Spook: L-Box Errata

The Spook team

No institute given.

The L-box used in Spook is an interleaved L-box that applies jointly to pairs of 32-bit
words. Denoting the two words on which it is applied as and y it can be written as:

(a,b) = L(z,y) = circ(0xec045008) - T @ circ(0x36000£60) - yT
)= Y) = circ(0x1b0007b0) - =T & circ(0xec045008) - yT

where circ denotes the circulant matrix whose first line is given in hexadecimal notation,
so that the number b = Z?io 2ib; corresponds to the row vector (b, .. .,b31). Concretely,
this L-box can be efficiently implemented (in the direct and inverse directions) thanks to
six word-level rotations and six 32-bit XORs per word as shown by Algorithms 1 and 2.
Unfortunately, the picture describing the L-box in the Spook specification contains a
mistake and does not describe the correct operations.

Branch number. In the specification, we claim that the L-box has branch number 16
over pairs of input bits for x and y. However, we made a mistake when building the
L-box: it is based on a linear code with distance 16 over two-bit words, but the L-box
input/output are not correctly mapped to the linear code. As specified, the L-box has
branch number 15 (it has branch number 16 if we consider pairs of bits (z;41, y;), but this
is not the correct notion).

Tweak. We can fix the branch number by slightly tweaking the L-box, adding a rotation
at the output:

/ circ(0x36000£60) - T @ circ(0xd808a011) - yT
(a,0) = U(z,y) = { & : ,
circ(0xec045008) - T & circ(0x36000£60) - yT

The modified L-box can be implemented efficiently as shown by Algorithms 3 and 4 has
the correct branch number 16, restoring the bounds on linear and differential trails given
in the specification.

Acknowledgment

We would like to thank Gwezheneg Robert for pointing out the mistake.

2 Spook: L-Box Errata

Algorithm 1 Spook L-box Algorithm 2 Spook L-box inverse
Input: (z,y) Input: (z,y)
Word size: 32 Word size: 32

a < x @ rot(x,12)
b < y @ rot(y, 12)
a < a @ rot(a,3)
b+ b rot(b,3)

a + a P rot(x,17)
b« b@rot(y,17)
¢+ a@rot(a,31)
d < b @ rot(b,31)
a < a @ rot(d, 26)
b+ b® rot(c, 25)
a < a @ rot(c, 15)
b« b®rot(d,15)
return (a,b)

a < x @ rot(z, 25)
b« y @ rot(y, 25)
¢ < x @ rot(a, 31)
d < y @ rot(b, 31)
¢ + c @ rot(a, 20)
d + d @ rot(b, 20)
a <« cProt(c, 31)
b < d @ rot(d, 31)
¢ < c@rot(b,26)
d < d @ rot(a, 25)
a + a @ rot(c, 17)
b+« bdrot(d, 17)
a < rot(a, 16)

b < rot(b, 16)

return (a,b)

Algorithm 3 Tweaked L-box Algorithm 4 Tweaked L-box inverse

Input: (z,y) Input: (z,y)
Word size: 32 Word size: 32

a « x @ rot(z,12)
b« y @ rot(y,12)
a < a @ rot(a,3)
b+ b rot(b,3)

a + a P rot(x,17)
b« b rot(y,17)
¢+ a@rot(a,31)
d < b @ rot(b,31)
a < a @ rot(d, 26)
b < b @ rot(c, 25)
a < a @ rot(c, 15)
b« b®rot(d,15)
b« rot(b,1)
return (b, a)

a + x @ rot(z, 25)
b« y @ rot(y, 25)
¢ < x @ rot(a, 31)
d < y @ rot(b, 31)
¢+ c @ rot(a, 20)
d + d @ rot(b, 20)
a < cProt(c,31)
b < d @ rot(d, 31)
¢ < c@rot(b,26)
d < d & rot(a, 25)
a + a @ rot(e, 17)
b« b®rot(d,17)
a <+ rot(a, 15)

b < rot(b, 16)

return (b, a)

