straightforward: the adversary only has to increase the clock
frequency until he observes computation errors appearing. The complexity of the resulting SFA
depends on two things: the bias of the faults injected in the 9th round and the effective prob-
ability that the trigger signal is set to a high logical level in the presence of metastability. As
shown in [24], the number of ciphertexts required to perform the attack is approximated by
1/€% where ¢ is the bias from 1/2. The practical value of the latter depends on the true sampled
distribution. Indeed, considering n; extra registers, the probability to have the trigger signal set
is given by:

Complexity
N

— Ca
16
271 — 264

1 23 45 6 7 8 9 1011121314 1516 17 18 19
ng

Fig. 6: Exhaustive detection complexity.

if metastability occurs. In this context, after the linear combination has been removed, the actual
sampled probability distribution of each faulty value x injected at the 9th round is given by:

p(z) = op, 0 + (1 —op,) - 0.5,

where 6, is the biased distribution of z. Taking into account that x = 0 for the considered HT,
the biases expected for different values of n; are in Fig. 7.

0.5 4
0.4
(]
>
< 0.3
>
(9]
g}
o
0.2
0.1+ —— Theoritical
Measured
0 10 20 30 40

n¢ value

Fig. 7: Observed bias in term of n; for stuck-at-0 faults injections.

4 Conclusion

In this paper, a new instance of HT against symmetric cryptosystems is presented. It allows per-
forming SFAs against SPN-like block ciphers by stealthily injecting stuck-at faults (i.e. setting
bits to a constant value) in the late rounds of the latter, with stealthiness is guaranteed in front
of behavioral detection mechanisms. First, the faults are injected under specific non-nominal
running conditions for which errors are expected to appear (i.e. after having increased the clock

frequency sufficiently to observe metastability). Second, the exploitable faults (i.e. belonging to
the localized stuck-at model) are hidden which makes these appear as unsuspicious (i.e. cor-
responding to random faults for each bit). This is achieved by injecting random faults in the
early cipher rounds and by setting some bits of the last rounds to random values known by the
adversary (i.e. Boolean linear combinations of some ciphertexts bits). The so induced random
behavior of the computation errors and the wide range of possible linear combinations makes
the detection of the malicious circuitry by an informed evaluator unlikely. Using combinations
of 16 bits, the HT induces a detection complexity equals to ~ 2%¢ for an informed evaluator,
while allowing to recover a 128-bit key with a complexity of ~ 234, The 2.28% of additional
logic need to implement this Trojan may still be detected by using accurate side-channel detec-
tion mechanisms. However, depending on the verification performed in the ICs manufacturing
process, these impacts can be compensated by considering less aggressive design parameters.
Besides, and overall, our main conclusion is that functional detection cannot be sufficient to
ensure a Trojan-free implementation for symmetric cryptographic algorithms.

Acknowledgments

Frangois-Xavier Standaert is Senior Research Associate of the Belgian Fund for Scientific Re-
search (FNRS-F.R.S.). This work has been funded in part by EU and the Walloon Region
through the ERC Project 724725 (SWORD) and the Wallinov TRUSTEYE project.

References

1. Aarestad, J., Acharyya, D., Rad, R.M., Plusquellic, J.: Detecting trojans through leak-
age current analysis using multiple supply pad ijq, s- IEEE Trans. Information Foren-
sics and Security 5(4), 893-904 (2010). https://doi.org/10.1109/TIFS.2010.2061228,
https://doi.org/10.1109/TIFS.2010.2061228

2. Ali, S., Mukhopadhyay, D., Tunstall, M.: Differential fault analysis of AES: towards reaching its
limits. J. Cryptographic Engineering 3(2), 73-97 (2013). https://doi.org/10.1007/s13389-012-0046-
y, https://doi.org/10.1007/s13389-012-0046-y

3. Balasch, J., Gierlichs, B., Verbauwhede, I.: Electromagnetic circuit fingerprints for hardware trojan
detection. pp. 246-251 (08 2015). https://doi.org/10.1109/ISEMC.2015.7256167

4. Beaumont, M.R., Hopkins, B.D., Newby, T.: Hardware trojans - prevention, detection, countermea-
sures (a literature review) (2011)

5. Bellizia, D., Bongiovanni, S., Monsurrdo, P., Scotti, G., Trifiletti, A.: Univariate power
analysis attacks exploiting static dissipation of nanometer CMOS VLSI circuits for cryp-
tographic applications. IEEE Trans. Emerging Topics Comput. 5(3), 329-339 (2017).
https://doi.org/10.1109/TETC.2016.2563322, https://doi.org/10.1109/ TETC.2016.2563322

6. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In: CRYPTO (1997)

7. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryptographic protocols for
faults (extended abstract). In: EUROCRYPT (1997)

8. Chakraborty, R.S., Narasimhan, S., Bhunia, S.: Hardware trojan: Threats and emerg-
ing solutions. In: IEEE International High Level Design Validation and Test Work-
shop, HLDVT 2009, San Francisco, CA, USA, 4-6 November 2009. pp. 166-171 (2009).
https://doi.org/10.1109/HLDVT.2009.5340158, https://doi.org/10.1109/HLDVT.2009.5340158

9. Clavier, C.: Secret external encodings do not prevent transient fault analysis. In: CHES (2007)

10. Daemen, J., Rijmen, V.: The block cipher rijndael. vol. 1820, pp. 277-284 (01 1998).
https://doi.org/10.1007/10721064 26

11. Dobraunig, C., Eichlseder, M., Korak, T., Mangard, S., Mendel, F., Primas, R.: Sifa: Exploiting
ineffective fault inductions on symmetric cryptography. IACR Trans. Cryptogr. Hardw. Embed.
Syst. 2018, 547-572 (2018)

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Dziembowski, S., Faust, S., Standaert, F.: Private circuits III: hardware trojan-resilience via
testing amplification. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, Vienna, Austria, October 24-28, 2016. pp. 142-153 (2016).
https://doi.org/10.1145/2976749.2978419, https://doi.org/10.1145/2976749.2978419

Ender, M., Ghandali, S., Moradi, A., Paar, C.: The first thorough side-channel hardware trojan. In:
ASTACRYPT (1). Lecture Notes in Computer Science, vol. 10624, pp. 755-780. Springer (2017)
Fuhr, T., Jaulmes, E., Lomné, V., Thillard, A.: Fault attacks on aes with faulty ciphertexts only.
2013 Workshop on Fault Diagnosis and Tolerance in Cryptography pp. 108—-118 (2013)

Ghalaty, N.F., Yuce, B., Taha, M.M.I., Schaumont, P.: Differential fault intensity analysis. In:
Tria, A., Choi, D. (eds.) 2014 Workshop on Fault Diagnosis and Tolerance in Cryptography,
FDTC 2014, Busan, South Korea, September 23, 2014. pp. 49-58. IEEE Computer Society (2014).
https://doi.org/10.1109/FDTC.2014.15, https://doi.org/10.1109/FDTC.2014.15

Ghandali, S., Becker, G.T., Holcomb, D., Paar, C.: A design methodology for stealthy para-
metric trojans and its application to bug attacks. In: Cryptographic Hardware and Embed-
ded Systems - CHES 2016 - 18th International Conference, Santa Barbara, CA, USA, Au-
gust 17-19, 2016, Proceedings. pp. 625-647 (2016). https://doi.org/10.1007/978-3-662-53140-2_30,
https://doi.org/10.1007/978-3-662-53140-2_30

Giraud, C.: DFA on AES. In: Advanced Encryption Standard - AES, 4th International Conference,
AES 2004, Bonn, Germany, May 10-12, 2004, Revised Selected and Invited Papers. pp. 2741 (2004).
https://doi.org/10.1007/11506447_4, https://doi.org/10.1007/11506447_4

Jin, Y., Kupp, N., Makris, Y.: Experiences in hardware trojan design and implementa-
tion. In: Tehranipoor, M., Plusquellic, J. (eds.) IEEE International Workshop on Hardware-
Oriented Security and Trust, HOST 2009, San Francisco, CA, USA, July 27, 2009. Proceed-
ings. pp. 50-57. IEEE Computer Society (2009). https://doi.org/10.1109/HST.2009.5224971,
https://doi.org/10.1109/HST.2009.5224971

Karimi, N., Moos, T., Moradi, A.: Exploring the effect of device aging on static power
analysis attacks. TACR Trans. Cryptogr. Hardw. Embed. Syst. 2019(3), 233-256 (2019).
https://doi.org/10.13154/tches.v2019.i3.233-256, https://doi.org/10.13154/tches.v2019.13.233-256
King, S.T., Tucek, J., Cozzie, A., Grier, C., Jiang, W., Zhou, Y.: Designing and imple-
menting malicious hardware. In: First USENIX Workshop on Large-Scale Exploits and Emer-
gent Threats, LEET ’08, San Francisco, CA, USA, April 15, 2008, Proceedings (2008),
http://www.usenix.org/events/leet08/tech/full_papers/king/king.pdf

