
Noname manuscript No.
(will be inserted by the editor)

Side-channel Analysis of a Learning Parity with Physical Noise
Processor

Dina Kamel* · Davide Bellizia · Olivier Bronchain · François-Xavier

Standaert

Received: date / Accepted: date

Abstract Learning Parity with Physical Noise

(LPPN) has been proposed as an assumption on which

to build authentication protocols based on the Learning

Parity with Noise (LPN) problem. Its first advantage

is to reduce the randomness requirements of standard

LPN-based protocols, by directly performing erroneous

computations so that no (e.g. Bernoulli-distributed)

errors have to be generated on chip. At ASHES 2018,

an LPPN processor was presented and confirmed the

possibility to efficiently generate erroneous compu-

tations with the appropriate error rate. Since LPPN

computations are key-homomorphic, they are good

candidates for improved side-channel security thanks to

masking, since they could theoretically lead to masked

implementations with overheads that are linear in

the number of shares, the analysis of which was left
as an open problem. In this paper, we confirm this

good potential by analyzing the side-channel security

of an LPPN processor. We (1) evaluate the leakage

of different parts of the erroneous computations, (2)

conclude that intermediate computations that can be

targeted with a divide-and-conquer Gaussian template

F. Author
Université Catholique de Louvain (UCLouvain)
Tel.: +123-45-678910
Fax: +123-45-678910
E-mail: *dina.kamel@uclouvain.be

S. Author
Université Catholique de Louvain (UCLouvain)
E-mail: davide.bellizia@uclouvain.be

3. Author
Université Catholique de Louvain (UCLouvain)
E-mail: olivier.bronchain@uclouvain.be

4. Author
Université Catholique de Louvain (UCLouvain)
E-mail: francois-xavier.standaert@uclouvain.be

attack are a sweet spot for side-channel attacks, and

(3) show that LPPN computations naturally reach a

level of noise that makes masking effective, despite

further noise addition could be beneficial to reach

higher security at lower implementation cost.

Keywords Learning parity with noise · Side-channel

analysis · Authentication · Probabilistic computation

1 Introduction

In light of the emergence of the Internet of Things

(IoT) for an increasingly wide range of applications

implicated in every day life (e.g. smart homes and

cities, building management, e-health, . . . etc), con-

nected devices must feature low-power/energy, low-cost
and most importantly minimum security guarantees

(e.g. lightweight authentication [11]). Due to their con-

ceptual simplicity, protocols based on the Learning Par-

ity with Noise (LPN) problem are considered as promis-

ing candidates for this purpose [23]. However, due to

the requirement of a (Pseudo) Random number Gener-

ator (RNG), which may be expensive and at the same

time an easy target for side-channel analysis, the prac-

tical relevance of such protocols remains questionable.

In [15], the authors introduced a working instance of the

recently proposed Learning Parity with Physical Noise

(LPPN) assumption [16], which mitigates the need of

an RNG by directly performing erroneous computations

and proved to be efficient. However, the side-channel se-

curity aspect of such an implementation has so far been

left as an open problem.

In general, security against physical attacks where

an adversary monitors side-channel leakages [19] or in-

duces faults [14] in order to recover cryptographic keys

is an important design challenge. This is especially true

2 Dina Kamel* et al.

in the context of the IoT which features tight area

and power/energy constraints. For example, the mask-

ing countermeasure is a popular solution to minimize

side-channel leakage in block cipher implementations,

but the implementation cost of such a solution grows

(roughly) quadratically in the number of shares [13].

Moreover, the physical assumptions upon which its se-

curity depends may not be easy to meet, due to physi-

cal (hardware) effects such as glitches [21, 22] and cou-

pling [7, 8, 17] that can recombine the leakages of the

shares, thus reducing the “security order” of the im-

plementations (i.e. the lowest statistical moment of the

leakage distributions that is key-dependent). Further-

more, the interaction between masking and counter-

measures against fault attacks may lead to additional

overheads [25] and weaknesses [24].

In contrast with block ciphers, implementations

of LPN-based protocols and its physical counterpart

(LPPN) inherently offer good properties to resist

against side-channel attacks via masking at a linear

cost [12], thanks to their key-homomorphic nature.

Moreover, they have inherently good features to re-

sist against fault attacks [4]. In this paper we there-

fore analyze the side-channel security of an LPPN pro-

cessor for the first time, which complements the work

in [15]. As usual in side-channel analysis, we aim at a

worst-case security level [26]. We observe that LPPN

co-processors are interesting in this respect since their

key-homomorphism implies that the independence con-

dition required for masking to be effective is easier to

guarantee by design. As a result, an evaluator mostly

has to quantify the information of each share in order

to evaluate a worst-case security level, following the

bounds given in [9]. We evaluate such bounds based

on a prototype LPPN implementation and use the re-

cent tools of [5] to also consider powerful multivariate

attacks. Our results allow exhibiting the best targets

for side-channel attacks within LPPN-based implemen-

tations and confirm the good potential of such imple-

mentations for physical security.

Contribution. We provide a side-channel evaluation

of an LPPN implementation proposed in [15], taking

advantage of sound Information Theoretic (IT) tools.

