
Noname manuscript No.
(will be inserted by the editor)

How to Fool a Black Box Machine Learning Based
Side-Channel Security Evaluation

Charles-Henry Bertrand Van Ouytsel ·
Olivier Bronchain � ·
Gaëtan Cassiers · François-Xavier Standaert

Received: date / Accepted: date

Abstract Machine learning and deep learning algorithms are increasingly considered as potential can-
didates to perform black box side-channel security evaluations. Inspired by the literature on machine
learning security, we put forward that it is easy to conceive implementations for which such black box
security evaluations will incorrectly conclude that recovering the key is difficult, while an informed eval-
uator / adversary will reach the opposite conclusion (i.e., that the device is insecure given the amount
of measurements available).

Introduction

The security certification of cryptographic products is a time-consuming and expensive task that implies
practical testing by specialized labs. As a result, various approaches have been proposed to speed up
this process while maintaining as much confidence as possible in the evaluation outcomes. One first
popular evaluation methodology is called “conformance based”. A popular example of this trend is
Cryptography Research, Inc (CRI)’s non-specific leakage detection test [13,9,22,30,11]. This security
evaluation methodology has been gaining interest thanks to the possibility of performing it in a black
box setting, that is with only a limited knowledge and control on the implementation to analyze. For
this purpose, it checks whether the leakages of a cryptographic implementation with fixed plaintext (and
key) differ from the ones obtained with random plaintext (and fixed key). The latest can so be done
with only a control on the plaintext. The second approach for security evaluation is “attack based”. It
consists in trying to recover a key in a given time frame and with given implementation knowledge. Over
the last years, the use of machine learning and deep learning algorithms has been gaining traction as a
promising alternative to traditional attacks because of its ability to deal with unknown implementation
properties in the same black box setting as leakage detection [17,16,18,19,20,6,27,36]. Yet, while the
pros and cons of standard leakage detection tests have been critically discussed in various publications
(e.g., [32,4,37]), much less is known about the possible limitations of side-channel attack based black
box security evaluation which we focus on in the work.

In parallel, the general issue of machine learning in adversarial settings is an increasingly discussed
topic as well [23]. Frequently considered attacks include adversarial examples [1] and data poisoning [2].1

As illustrated in Figure 1(a), the goal of an adversarial example is to craft an observation with small
(hard to notice) modifications so that it is misclassified. As illustrated in Figure 1(b), the goal of data
poisoning is to add (possibly mislabeled) observations in a training set in order to modify the separation
between classes so that some test observations are misclassified. Based on this state-of-the-art, a natural
question is to what extend the quantitative output of (black box) machine learning security analyses can
be trusted considering these standard issues in machine learning security.

As such, adversarial examples and data poisoning do not seem directly applicable to the side-channel
evaluation setting, where observations are typically collected in a trusted and controlled environment.
Yet, we show in the following that a very related issue, that we denote as cheating labels, may easily fool

ICTEAM Institute, UCLouvain, Louvain-la-Neuve, Belgium.

� olivier.bronchain@uclouvain.be

1 Less relevant examples for the following discussion include model stealing [35] and membership inference attacks [31]

2 Charles-Henry Bertrand Van Ouytsel et al.

a black box side-channel security evaluation based on generic classifiers such as Multi-Layer Perceptrons
(MLP) or Random Forests (RF). As illustrated in Figure 1(c), the idea behind cheating labels is to

Fig. 1: Machine learning (in)security examples.

confuse the training phase with observations inherently related to two labels: sensitive labels (e.g., x &
y on the figure) that the target device is trying to hide, and cheating labels (e.g., A and B on the figure)
that it is trying to make obvious to the classifier. In contrast with the previous examples, such cheating
labels have a direct application in a security evaluation setting. Just imagine an implementation made of
two designs: one design leaks “a lot” about some random key; the other leaks “much less” about the real
key used to encrypt; and both keys are related by some simple function (e.g., a XOR with some value δ)
so that the profiling of one key cannot be separated from the other.

Based on simulated experiments and actual measurements, we show that cheating labels can be easily
instantiated. We discuss an example where two designs run in parallel on the same chip: one design
is unprotected and manipulates a misleading key, the other one is masked and manipulates the real
(sensitive) one. In this context, black box security evaluations based on MLP and RF will not converge
towards the correct key, while an informed evaluator knowing that the correct key is manipulated by
a masked implementation will easily succeed with simple tools such as a Moments-Correlating Profiled
DPA (MCP-DPA) [24]. We then discuss how to circumvent the problem of cheating labels by profiling
over several misleading keys.