Li, Y., Sakiyama, K., Gomisawa, S., Fukunaga, T., Takahashi, J., Ohta, K.: Fault sensitiv-
ity analysis. In: Cryptographic Hardware and Embedded Systems, CHES 2010, 12th Interna-
tional Workshop, Santa Barbara, CA, USA, August 17-20, 2010. Proceedings. pp. 320-334 (2010).
https://doi.org/10.1007/978-3-642-15031-9_22, https://doi.org/10.1007/978-3-642-15031-9_22

Lin, L., Burleson, W.P., Paar, C.: MOLES: malicious off-chip leakage enabled by side-
channels. In: Roychowdhury, J.S. (ed.) 2009 International Conference on Computer-Aided De-
sign, ICCAD 2009, San Jose, CA, USA, November 2-5, 2009. pp. 117-122. ACM (2009).
https://doi.org/10.1145/1687399.1687425, https://doi.org/10.1145/1687399.1687425

Lin, L., Kasper, M., Giineysu, T., Paar, C., Burleson, W.: Trojan side-channels: Lightweight
hardware trojans through side-channel engineering. In: Cryptographic Hardware and Embed-
ded Systems - CHES 2009, 11th International Workshop, Lausanne, Switzerland, Septem-
ber 6-9, 2009, Proceedings. pp. 382-395 (2009). https://doi.org/10.1007/978-3-642-04138-9_27,
https://doi.org/10.1007/978-3-642-04138-9_27

Matsui, M.: Linear cryptanalysis method for DES cipher. In: Advances in Cryptology - EURO-
CRYPT ’93, Workshop on the Theory and Application of of Cryptographic Techniques, Lofthus,
Norway, May 23-27, 1993, Proceedings. pp. 386-397 (1993). https://doi.org/10.1007/3-540-48285-
733, https://doi.org/10.1007/3-540-48285-7_33

Moos, T.: Static power SCA of sub-100 nm CMOS asics and the insecurity of masking schemes
in low-noise environments. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019(3), 202-232 (2019).
https://doi.org/10.13154/tches.v2019.i3.202-232, https://doi.org/10.13154/tches.v2019.13.202-232
Narasimhan, S., Du, D., Chakraborty, R., Paul, S., Wolff, F., Papachristou, C., Roy, K., Bhunia,
S.: Multiple-parameter side-channel analysis: A non-invasive hardware trojan detection approach.
pp. 13 — 18 (07 2010). https://doi.org/10.1109/HST.2010.5513122

27.

28.

29.

30.

31.

32.

Piret, G., Quisquater, J.: A differential fault attack technique against SPN structures, with appli-
cation to the AES and KHAZAD. In: Cryptographic Hardware and Embedded Systems - CHES
2003, 5th International Workshop, Cologne, Germany, September 8-10, 2003, Proceedings. pp. 77-88
(2003). https://doi.org/10.1007/978-3-540-45238-6_7, https://doi.org/10.1007/978-3-540-45238-6_7
Robertson, J., Riley, M.: The big hack: How china used a tiny chip to infiltrate u.s. companies.
Bloomberg (Oct 2018), https://www.bloomberg.com/news/features/2018-10-04/the-big-hack-how-
china-used-a-tiny-chip-to-infiltrate-america-s-top-companies

Tehranipoor, M., Koushanfar, F.: A survey of hardware trojan taxonomy and detection. Design and
Test of Computers, IEEE 27, 10 — 25 (03 2010). https://doi.org/10.1109/MDT.2010.7

Waksman, A., Sethumadhavan, S.: Silencing hardware backdoors. In: IEEE Symposium on Security
and Privacy. pp. 49-63. IEEE Computer Society (2011)

Wang, X., Tehranipoor, M., Plusquellic, J.: Detecting malicious inclusions in secure hard-
ware: Challenges and solutions. In: IEEE International Workshop on Hardware-Oriented Secu-
rity and Trust, HOST 2008, Anaheim, CA, USA, June 9, 2008. Proceedings. pp. 15-19 (2008).
https://doi.org/10.1109/HST.2008.4559039, https://doi.org/10.1109/HST.2008.4559039

Xiao, K., Zhang, X., Tehranipoor, M.M.: A clock sweeping technique for detecting hardware trojans
impacting circuits delay. IEEE Design and Test 30, 26-34 (2013)