Results are based on actual measurements performed

on a 512-bit (64-bit parallel × 8-bit serial) LPPN pro-

cessor fabricated in 28nm FDSOI CMOS technology.

For comparison purposes, we analyze the information

leakage based on a single bit at a time, which allows us

to compare the informativeness of the different stages of

our implementation. Our main conclusions are twofold:

– After analyzing the information leakage of all the in-

ternal stages of the LPPN implementation, we iden-

tified both the output of the first LPPN stage and

the final output bit as the most informative targets

for a side-channel attack. Since the first one is ex-

ploitable via a Gaussian template attack while the

second one requires more sophisticated algebraic at-

tacks [3, 2, 10], we conclude that it corresponds to

a sweeter spot for concrete adversaries.

– Second, quantitative evaluations in univariate and

multivariate settings indicate that we reach levels of

leakage such that a masked implementation would

be effective as is (yet, it could possibly be improved

by adding some noise generators).

The paper is organized as follows. Section 2 presents

the LPN problem, the LPPN assumption and the LPPN

processor implementation. In section 3 we provide the

background regarding the evaluation metrics and set-

tings used in the paper. A discussion of the side-channel

analysis of the LPPN processor using univariate and

multivariate settings is given in section 4. Finally, sec-

tion 5 concludes the paper & discusses open problems.

2 LPPN processor

2.1 LPN problem

Let k ∈ {0, 1}m be a random m-bit secret, x ∈ {0, 1}m

be an m-bit public input and 〈x, k〉 denote the bi-

nary inner product of x and k. Let ε ∈]0, 12 [be a

noise parameter that follows a Bernoulli distribution

(Berε) such that if e ← Berε, then Pr[e = 1] = ε and

Pr[e = 0] = 1− ε, and Dk,ε be the distribution:

Dk,ε =: {x← {0, 1}m; e← Berε : (x, 〈x, k〉 ⊕ e)}.

Let Ok,ε denote an oracle outputting independent sam-

ples according to the distribution Dk,ε. The LPN m
ε

problem is said to be (q, t,me, θ)-hard to solve if for

any algorithm A (that runs in time < t, with memory

< me and makes at most q queries to the oracle Ok,ε),
the following inequality holds:

Pr[k ← {0, 1}m : AOk,ε(1m) = k] ≤ θ.

2.2 LPPN assumption

Let PFdk,α(x) be a physical function (as defined in [1]

and simplified in [16]), which we next called an ε̃-

Physical Inner Product (ε̃-PIP) [15]. It is based on a

physical device dk that stores a random m-bit secret

k ∈ {0, 1}m, has α set of parameters, and which can

be stimulated with a uniform public input x ∈ {0, 1}m

so that it outputs 〈x, k〉 with estimated error probabil-

ity: P̂r[PFdk,α(x) 6= 〈x, k〉] = ε̃. In such a context, the

Side-channel Analysis of a Learning Parity with Physical Noise Processor 3

FSM

Error Controller

Challenge: X

Reset: RST
Clock: CLK

Response: P

Locked

Key: K

Verifier Prover

Challenge: X

Response: P

Calibration phase

Authentication phase

r steps

q
 q

u
e

ri
e

s
q

 q
u

e
ri

e
s

Inner Product (IP)

& ϴ
64-bit

Parallel
ϴ8-bit Serial

V
a

ria
b

le
 d

e
la

y
 lin

e

CNTL<5:0>

CLKdel

Fig. 1: LPPN processor architecture.

LPPN problem can be described just as the LPN prob-

lem, with as only difference that the LPN samples are

replaced by the outputs of an ε̃-PIP.

2.3 LPPN implementation and performance

The main challenge to design an ε̃-PIP is to control the

error probability ε̃ such that it cannot be tampered ex-

ternally by an adversary. The LPPN processor designed

in [15] meets such a challenge (to a sufficient extent) by

preceding the authentication operation by a calibration

phase where the verifier exchanges sets of challenge-

responses (q queries) during r steps with the prover (as

shown in Fig. 1) to adjust its control such that the error

probability is kept within the designated bounds dur-

ing the following authentication phase. It comprises a

512-bit inner product (IP) logic block (which is a mixed

architecture of first 64-bit parallel, then 8-bit serial), a

variable delay line that outputs a delayed version of the

clock CLKdel to sample the output of the IP block dur-

ing its glitchy period and a finite state machine error

controller that regulates the variable delay of the sam-

pling clock through a 6-bit control signal CNTL. The

error controller works only during calibration and is-

sues a Locked signal once it is done while keeping the

same values of the CNTL bits to guarantee the cor-

rect error probability during authentication. The cur-

rent LPPN implementation exploits both deterministic

(architecture- and data-dependent due to the presence

of glitches) and probabilistic physical effects (such as

supply noise and jitter for example).

Figure 2 details the design of the LPPN proces-

sor. In the current prototype implementation both the

secret key and the challenge are sent to the LPPN

processor.1 In order to transmit the required 1024-bit

(the 512-bit challenge and key), two 8-bit deserializ-

ers are implemented. The inner product block, com-

1In a real-world scenario, the secret key would be embed-
ded (in a shared manner if masked) and the random challenge
would also be generated on-chip in case of protocols secure
against man-in-the middle attacks.