Cautionary notes. Admittedly, cheating labels are in a sense not new. They can be connected either
with the problem of label noise in machine learning / deep learning [12], or with the problem of model
variability in side-channel analysis [28]. The only difference with these previous works is the adversarial
aspect. Yet, we believe our results come as a healthy reminder that while machine learning and deep
learning can be very effective tools to attack implementations with limited knowledge, their use as
an evaluation tool has to be coupled with a minimum understanding of the target implementation.
In other words, it is already known that a worst-case security evaluation cannot be fully unprofiled /
unsupervised [38].2 We show that even in profiled / supervised setting, an evaluation cannot generally
succeed in a purely black box setting. We also insist that our criticism is not specific to machine-
learning/deep learning and applies to black box security evaluations in general.

Besides, a recent work advocated for the possibility that adversarial examples can be used as a
basis for side-channel countermeasures [26]. The goal of this paper is quite the opposite: we do not to
propose cheating labels as a countermeasure against side-channel attacks and our results rather aim
to mitigate the optimism for the potential of machine learning and deep learning (among others) as
black box evaluation tools. Our view is that countermeasures should provide security independent of the
attack / evaluation strategy, and that a single (e.g., machine learning / deep learning) tool is unlikely
to provide strong theoretical guarantees, especially in a black box context. So this study has to be seen
as complementary to discussions which show that there are realistic implementations for which black
box security evaluations can be much less efficient than informed ones [5]. We show that there are (less
realistic) implementations where black box security evaluations cannot succeed at all.

Overall, the goal of this paper is therefore to stimulate a necessary discussion on the advantages
and limitations of black box analyses in the side-channel evaluation context, exactly as it happened for
leakage detection. Putting forward critical case studies such as cheating labels is paramount for this
purpose, since it provides a concrete basis to understand the risks of overstated security claims.

2 Which applies to non-profiled machine learning based evaluations as well [34].

How to Fool a Black Box Machine Learning Based Side-Channel Security Evaluation 3

1 Background

In this section, the necessary material for the rest of the paper is presented. Namely, the notations are first
introduced. Then, various side-channel distinguishers are recalled, starting with MCP-DPA and followed
by machine learning techniques. Finally, the masking countermeasure we use is briefly described.

1.1 Notations.

We denote a plaintext byte as p, a key byte as k and the target intermediate value of our attack as y.
Random variables are denoted with bold capital letters such as X. The dth-order raw statistical moments
are defined as Md

x = E[Xd] where E[·] is the expectation operator. The dth-order central moments are
defined as CMd

x = E[(X−µ)d] with µ = E[X]. The first-order moment M1
x is the mean of the distribution

& the second-order central moment CM2
x is its variance.

1.2 Side-channel evaluation tools

1.2.1 Moments-Correlating (Profiled) DPA [24].

MCP-DPA is a side-channel attack method based on a chosen statistical moment. In a profiling phase,
a statistical moment is estimated for each targeted intermediate value Y by using a set of leakages with
known keys k and plaintexts p. For example, estimating the variance of the output of the first Sbox,

y = Sbox(k⊕ p), gives ĈM
2

p,k = [CM2
0,CM2

1, . . . ,CM2
255] where CM2

y denotes the variance of the leakage

for the target value y. The vector CMd
p,k (i.e., in this example, ĈM

2

p,k) obtained is used to recover the
correct key which is selected according to:

k̂ = argmaxk∗ ρ(CMd
k∗,p, (Lp,k − µ̂p,k)d), (1)

where Lp,k is the vector of leakages produced when manipulating a known plaintext p with an unknown
key k and µ̂p,k is an estimation of the mean output of the first Sbox using p and k as input. So MCP-DPA
just estimates Pearson’s correlation coefficient between a model corresponding to statistical moments of
order d and the actual leakages raised to the same power. If the attack is successful, the best correlation
is obtained for the correct key guess.

The main interest of this method is that it allows choosing which moment will be exploited to recover
the key, which is usually becoming the optimal strategy as the noise in the measurements increases [10].
In the following investigations, it will be particularly handy to explicitly distinguish based on the sensitive
labels (despite the cheating ones may leak “more” in some sense). Concretely, we will only need MCP-DPA
of order 1, which targets the means of leakages (i.e., the first-order statistical moment) and MCP-DPA
on order 2, which targets the variances of leakages (i.e., the second-order central moment).

