Spook: L-Box Errata

The Spook team

No institute given.

The L-box used in Spook is an interleaved L-box that applies jointly to pairs of 32-bit
words. Denoting the two words on which it is applied as  and y it can be written as:

(a,b) = L(z,y) = circ(0xec045008) - T @ circ(0x36000£60) - yT
)= Y) = circ(0x1b0007b0) - =T & circ(0xec045008) - yT

where circ denotes the circulant matrix whose first line is given in hexadecimal notation,
so that the number b = Z?io 2ib; corresponds to the row vector (b, .. .,b31). Concretely,
this L-box can be efficiently implemented (in the direct and inverse directions) thanks to
six word-level rotations and six 32-bit XORs per word as shown by Algorithms 1 and 2.
Unfortunately, the picture describing the L-box in the Spook specification contains a
mistake and does not describe the correct operations.

Branch number. In the specification, we claim that the L-box has branch number 16
over pairs of input bits for x and y. However, we made a mistake when building the
L-box: it is based on a linear code with distance 16 over two-bit words, but the L-box
input/output are not correctly mapped to the linear code. As specified, the L-box has
branch number 15 (it has branch number 16 if we consider pairs of bits (z;41, y;), but this
is not the correct notion).

Tweak. We can fix the branch number by slightly tweaking the L-box, adding a rotation
at the output:

/ circ(0x36000£60) - T @ circ(0xd808a011) - yT
(a,0) = U(z,y) = { & : ,
circ(0xec045008) - T & circ(0x36000£60) - yT

The modified L-box can be implemented efficiently as shown by Algorithms 3 and 4 has
the correct branch number 16, restoring the bounds on linear and differential trails given
in the specification.
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Algorithm 1 Spook L-box Algorithm 2 Spook L-box inverse
Input: (z,y) Input: (z,y)
Word size: 32 Word size: 32

a < x @ rot(x,12)
b < y @ rot(y, 12)
a < a @ rot(a,3)
b+ b rot(b,3)

a + a P rot(x,17)
b« b@rot(y,17)
¢+ a@rot(a,31)
d < b @ rot(b,31)
a < a @ rot(d, 26)
b+ b® rot(c, 25)
a < a @ rot(c, 15)
b« b®rot(d,15)
return (a,b)

a < x @ rot(z, 25)
b« y @ rot(y, 25)
¢ < x @ rot(a, 31)
d < y @ rot(b, 31)
¢ + c @ rot(a, 20)
d + d @ rot(b, 20)
a <« cProt(c, 31)
b < d @ rot(d, 31)
¢ < c@rot(b,26)
d < d @ rot(a, 25)
a + a @ rot(c, 17)
b+« bdrot(d, 17)
a < rot(a, 16)

b < rot(b, 16)

return (a,b)

Algorithm 3 Tweaked L-box Algorithm 4 Tweaked L-box inverse

Input: (z,y) Input: (z,y)
Word size: 32 Word size: 32

a « x @ rot(z,12)
b« y @ rot(y,12)
a < a @ rot(a,3)
b+ b rot(b,3)

a + a P rot(x,17)
b« b rot(y,17)
¢+ a@rot(a,31)
d < b @ rot(b,31)
a < a @ rot(d, 26)
b < b @ rot(c, 25)
a < a @ rot(c, 15)
b« b®rot(d,15)
b« rot(b,1)
return (b, a)

a + x @ rot(z, 25)
b« y @ rot(y, 25)
¢ < x @ rot(a, 31)
d < y @ rot(b, 31)
¢+ c @ rot(a, 20)
d + d @ rot(b, 20)
a < cProt(c,31)
b < d @ rot(d, 31)
¢ < c@rot(b,26)
d < d & rot(a, 25)
a + a @ rot(e, 17)
b« b®rot(d,17)
a <+ rot(a, 15)

b < rot(b, 16)

return (b, a)