Fig. 2: LPPN processor block diagram.

prising a (p × s)-bit mixed architecture computes the

parity signal Pint . It is important to note that the

choice of such an architecture reduces the possibility

of exploiting data-dependent error probability (due to

glitches which are deterministic) where an adversary

mounts a so-called filtering attack, as discussed in [16]

and experimentally validated in [15]. The variable de-

lay line uses digitally-controlled delay elements with

shunt-capacitors via NMOS switches. To control these

switches, an error controller provides a 6-bit control

signal (CNTL) which is adjusted based on the required

probability during the calibration phase. The erroneous

parity P and the correct (delayed) version of it, Pcorrect ,

are sampled via a pair of DFFs in the error controller

block. An error generator compares both P and Pcorrect ,

then computes the error signal e which is counted via

a 10-bit error counter over 1024 queries. To achieve the

required error probability, a comparator block finally

compares the error count to the target count (e.g. 256

for ε= 0.25). Then, the CNTL bits are adjusted through

the finite state machine (FSM) in a successive approx-

imation scheme.

The timing diagram in Fig. 3a demonstrates how

the 8-bit key (Kin) and 8-bit bit challenge (Xin) are

shifted through the deserializers’ flip-flops during 64

clock cycles, then loaded during the low state of the

GN clock signal (which is generated on-chip). In order

to sample the inner product block output Pint during

its glitchy period, the GN clock signal is delayed and

inverted through the variable delay line. The correct

parity bit is only made available during the calibra-

tion phase and not during the authentication phase,

otherwise the probing-like attacks that the LPPN as-

sumption is supposed to mitigate (via masking) become

trivially applicable again. The timing diagram of the

error control block is shown in Fig. 3b. The errors are

4 Dina Kamel* et al.

…… ……Clk

GN

RSTFF/

RSTCNTL

… … … …Xin<7:0>

Pint

GNdel

64 Clk cycles

X

q = 1 q = 2 q = 3 …

… … … …Kin<7:0> X

P
Pcorrect

e

(a)

……GNdel

1024 GNdel cycles

… …

FSM Clk
1st step 2nd step 3rd step 7th step

… … …0 0 0 0Error count

0CNTL<5:0> 32 48 35

…

(b)

Fig. 3: Timing diagram of the LPPN processor (part a)

and of its error control block (part b).

counted in the control block during one FSM clock cycle

(TFSM = 1024 × TGNdel). In a successive approxima-

tion scheme, the 6 CNTL bits are all reset to zero during

the first step (i.e. the delay of the variable delay line is

at its minimum which implies a high error count). At

the end of the first step, the 10-bit error count is com-

pared to the target count and the FSM decides to set

the MSB of the CNTL to one during the second step

in order to increase the delay of the GNdel edge. The

following steps are conducted in the same way where

the FSM sets the corresponding CNTL bit to one and

decides whether to reset the previous bit to zero or not

until all bits of the CNTL signal are computed. This in

total requires 7 steps (1 step where all bits are reset to

zeros and 6 steps to compute the values of the 6 CNTL

bits) as shown in Fig. 4. After the CNTL bits are com-

0 1 2 3 4 5 6 7
Error controller steps

0

20

40

60

C
N

T
L

 v
a

lu
e

(a)

0 1 2 3 4 5 6 7
Error controller steps

0

0.25

0.5

P
r[

e
 =

 1
] Measured

Expected

Margin

(b)

Fig. 4: (a) Error measured by the LPPN controller in

7 successive steps thanks to the CNTL signal and (b)

the corresponding error probability.

Area
19,400 µm2

16,333 GE
Energy per HB auth. 1 µJ

Power @ 0.45V 20.16 µW
Latency 52 ms

Throughput 156.25 kbps

Fig. 5: Die Micrograph of the LPPN processor and sum-

mary of its performance.

puted, the error controller goes into lock state keeping

the same values of the CNTL bits as in the last step,

and the actual authentication can take place.

The LPPN processor was designed using a 28nm

FDSOI process using CMOS logic gates. Figure 5 shows

the micrograph of the LPPN processor and a summary

of its performance results.

3 Preliminaries

Our security evaluations are mostly based on IT met-

rics which are aimed to bound the worst-case security

level of an implementation. We next recall the specific

metrics we use and how they can be computed.

3.1 Notations

We use capital letters for random variables and lower

cases for samples of these random variables. Let the

discrete random variable X denote the intermediate

value of an LPPN stage while the discrete leakage vari-

able is given as L (assuming that it is the output of

a sampling device such as an oscilloscope). The condi-

tional Probability Mass Function (PMF) is denoted as

p(L = l|X = x) and simplified as p(l|x).

Since the true distribution of the leakage function is

unknown, we can only estimate it by sampling in order

to produce an estimated leakage model dataset given by

M and a testing dataset denoted by T. The sampling

processes are given as M
n←− p(l|x) and T

nt←− p(l|x) for

the model and testing sets, respectively, where n and nt
(n(x) and nt(x)) are the number of i.i.d. samples mea-

sured (per intermediate value x) for the corresponding

(model and test) datasets.