1.2.2 Multi-Layer Perceptrons (MLPs).

Before explaining MLPs, let us introduce what is a perceptron. A perceptron is a linear classifier and
represents the simplest neural network model: an n-input (x1, x2, .., xn) perceptron with one output o
is defined by n weights (w1, w2, .., wn), a bias w0 and an activation function f (in our experiments the
ReLU function, f(x) = max(0,x), was used). A perceptron is illustrated in Figure 2a. The output of the
perceptron is computed as:

o = f(w0 +

n∑
i=1

wixi).

During the training phase, weights are first initialized to small random values. Then, thanks to an
optimization algorithm, the weights are set in order to minimize a loss function (which is a function
quantifying the error between the prediction of the algorithm and the actual ground truth, for instance
the mean squared error). One way to achieve this is to apply the gradient descent algorithm [3, Sec. 5.3]
to optimize weights.

A Multilayer Perceptron (MLP) is then simply defined as a specific combination of perceptrons
allowing to build more complex classifiers. Figure 2b illustrates its typical architecture. The input is

4 Charles-Henry Bertrand Van Ouytsel et al.

Perceptron Output

Inputs

(a) Perceptron.

i

j

Output Layer

Hidden Layer

Input Layer

wi,j

(b) MLP architecture.

Fig. 2: Perceptron and MLP architecture.

propagated from the left to the right and each unit (i.e., perceptron) of a layer is connected to units of
the previous layer. In this figure, each neuron of a layer is connected to all the neurons of the previous
layer: this architecture is thus called a fully connected network. In Figure 2b, we observe three types of
layers which constitute MLPs:

– The input layer makes the intermediary between the input data and the first hidden layer (it just
passes the data to the hidden nodes).

– Hidden layers allow one to introduce non-linearity in the model in order to fit non-linear separable
datasets. According to the complexity of the targeted problem, the number of hidden layers and the
number of neurons have to be adjusted. Using too much neurons could lead to an overfitting of the
model (i.e, a model corresponding too closely to a particular set of data which could fail to fit and
predict on new data correctly), while not enough neurons could fail to create an accurate model [3,
Sec. 5.5].

– The output layer is the last layer of the network. Outputs of its neurons map directly to labels which
have to be predicted. Here these labels are the intermediate values y targeted by the side-channel
attack. The final output is a vector giving a score to each hypothetical value of the label.

The goal of the MLP training phase is to find optimal weights for all neurons of the architecture. For
more information about this training, see Bishop’s book [3].

1.2.3 Random Forests.

Decision trees are classification models based on the sequential application of simple binary rules. They
are structured as a directed tree: starting at the root, the tree is traversed towards a leaf by selecting
an edge at each node according to a simple rule. The leaf nodes are the class labels, which are the
possible values for the target intermediate variable in the side-channel attack context. Each node’s rule
is a threshold test on the leakage sample.

In the profiling phase, the training data is used in order to build the decision tree. First, the dataset is
presented to the root and split based on a test over the leakage sample that most effectively discriminates
sets associated to different target values. Each new subset created is associated to one of the child nodes
of the root, and the process is repeated on each new subset in a recursive way until the child node
contains only samples associated to the same target value, or the gain to split again the set becomes less
than some threshold. Finally, one assigns a target intermediate value to each leaf.

Next, when a new leakage sample is sent to the decision tree during the attack phase, it is first
presented to the root and forwarded to one of its child nodes depending on the result of the edge’s test.
The process is repeated until a leaf is finally reached. A decision tree is illustrated in Figure 3.

A Random Forest (RF) is constituted of many decision trees, each of them trained with a different
subset of the training dataset. The output of the random forest is computed through a majority vote
among its classification trees outputs. In our experiments, the number of trees in the random forest was
set to 200. As for MLP, the final output is a vector giving a score to each hypothetical value of the label.

1.3 Domain-Oriented Masking.

Masking is a well-known countermeasure against side-channel attacks, of which the goal is to randomize
all intermediate values manipulated by the algorithm into several shares, so that an adversary is forced
to target the shares jointly to recover sensitive information [8].

How to Fool a Black Box Machine Learning Based Side-Channel Security Evaluation 5

Root's test

Binary test Binary test

LeafLeafLeaf Leaf

Fig. 3: Decision tree.