3.2 Evaluation metrics

The challenge in side-channel security evaluation is to

bound the data complexity of an attack. Therefore,

an evaluator can use the Mututal Information (MI)

between the leakage and a sensible variable since it

is directly related to data complexity of the best at-

tack [9, 6]. However, computing this metric requires the

Side-channel Analysis of a Learning Parity with Physical Noise Processor 5

knowledge of the exact leakage distribution which is in

practice never known to an evaluator. In the following,

we recall two metrics that have been analyzed in [5],

namely the Perceived Information (PI) and the Hypo-

thetical Information (HI), that are respectively lower

and upper bounds one of the other.

The first metric is related to the actual information

that an adversary will be able to extract from the leak-

ages with a given estimated leakage model. The PI is

computed by sampling according to

P̂In(X;L) = H(X)+
∑
x∈X

p(x)

nt(x)∑
i=1

1

nt(x)
· log2 m̃n(x|li),

(1)

where H(X) denotes the Shannon’s entropy of the se-

cret variable X. It is computed in two phases. First, a

leakage model m̃n(x|li) is built with n measurements to

estimate the probability of a secret variable x given a

leakage sample. Second, the true leakage distribution is

sampled nt(x) times to approximate the extracted in-

formation thanks to the model. Because some data are

needed to build the model and others to sample the true

leakage distribution, this metric is typically computed

with cross-validation. In the following experiments, we

performed a 10-fold cross-validation.

The second metric is given by

ĤIn(X;L) = H(X)+
∑
x∈X

p(x)
∑
l∈L

m̃n(l|x)·log2 m̃n(x|l).

(2)

In the case of an exhaustive model estimation (based

on non-parametric estimator such as histograms or ker-

nels), both metrics converge towards the MI value and

are denoted as ePI and eHI. Indeed, the leakage model

will converge to the true distribution allowing to ex-

tract all the available information. The eHI is its upper

bound and can be used for worst-case evaluation.

However, such an exhaustive estimation converges

slowly especially in multivariate settings. In the latter

case, prior hypothesis about the leakage distribution

can be made. Typically, it is estimated using Gaussian

assumption to obtain gPI and gHI possibly introducing

modeling errors. Therefore, these two metrics may con-

verge towards something smaller than the MI. Now, the

gHI can be computed in two different ways. First, it can

be estimated directly by sampling similar to PI except

that no cross-validation is needed. Indeed, it does not

compare a leakage model to a true distribution, but to

the model itself. It expresses the amount of information

that would be available if the true distribution was the

one of the model, given in this case that the model is

Gaussian. The second method to estimate the gHI is

given by the analytic expression

gHI(X;L) = gH(M(X)) + gH(L)− gH(M(X);L), (3)

where M(X) represents the model of X (ie., the mean

of the leakage of X) and the entropy of a Gaussian

variable Y is obtained with

gH(Y) =
1
2 log(det(2πeΣ))

log(2)
, (4)

with Σ its covariance matrix. As a result, evaluations

are typically performed in two steps:

1. Computing gPI and eHI/ePI in an univariate set-

ting independently for all the investigated points of

interest which from here on will be referred to as di-

mensions.2 If they converge to the same value, the

evaluator concludes that the Gaussian assumption

does not introduce (significant) modeling errors.

2. Estimating the gHI jointly on all the dimensions.

The obtained value is not an upper bound but it

should be close to worst-case given that the Gaus-

sian assumption is reasonable.

In this work, these two steps are performed respectively

in Sections 4.1 and 4.2. For the sake of completeness,

we also perform a Gaussian template attack and report

its success rate results in Section 4.3.

3.3 Evaluation settings

Case study. We study the information leaked from

all the intermediate and output stages of the LPPN

implementation, namely, the output of the 512-bit AND

stage, the output of the parallel XORpi, the output

of the serial XORsi, where i ∈ [1, 6] and the output

parity bit P . For comparison purposes, we analyze the

information leakage based on a single bit at a time since

the last targets (in the serial stages) are only bits.

Measurement setup. Measurements were conducted

on an LPPN chip operating at 10MHz using a 0.6V

supply from the MAX8902B low-noise linear regulator.

All inputs (and outputs) were provided (captured) by

an Intel Cyclone-IV FPGA, mounted on a Terasic DE0-

Nano board. The current traces were probed by a Tek-

tronix CT-1 current probe and sampled at 2GS/s using

the Lecroy HRO 66 ZI oscilloscope.

2The dimensions considered are most informative based
on the Mangard’s Signal to Noise Ratio (SNR) [18].

6 Dina Kamel* et al.

A
N
D

X
O
R
p 1

X
O
R
p 2

X
O
R
p 3

X
O
R
p 4

X
O
R
p 5

X
O
R
p 6

X
O
R
s 1

X
O
R
s 2

X
O
R
s 3

X
O
R
s 4

X
O
R
s 5

X
O
R
s 6 P

Stage

−5.5

−5.0

−4.5

−4.0

−3.5

−3.0

−2.5

IT
m
et
ri
c

log10(gP I)

log10(eP I)

Fig. 6: PI using empirical histograms and Gaussian as-

sumption across all LPPN stages (taking the maximum

over all bits in each stage).

4 Side-channel analysis of LPPN

In this section, we analyze the side-channel leakage of

the LPPN across its different stages in order to iden-

tify the best target using the gPI which is the PI corre-

sponding to a Gaussian leakage model and the eHI / ePI

corresponding to histograms as upper / lower bounds

to MI, respectively. We first start by a univariate anal-

ysis. Then we study the side-channel security in front

of a multivariate adversary exploiting jointly multiple

leakage samples. At the end, we perform a Gaussian

template attack against the most suitable target.

4.1 Univariate information theoretic analysis

In the univariate setting, we choose our most infor-

mative sample based on the SNR. First, we start our

analysis by using the ePI avoiding any assumptions on

the leakage model and also the gPI where we assume

the leakages are Gaussian which allows a faster conver-

gence. The ePI and the gPI computed over 2 million

measurements for the most informative leakage bit of

each stage of the LPPN implementation (i.e. the worst

case) is shown in Fig. 6 starting from the output of the

512 bit AND stage, following with the successive paral-

lel XOR (XORp) stages and the serial XOR (XORs)

ending with the final output bit P .

In this experiment, we considered random inputs

and a randomly selected fixed key. Before discussing

our observations, we list the effects taking place in the

LPPN processor that affect its leakage:

– The algorithmic noise. At any given stage, we

compute the IT metric of the most leaking gate

where the remaining parallel gates consume power

and contribute to the algorithmic noise.

– The jitter. In the LPPN processor implementation,

the internal bits are computed in a large combina-

torial logic network (and not in synchronous com-

ponents) where the jitter is accumulated.

– The impact of the serialiser implementation

on the first computation stages.3

The important observations are:

– First, we observe that both the ePI and the gPI are

quite close for most stages which indicates that the

considered measured samples are fairly Gaussian.

– For some of the inner parallel XOR stages, the ePI

could not be computed with 2 million measurements

(i.e. its values are still negative), while the gPI can

be computed (indicating a lack of samples to accu-

rately estimate the non-parametric ePI).

– For the first parallel XOR stages, the information

leakage is decreasing mainly because the target bits

are manipulated in a large combinatorial logic net-

work (where the parallel computations of other bits

act as algorithmic noise) and not in synchronous

components. There, the leakage associated to the

target bit is not synchronized because of jitter ac-

cumulation across the XOR layers. Also, the algo-

rithmic noise impacts the side-channel leakage, even

though it is decreasing along the computation path.

For the last XOR stages, the jitter accumulation

still increases but the number of parallel computa-

tions decreases to the point that the reduction of

the algorithmic noise outweighs the increasing jitter

effect. Hence the information leakage increases.

– Finally, the most informative bits are the output of

the AND stage and the output bit P . For the output
P bit, we observe maximum leakage thanks to the

(expected) fact that the algorithmic noise is mini-

mum. For the AND stage, this information leakage

is for the worst-case bits. In fact, we did not expect

the AND stage to leak as high as the output bit be-

cause of the large number of parallel computations

of other bits. However, we observed that among all

the AND bits, there are peaks at every N
8 bits (N

is the total number of bits per stage). For the other

bits the amount of information is in the order of

10−5 as shown in Fig. 7. This is presumably due

to our implementation of the input serializer stage

that shifts the input and key through a shift reg-

ister and loads them to the LPPN’s inner product

block every 64 clock cycles, where the combinato-

rial computation takes place. In other words, the

most leaky bits are the last loaded ones, which ex-

3The serializer is implemented such that 16 banks of 64
bits (representing the input and key) are shifted before being
loaded to the AND stage inputs.

Side-channel Analysis of a Learning Parity with Physical Noise Processor 7

0 100 200 300 400 500
bit

AND

XORp1

XORp2

XORp3

XORp4

XORp5

XORp6

S
ta
ge

−7.0

−6.5

−6.0

−5.5

−5.0

−4.5

−4.0

−3.5

−3.0

lo
g 1

0(
gP
I)

Fig. 7: Color bit map of the PI using Gaussian tem-

plates across all parallel the LPPN stages.

plains the peaks. We note that this issue could be

avoided by implementing the serialiser differently.

For example, one could shift the 512 input bits and

load them once before the actual computation takes

place. Such an improvement, that we leave as an in-

teresting direction for further investigations, would

make the leakage of all the bits of the AND stage

more similar and close to their best-case value.

Given the fact that both the worst case output of

the AND stage and the output bit P provide maxi-

mum leakage, both of them could serve as good tar-

gets to mount different types of attacks. The output of

the AND stage makes a good target for Gaussian tem-

plate attacks, whereas the last output bit cannot be

attacked with such a simple divide-and-conquer attack,

but with more challenging algebraic attacks [3, 2, 10].

Since Gaussian template attacks are easier to mount,

we conclude that the input stage of LPPN is the most

suitable target to attack. We note also that this con-

clusion is amplified by the fact that for this first stage,

multi-bit targets could be considered (hence reducing

the amount of algorithmic noise).