In the case we will consider next, each intermediate value y is concealed by a random value m called
the mask. The mask m is generated by the device and changes from one execution to another. We use
Boolean masking, therefore the masked intermediate value is defined as ym = y ⊕m. Performing linear
operations on shared data is straightforward (one can just apply the operation share-wise). Non-linear
operations are more tricky and there is a wide literature [29,7,15] investigating solutions to perform
secure multiplications with minimum overheads (in time, space and randomness). We will next use the
Domain-Oriented Masking (DOM) scheme of Gross et al. [15], which comes with a convenient generic
open source HDL code. In order to exploit the leakage of a (securely) masked implementation, the
adversary typically has to estimate a higher-order statistical moment, which is the main ingredient
leading to security improvements [10]. In the unprotected (resp., 2-share) implementations we consider,
an adversary will therefore have to perform a first-order (resp., 2nd-order) MCP-DPA to successfully
recover the key. First-order MCP-DPA focuses on the mean leakage value, while 2nd-order MCP-DPA
focuses on the variance of the leakages and does not exploit differences of the mean leakages (since the
variance is a central statistical moment).

2 Cheating labels and instantiation

The objective of following investigations is to confuse a training phase with observations inherently
related to two labels: sensitive labels (i.e., the real labels that the device is trying to hide) and cheating
labels (i.e., misleading labels that the device is trying to make obvious to the classifier). Assuming that
the profiling and target devices are different (which is usually the case in practice), one can then expect
that an attack trained with cheating labels will not converge towards the correct sensitive key in its
online phase, since the relationship between sensitive labels and cheating labels is device-dependent.

Our proposed instantiation of cheating labels is illustrated in Figure 4. It consists in two encryption
designs running in parallel on the same device. The first one is an unprotected design using a key k ⊕ δ
(with δ a device-specific value between 0 and 255). The second one is a 2-share masked design using the
sensitive key k. Since the two designs (and the two shares of the masked design) are running in parallel,
a simple model for their power consumption (assuming leakages proportional to Hamming weights of the
manipulated data) is: L(k, p,m, δ) = HW(Sbox(k⊕ δ⊕ p)) + HW(Sbox(k⊕ p)⊕m) + HW(m) + ε, where
HW(.) is the Hamming weight function, m the mask and ε ∼ N (0, σ2) is a zero-mean Gaussian noise of
variance σ2.

Fig. 4: Cheating labels (general principle).

6 Charles-Henry Bertrand Van Ouytsel et al.

With sufficiently noisy leakages, we can expect that the unprotected design will leak significantly more
and in a more obvious manner than its masked counterpart. In particular, and as previously mentioned,
a first-order (resp., 2nd-order) MCP-DPA should be sufficient to break the first (resp., second) design.
By contrast, in case of a machine learning (or any other) tool targeting directly the full distribution, the
fact that both keys are related by a device-specific δ should lead to primarily model the leakage of the
unprotected, misleading design. Therefore, if a model trained on a device with a δ value δm is next used
to attack a device using δa, it is expected that the attack will be unsuccessful (recovering k ⊕ δm ⊕ δa
instead of k).

3 Simulated experiments

We now provide a couple of simulated experiments demonstrating the theoretical applicability of cheating
labels. For this purpose, we assume Hamming weight leakages of the form given in the previous section
and consider an adversary who has full control of a (simulated) training device for the profiling phase.
We used a noise variance of 10 and allowed a profiling with 2,000 simulated measurements per sensitive
value y (out of 256 possibilities). Then, during the attack phase, we simply consider a different δ to
generate the leakages. The target intermediate value is the (first-round, first) Sbox output of an AES
implementation3.

For each simulated attack, 20 independent sets of 30,000 simulated measurements were generated
(each set corresponding to a different target key chosen randomly), from which we estimated the average
key rank of the target key (i.e., the guessing entropy), which is a usual metric for side-channel security
evaluations [33]. Precisely, after each attack, the rank of a key k is defined as:

rank(k) = |{k∗ ∈ K|d[k∗] > d[k]}|,

where d[k∗] denotes the score (here the likelihood) given to the key k∗.