Next, we investigate whether the information leak-

age estimations we compute have converged, whether

the bounds are tight and whether the Gaussian as-

sumption is good enough. In Fig. 8 we plot the before-

mentioned IT metrics in function of the number of

traces in the profiling set n. First, we can observe that

for the two good targets the leakage estimations con-

verge well and the eHI/ePI bounds are tight (see Fig. 8

(a) and (b)). We further note that the ePI is slightly

higher than the gPI in the AND stage indicating that

the leakages are not perfectly Gaussian. However, this

assumption error is small (< 10−3) and we can therefore

assume that the Gaussian assumption is not inducing

strongly overstated security claims.

Second, in Fig. 8 (c) and (d) we plot the IT metrics

of arbitrarily chosen intermediate bits in the parallel

and serial stages, respectively. Here we see the eHI/ePI

bounds are less tight specially in the inner parallel XOR

105 106

n

10−4

10−3

10−2

IT
m
et
ri
c

eHIn

gP In

eP In

(a) AND stage: b511.

105 106

n

10−4

10−3

10−2

IT
m
et
ri
c

eHIn

gP In

eP In

(b) Output P .

105 106

n

10−6

10−5

10−4

10−3

IT
m
et
ri
c

eHIn

gP In

eP In

(c) XORp3 stage: b14.

105 106

n

10−6

10−5

10−4

10−3

IT
m
et
ri
c

eHIn

gP In

eP In

(d) XORs4 stage.

Fig. 8: Convergence of the information theoretic metrics

of maximum leaking bits in (a) the parallel, (b) serial

stages and arbitrarily chosen intermediate bits in (c)

the parallel, (d) serial stages in a univariate setting.

stages, which is due to their slower convergence and

indicates the need for more measurements in order to

evaluate these targets. We still get good convergence

of the IT metrics in the serial stages and the Gaussian

assumption is good enough in this case as well.

4.2 Multivariate information theoretic analysis

We extend our observations to the multivariate set-

ting by following the guidelines of Section 3.2. That

is, we now assume a more powerful adversary exploit-

ing jointly multiple points within the leakage traces. We

first compute both the ePI and the gPI in the univari-

ate setting for all the time samples (corresponding to

350 leakage points), for the best target bit of the AND

stage. This shows how good is the Gaussian assumption

for all samples (and not just the most informative one

based on SNR as performed in the previous section).

As highlighted in Fig. 9, the univariate Gaussian as-

sumption remains reasonable everywhere, since the ePI

is close to the gPI in nearly all the most informative

time samples. Hence, we conclude that the multivari-

ate gHI and gPI should provide a good indication of

the worst-case security level of our LPPN prototype.

In Fig. 10, we plot both the multivariate gPI and

the multivariate gHI computed directly (using the

sampling-based method) and with the approximate for-

mula, for various number of dimensions. For this pur-

pose, we sort the leakage time samples based on the

amount of information extracted and always consider

the most informative samples first. It leads to the fol-

lowing observations:

8 Dina Kamel* et al.

0 50 100 150 200 250 300 350

Time sample

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

IT
m
et
ri
c

log10(gP I)

log10(eP I)

Fig. 9: Perceived information using Gaussian templates

and empirical histograms for all 350 leakage points with

2 million traces.

– For the computation of the gHI, the multivariate ap-

proximation does not always converge to the correct

value (which is consistent with the results in [20]

showing that even in the univariate case, such an

approximation is not always accurate, especially for

low noise levels). Since the direct estimation of the

gHI (i.e. by sampling, without cross-validation) is

also converging faster, there is no incentive to use

this approximation. The latter brings an interesting

practical complement to the proposals of [5].

– As expected, the information leakage increases as

more dimensions are investigated. For 90 dimensions

the gPI is about 2 × 10−2 which is larger than the

univariate gPI (1, 25× 10−3) by a factor 16.

– One can also notice that by moving from 75 to 90

dimensions, the estimated gHI and gPI are converg-

ing to a similar value around 2× 10−2. This means

105 106

n

10−3

10−2

10−1

IT
m
et
ri
c

MV gHIn

MV approx.gHIn
MV gP In

(a) 25 dimensions.

105 106

n

10−3

10−2

10−1

IT
m
et
ri
c

MV gHIn

MV approx.gHIn
MV gP In

(b) 50 dimensions.

105 106

n

10−3

10−2

10−1

100

IT
m
et
ri
c

MV gHIn

MV approx.gHIn

MV gP In

(c) 75 dimensions.

105 106

n

10−3

10−2

10−1

100

IT
m
et
ri
c

MV gHIn

MV approx.gHIn

MV gP In

(d) 90 dimensions.

Fig. 10: Multivariate gHI computed directly (by sam-

pling) and using the approximating formula and multi-

variate gPI, for several number of dimensions.

0 200 400 600 800 1000
n

0.0

0.2

0.4

0.6

0.8

1.0

S
R

b511, gPI = 1.2E-3
b319, gPI = 2.4E-4
b127, gPI = 1.1E-4

Fig. 11: Success rate of Gaussian template attack

against different bits at the output of the AND stage.

that the 15 additional leakage samples used do not

lead to significant increase in information.