3.1 Model parameters

Our machine learning based attacks use the scikit-learn library [25] Version 0.21.2. All parameters of the
methods under investigation have been selected thanks to a grid search, by evaluating performance of the
attack (i.e., the number of traces required to recover the correct key byte and computational resources
required for it) against both an unmasked and a masked simulated implementation. For each combination
of parameters, 20 datasets independent of the training set were used in order to avoid overfitting, and
to enable meaningful comparisons. Values of deltas for profiling sets and each attack set were chosen
randomly but stayed consistent among the same set. The parameters used in our experiments are given
below:

– Multi-layer perceptrons :
– Number of hidden layers: 2 – values tested: [1,2,3,4];
– Number of neurons per layer: 40 – values tested :[10,20,30,40,50];
– Output layer: 256 neurons.

– Random Forest:
– Number of trees: 200 – values tested [100,200,300];
– Maximum depth of the tree: 15 – values tested [10,15,20].

3.2 Profiling with a single δ.

Our first experiment covers the case where our profiling set contains a single device, hence a single δ,
which is different from the one of the attacked device. Figure 5a represents the average rank of the correct
key byte for an increasing number of traces used by the attacker.

By observing the red curve, we can notice that the key is easily recovered by the 2nd-order MCP-DPA.
By contrast, neither the MLP-based nor the RF-based attacks succeed to discriminate the sensitive key.
In fact, both machine learning based methods converge towards a key k⊕ δ1⊕ δ2 (called “false key byte”

3 Other intermediate computations could be targeted (e.g., the output of AddRoundKey). Yet, the output of the Sbox
offers a sweat spot for side-channel attacks due to its non-linearity.

How to Fool a Black Box Machine Learning Based Side-Channel Security Evaluation 7

101 102 103 104

Number of traces used

0

20

40

60

80

100

120

140
Av

er
ag

e
ra
nk

 o
f t

he
 k
ey

 b
yt
e

RF correct key byte
MCP-DPA order 2
MLP correct key byte
RF false key byte
MLP false key byte

(a) Profiling with a single δ.

101 102 103 104

Number of traces used

0

20

40

60

80

100

120

140

160

Av
er

ag
e

ra
nk

 o
f t

he
 c

or
re

ct
 k

ey

RF
MCP-DPA order 2
MLP

(b) Profiling with 10 different δ’s.

Fig. 5: Simulated analyses (I).

101 102 103 104

Number of traces used

0

20

40

60

80

100

120

140

160

Av
er

ag
e

ra
nk

 o
f t

he
 c

or
re

ct
 k

ey

RF
MCP-DPA order 2
MLP

(a) Profiling with 256 different δ’s.

101 102 103 104

Number of traces used

0

20

40

60

80

100

120
Av

er
ag

e
ra

nk
 o

f t
he

 c
or

re
ct

 k
ey

RF
MCP-DPA order 2
MLP

(b) Profiling with 10 different δ’s including the correct one.

Fig. 6: Simulated analyses (II).

in Figure 5a), by combining deltas of the attack device (say δ1) and the profiling device (say δ2). This
experiment demonstrates the theoretical applicability of cheating labels: by designing an implementation
manipulating two related keys, and forcing the leakage of a misleading key (i.e., corresponding to a
cheating label) to be both larger in amplitude and easier to exploit, the leakage related to the sensitive
label remains hard to capture during profiling.

3.3 Profiling with multiple δ’s.

As a complement to our first experiment, we investigate a natural option to mitigate the risk of cheating
labels. Namely, we repeat the previous attacks after profiling over multiple devices, each of them with a
different (randomly generated) δ. Figure 5b represents the average rank of the correct key byte for an
increasing number of traces used by the attacker considering a profiling over 10 devices (not including
the correct δ). Figure 6a represents the same quantity when profiling over all the δ’s.

We observe that profiling over multiple δ’s gradually makes the cheating labels appear as random
noise that is easy-to-model for machine learning tools (rather than a fixed key-dependent secret). When
profiling with 10 δ’s, correct labels are not yet correctly classified but the rank of the correct key decreases
to approximately 70. When profiling with 256 δ’s, all misleading labels become possible (and equally
likely) and machine learning tools therefore discriminate the correct key (which is the only secret left).

8 Charles-Henry Bertrand Van Ouytsel et al.

3.4 Profiling with the good δ’s.

Eventually, we repeated the profiling with 10 δ’s, this time including the δ of the device targeted in the
online attack in the profiling set. Results in Figure 6b show that in this case, both the MLP and the RF
recover the correct key with less traces.

From the previous simulations, we conclude that machine learning based attacks can circumvent
cheating labels in case the correct δ is part of their profiling set, and that the attacks will succeed faster
in case the subset of δ’s including the correct one used for profiling remains small (which limits the
noise).

4 Actual measurements

We now confirm the previous conclusions based on actual measurements. We first describe our measure-
ment setup and then discuss the effect of cheating labels on different Points-of-Interest (POIs) of our
traces.

4.1 Measurement setup.

An actual prototype of cheating labels has been implemented on a Xilinx Kintex-7 FPGA placed on
a Sakura-X side-channel evaluation board.4 The power consumption is measured on a 1[Ohm] resistor
placed between the power supply and the target FPGA running at 4[MHz]. This signal is sampled with
a PicoScope 5000 Series at a rate of 500[MSamples/s] with 12-bit precision. Hence, 125 samples are
available within each cycle. The module implementing cheating label is similar to the one depicted in
Figure 4 where a protected and an unprotected implementation are running in parallel. Both are derived
from the open-source DOM protected AES instantiated with two shares.5 The protected one is fed with
fresh randomness generated from an AES-based PRG. The unprotected one is strictly the same except
that it is fed with a constant as randomness. This ensures that both are synchronous in their manipulation
of the sensible variables y, meaning that both 1st- and 2nd-order leakages should be exploitable in the
same samples.

As a pre-processing, we evaluated Mangard’ Signal-to-Noise Ratio (SNR) on the measured traces [21],
which allowed us to identify POIs. For illustration, we selected two POIs (with lower and higher SNRs)
for our experiments. For the rest, we used the same parameters as selected for our simulated analyses
and we next consider only the case where a single (incorrect) δ is used for profiling (since the impact of
profiling over more δ’s and possibly the correct one follows the same pattern as in the previous section).6

4.2 POI with lower SNR.

The results of our various attacks against the POI with lower SNR are in Figure 7a, where we can
notice a behavior essentially similar to the one of our simulations. Namely, only the MCP-DPA of order
2 succeeds in recovering the key. So this sample typically corresponds to a situation where the leakage
of the cheating labels dominates. We assume this is due to a large enough noise so that the 1st-order
information “dominates”. As discussed by Duc et al. [10, Sec. 4.2], for large enough noise (so low enough
SNR), the best adversarial strategy is always to target the lowest-order statistical moment of the leakage
distribution, which is only generated by the cheating labels.

4.3 POI with higher SNR.

The results of our various attacks against the POI with higher SNR are in Figure 7b. This time the
effectiveness of machine learning based attacks significantly improves: one still cannot fully recover the
key, but its rank is noticeably decreased. We assume this difference to be due to a less dominant 1st-order

4 http://satoh.cs.uec.ac.jp/SAKURA/hardware/SAKURA-X.html
5 https://github.com/hgrosz/aes-dom
6 This approach can directly be applied to bitslice masked ciphers [14]. Indeed, the protected implementation can be

placed on the lower bits and the cheating labels on the upper bits with disabled randomness. This will make the upper bits
leaking at first order exactly as in the hardware case.

http://satoh.cs.uec.ac.jp/SAKURA/hardware/SAKURA-X.html
https://github.com/hgrosz/aes-dom

How to Fool a Black Box Machine Learning Based Side-Channel Security Evaluation 9

102 103 104 105

Number of traces used

0

25

50

75

100

125

150

175

Av
er

ag
e

ra
nk

 o
f t

he
 k

ey
 b

yt
e

RF correct key byte
MCP-DPA order 2
MLP correct key byte

(a) Attacks exploiting a POI with low SNR.

102 103 104 105

Number of traces used

0

25

50

75

100

125

150

175

Av
er

ag
e

ra
nk

 o
f t

he
 k

ey
 b

yt
e

RF correct key byte
MCP-DPA order 2
MLP correct key byte

(b) Attacks exploiting a POI with high SNR.

Fig. 7: Real measurements.

leakage, due to a lower level of noise in the traces. As discussed by Duc et al. [10, Sec. 4.2], when the
noise decreases, the complexity of exploiting the different statistical moments of the leakage distribution
becomes more similar. This explains why the first-order leakages of our cheating labels become less
dominant in front of the sensitive second-order leakages.

5 Conclusions

Both our simulations and experimental results confirm that cheating labels can be an effective way to fool
black-box machine learning based side-channel security evaluations, and how a more specific profiling
can circumvent them. In this respect, we note that profiling over 256 δ’s as in this paper is not overly
expensive, but one could naturally design more expensive implementations at higher security orders to
make the profiling more expensive. More generally, the examples given in this paper may admittedly
look somewhat artificial, since it is unlikely that any concrete adversary has for sole purpose to fool a
security evaluation. Yet, we believe that they show an important risk of shortcoming that all black box
security evaluations (and importantly, not only the ones exploiting machine learning / deep learning)
may encounter. Namely, when ignoring important implementation details, one may incorrectly conclude
that some sensitive operations are hard (or even impossible) to profile, hence missing them in the online
attack phase of the evaluations. We note that such an application of adversarial machine learning could for
example gain practical relevance if products were developed with the goal to pass black box conformance
based evaluation rather than to optimize worst-case security. So this paper should be seen as a warning for
theoretical issues that can pop up in case of black box evaluations, with the conclusion that certification
should not be fully black box.

Acknowledgments. Charles-Henry Bertrand Van Ouytsel, Gaëtan Cassiers and François-Xavier Stan-
daert are respectively FRIA grantee, Research Fellow and Senior Associate Researcher of the Belgian
Fund for Scientific Research (FNRS-F.R.S.). This work has been funded in part by the ERC project
724725.

References

1. M. Barreno, B. Nelson, R. Sears, A. D. Joseph, and J. D. Tygar. Can machine learning be secure? In AsiaCCS, pages
16–25. ACM, 2006.

2. B. Biggio, B. Nelson, and P. Laskov. Poisoning attacks against support vector machines. In ICML. icml.cc / Omnipress,
2012.

3. C. M. Bishop. Pattern recognition and machine learning, 5th Edition. Information science and statistics. Springer,
2007.

4. O. Bronchain, T. Schneider, and F. Standaert. Multi-tuple leakage detection and the dependent signal issue. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2019(2):318–345, 2019.

5. O. Bronchain and F. Standaert. Side-channel countermeasures’ dissection and the limits of closed source security
evaluations. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2020(2):1–25, 2020.

10 Charles-Henry Bertrand Van Ouytsel et al.

6. E. Cagli, C. Dumas, and E. Prouff. Convolutional neural networks with data augmentation against jitter-based
countermeasures - profiling attacks without pre-processing. In CHES, volume 10529 of LNCS, pages 45–68. Springer,
2017.

7. G. Cassiers, B. Grégoire, I. Levi, and F. Standaert. Hardware private circuits: From trivial composition to full verifi-
cation. IACR Cryptol. ePrint Arch., 2020:185, 2020.

8. S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi. Towards sound approaches to counteract power-analysis attacks. In
CRYPTO, volume 1666 of LNCS, pages 398–412. Springer, 1999.

9. J. Cooper, E. D. Mulder, G. Goodwill, J. Jaffe, G. Kenworthy, and P. Rohatgi. Test vector leakage assessment (tvla)
methodology in practice. In International Cryptographic Module Conference (ICMC 2013), page 13.

10. A. Duc, S. Faust, and F. Standaert. Making masking security proofs concrete - or how to evaluate the security of any
leaking device. In EUROCRYPT (1), volume 9056 of LNCS, pages 401–429. Springer, 2015.

11. F. Durvaux and F. Standaert. From improved leakage detection to the detection of points of interests in leakage traces.
In EUROCRYPT (1), volume 9665 of LNCS, pages 240–262. Springer, 2016.

12. B. Frénay and M. Verleysen. Classification in the presence of label noise: A survey. IEEE Trans. Neural Netw. Learning
Syst., 25(5):845–869, 2014.

13. G. Goodwill, B. Jun, J. Jaffe, P. Rohatgi, et al. A testing methodology for side-channel resistance validation. In NIST
non-invasive attack testing workshop, volume 7, pages 115–136, 2011.

14. D. Goudarzi and M. Rivain. How fast can higher-order masking be in software? In EUROCRYPT (1), volume 10210
of Lecture Notes in Computer Science, pages 567–597, 2017.

15. H. Groß, S. Mangard, and T. Korak. Domain-oriented masking: Compact masked hardware implementations with
arbitrary protection order. In TIS@CCS, page 3. ACM, 2016.

16. A. Heuser and M. Zohner. Intelligent machine homicide - breaking cryptographic devices using support vector machines.
In COSADE, volume 7275 of LNCS, pages 249–264. Springer, 2012.

17. G. Hospodar, B. Gierlichs, E. D. Mulder, I. Verbauwhede, and J. Vandewalle. Machine learning in side-channel analysis:
a first study. J. Cryptographic Engineering, 1(4):293–302, 2011.

18. L. Lerman, S. F. Medeiros, G. Bontempi, and O. Markowitch. A machine learning approach against a masked AES.
In CARDIS, volume 8419 of LNCS, pages 61–75. Springer, 2013.

19. L. Lerman, R. Poussier, G. Bontempi, O. Markowitch, and F. Standaert. Template attacks vs. machine learning
revisited (and the curse of dimensionality in side-channel analysis). In COSADE, volume 9064 of LNCS, pages 20–33.
Springer, 2015.

20. H. Maghrebi, T. Portigliatti, and E. Prouff. Breaking cryptographic implementations using deep learning techniques.
In SPACE, volume 10076 of LNCS, pages 3–26. Springer, 2016.

21. S. Mangard. Hardware countermeasures against DPA ? A statistical analysis of their effectiveness. In CT-RSA, volume
2964 of LNCS, pages 222–235. Springer, 2004.

22. L. Mather, E. Oswald, J. Bandenburg, and M. Wójcik. Does my device leak information? an a priori statistical power
analysis of leakage detection tests. In ASIACRYPT (1), volume 8269 of LNCS, pages 486–505. Springer, 2013.

23. P. D. McDaniel, N. Papernot, and Z. B. Celik. Machine learning in adversarial settings. IEEE Security & Privacy,
14(3):68–72, 2016.

24. A. Moradi and F. Standaert. Moments-correlating DPA. In TIS@CCS, pages 5–15. ACM, 2016.
25. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,

V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

26. S. Picek, D. Jap, and S. Bhasin. Poster: When adversary becomes the guardian - towards side-channel security with
adversarial attacks. In CCS, pages 2673–2675. ACM, 2019.

27. S. Picek, I. P. Samiotis, J. Kim, A. Heuser, S. Bhasin, and A. Legay. On the performance of convolutional neural
networks for side-channel analysis. In SPACE, volume 11348 of LNCS, pages 157–176. Springer, 2018.

28. M. Renauld, F. Standaert, N. Veyrat-Charvillon, D. Kamel, and D. Flandre. A formal study of power variability issues
and side-channel attacks for nanoscale devices. In EUROCRYPT, volume 6632 of LNCS, pages 109–128. Springer,
2011.

29. O. Reparaz, B. Bilgin, S. Nikova, B. Gierlichs, and I. Verbauwhede. Consolidating masking schemes. In CRYPTO,
volume 9215 of Lecture Notes in Computer Science, pages 764–783. Springer, 2015.

30. T. Schneider and A. Moradi. Leakage assessment methodology - extended version. J. Cryptographic Engineering,
6(2):85–99, 2016.

31. R. Shokri, M. Stronati, C. Song, and V. Shmatikov. Membership inference attacks against machine learning models.
In IEEE Symposium on Security and Privacy, pages 3–18. IEEE Computer Society, 2017.

32. F. Standaert. How (not) to use welch’s t-test in side-channel security evaluations. In CARDIS, volume 11389 of LNCS,
pages 65–79. Springer, 2018.

33. F. Standaert, T. Malkin, and M. Yung. A unified framework for the analysis of side-channel key recovery attacks. In
EUROCRYPT, volume 5479 of LNCS, pages 443–461. Springer, 2009.

34. B. Timon. Non-profiled deep learning-based side-channel attacks with sensitivity analysis. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2019(2):107–131, 2019.

35. F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. Stealing machine learning models via prediction apis.
In USENIX Security Symposium, pages 601–618. USENIX Association, 2016.

36. F. Wegener, T. Moos, and A. Moradi. DL-LA: deep learning leakage assessment: A modern roadmap for SCA evalua-
tions. IACR Cryptology ePrint Archive, 2019:505, 2019.

37. C. Whitnall and E. Oswald. A critical analysis of ISO 17825 (’testing methods for the mitigation of non-invasive attack
classes against cryptographic modules’). In ASIACRYPT (3), volume 11923 of LNCS, pages 256–284. Springer, 2019.

38. C. Whitnall, E. Oswald, and F. Standaert. The myth of generic dpa...and the magic of learning. In CT-RSA, volume
8366 of LNCS, pages 183–205. Springer, 2014.