It is worth noting that increasing the number of dimen-

sions beyond 90 starts to impact the gPI negatively (in-

dicating that more traces would be needed to estimate

such an adversary). Yet, since our analysis suggests that

dimensions beyond the 75th do not contain useful in-

formation anymore, there is no incentive for exploiting

such larger number of dimensions.

4.3 Gaussian template attack

We finally confirm the previous information theoretic

investigation by mounting a Gaussian template attack

on the most informative target (the output of the AND

stage). It is evident from Fig. 11 that the most leaking

key bits can be successfully recovered with around 1000

traces, while less leaking bits require more traces. As

expected from [9, 6], the number of samples required to

perform a successful template attack is correlated with

the gPI computed in Section 4.2.

5 Conclusions and open problems

The key-homomorphic structure of an LPPN imple-

mentation makes it relatively easy to evaluate against

(close to) worst-case side-channel attacks. From our

experiments, we can conclude that a mixed (parallel-

serial) architecture inherently provides levels of side-

channel resistance such that masking will be effective.

Indeed, even strong multivariate adversaries can only

extract information values significantly lower than one

(which can therefore be amplified).

Yet, as usually observed for masking, additional

noise addition can be a good solution to reach higher

Side-channel Analysis of a Learning Parity with Physical Noise Processor 9

security levels, especially as the number of shares in a

masking schemes increase (since this noise will be raised

to a power corresponding to the number of shares).

Eventually, our experiments also indicate that for

the considered architecture and technology, the leakage

samples corresponding to the early stages of the LPPN

computations are the sweet spots for side-channel at-

tacks, as they lead to high(er) information leakages and

are exploitable via easy-to-mount DPA attacks.

As usual for such low-level investigations of physi-

cal security, our conclusions (and especially their quan-

titative part) are admittedly technology-dependent. So

while the main positive features of the LPPN assump-

tion (e.g. the simplicity to mask it) and our evaluation

methodology should remain valid in general, the inves-

tigation of other technologies than the 28nm FDSOI

one we analyzed is an interesting research topic.

Acknowledgements François-Xavier Standaert is a senior
associate researcher of the Belgian Fund for scientific re-
search. This work has been funded in parts by the ERC
project SWORD (grand number 725725) and by the UCLou-
vain ARC project NANOSEC.

References

1. Armknecht, F., Hamann, M., Mikhalev, V.:

Lightweight authentication protocols on ultra-

constrained RFIDs - myths and facts. In: N. Sax-

ena, A.R. Sadeghi (eds.) Radio Frequency Iden-

tification: Security and Privacy Issues, pp. 1–18.

Springer International Publishing, Cham (2014)

2. Beläıd, S., Coron, J., Fouque, P., Gérard, B., Kam-

merer, J., Prouff, E.: Improved side-channel analy-

sis of finite-field multiplication. In: CHES, Lecture

Notes in Computer Science, vol. 9293, pp. 395–415.

Springer (2015)

3. Beläıd, S., Fouque, P., Gérard, B.: Side-channel

analysis of multiplications in GF(2128) - applica-

tion to AES-GCM. In: ASIACRYPT (2), Lecture

Notes in Computer Science, vol. 8874, pp. 306–325.

Springer (2014)

4. Berti, F., Standaert, F.X.: An analysis of the learn-

ing parity with noise assumption against fault at-

tacks. In: CARDIS, pp. 245–264 (2016)

5. Bronchain, O., Hendrickx, J.M., Massart, C., Ol-

shevsky, A., Standaert, F.X.: Leakage certifica-

tion revisited: Bounding model errors in side-

channel security evaluations. In: A. Boldyreva,

D. Micciancio (eds.) Advances in Cryptology -

CRYPTO 2019 - 39th Annual International Cryp-

tology Conference, Santa Barbara, CA, USA, Au-

gust 18-22, 2019, Proceedings, Part I, Lecture

Notes in Computer Science, vol. 11692, pp. 713–

737. Springer (2019). DOI 10.1007/978-3-030-

26948-7 25. URL https://doi.org/10.1007/978-3-

030-26948-7 25

6. de Chérisey, E., Guilley, S., Rioul, O., Piantanida,

P.: Best information is most successful mutual in-

formation and success rate in side-channel analy-

sis. IACR Trans. Cryptogr. Hardw. Embed. Syst.

2019(2), 49–79 (2019)

7. Cnudde, T.D., Bilgin, B., Gierlichs, B., Nikov,

V., Nikova, S., Rijmen, V.: Does coupling af-

fect the security of masked implementations? In:

S. Guilley (ed.) Constructive Side-Channel Anal-

ysis and Secure Design - 8th International Work-

shop, COSADE 2017, Paris, France, April 13-14,

2017, Revised Selected Papers, Lecture Notes in

Computer Science, vol. 10348, pp. 1–18. Springer

(2017). DOI 10.1007/978-3-319-64647-3 1. URL

https://doi.org/10.1007/978-3-319-64647-3 1

8. Cnudde, T.D., Ender, M., Moradi, A.: Hard-

ware masking, revisited. IACR Trans. Cryp-

togr. Hardw. Embed. Syst. 2018(2), 123–148

(2018). DOI 10.13154/tches.v2018.i2.123-148. URL

https://doi.org/10.13154/tches.v2018.i2.123-148

9. Duc, A., Faust, S., Standaert, F.X.: Making mask-

ing security proofs concrete - or how to evaluate

the security of any leaking device. In: E. Oswald,

M. Fischlin (eds.) Advances in Cryptology - EU-

ROCRYPT 2015 - 34th Annual International Con-

ference on the Theory and Applications of Cryp-

tographic Techniques, Sofia, Bulgaria, April 26-

30, 2015, Proceedings, Part I, Lecture Notes in

Computer Science, vol. 9056, pp. 401–429. Springer

(2015). DOI 10.1007/978-3-662-46800-5 16. URL

https://doi.org/10.1007/978-3-662-46800-5 16

10. Dziembowski, S., Faust, S., Herold, G., Journault,

A., Masny, D., Standaert, F.X.: Towards sound

fresh re-keying with hard (physical) learning prob-

lems. In: M. Robshaw, J. Katz (eds.) Advances

in Cryptology - CRYPTO 2016 - 36th Annual In-

ternational Cryptology Conference, Santa Barbara,

CA, USA, August 14-18, 2016, Proceedings, Part

II, Lecture Notes in Computer Science, vol. 9815,

pp. 272–301. Springer (2016). DOI 10.1007/978-3-

662-53008-5 10. URL https://doi.org/10.1007/978-

3-662-53008-5 10

11. Eisenbarth, T., Kumar, S.S., Paar, C., Poschmann,

A., Uhsadel, L.: A survey of lightweight-

cryptography implementations. IEEE De-

sign & Test of Computers 24(6), 522–533

(2007). DOI 10.1109/MDT.2007.178. URL

https://doi.org/10.1109/MDT.2007.178

10 Dina Kamel* et al.

12. Gaspar, L., Leurent, G., Standaert, F.X.: Hardware

implementation and side-channel analysis of lapin.

In: CT-RSA, pp. 206–226 (2014)

13. Grosso, V., Standaert, F.X., Faust, S.: Masking

vs. multiparty computation: how large is the gap

for AES? J. Cryptographic Engineering 4(1), 47–

57 (2014). DOI 10.1007/s13389-014-0073-y. URL

https://doi.org/10.1007/s13389-014-0073-y

14. Joye, M., Tunstall, M. (eds.): Fault Analysis in

Cryptography. Information Security and Cryptog-

raphy. Springer (2012). DOI 10.1007/978-3-642-

29656-7. URL https://doi.org/10.1007/978-3-642-

29656-7

15. Kamel, D., Bellizia, D., Standaert, F.X., Flan-

dre, D., Bol, D.: Demonstrating an LPPN pro-

cessor. In: Proceedings of the 2018 Workshop

on Attacks and Solutions in Hardware Security,

ASHES ’18, pp. 18–23. ACM, New York, NY,

USA (2018). DOI 10.1145/3266444.3266445. URL

http://doi.acm.org/10.1145/3266444.3266445

16. Kamel, D., Standaert, F.X., Duc, A., Flan-

dre, D., Berti, F.: Learning with physical noise

or errors. IEEE Transactions on Dependable

and Secure Computing pp. 1–1 (2018). DOI

10.1109/TDSC.2018.2830763

17. Levi, I., Bellizia, D., Standaert, F.X.: Reducing a

masked implementation’s effective security order

with setup manipulations and an explanation based

on externally-amplified couplings. IACR Trans.

Cryptogr. Hardw. Embed. Syst. 2019(2), 293–317

(2019). DOI 10.13154/tches.v2019.i2.293-317. URL

https://doi.org/10.13154/tches.v2019.i2.293-317

18. Mangard, S.: Hardware countermeasures against

DPA ? a statistical analysis of their effectiveness.

In: CT-RSA (2004)

19. Mangard, S., Oswald, E., Popp, T.: Power analy-

sis attacks - revealing the secrets of smart cards.

Springer (2007)

20. Mangard, S., Oswald, E., Standaert, F.X.: One for

all - all for one: unifying standard differential power

analysis attacks. IET Information Security 5(2),

100–110 (2011)

21. Mangard, S., Popp, T., Gammel, B.M.: Side-

channel leakage of masked CMOS gates. In:

A. Menezes (ed.) Topics in Cryptology - CT-RSA

2005, The Cryptographers’ Track at the RSA Con-

ference 2005, San Francisco, CA, USA, Febru-

ary 14-18, 2005, Proceedings, Lecture Notes in

Computer Science, vol. 3376, pp. 351–365. Springer

(2005). DOI 10.1007/978-3-540-30574-3 24. URL

https://doi.org/10.1007/978-3-540-30574-3 24

22. Nikova, S., Rijmen, V., Schläffer, M.: Secure hard-

ware implementation of nonlinear functions in the

presence of glitches. J. Cryptology 24(2), 292–

321 (2011). DOI 10.1007/s00145-010-9085-7. URL

https://doi.org/10.1007/s00145-010-9085-7

23. Pietrzak, K.: Cryptography from learning parity

with noise. In: SOFSEM, pp. 99–114 (2012)

24. Regazzoni, F., Breveglieri, L., Ienne, P., Koren,

I.: Interaction between fault attack countermea-

sures and the resistance against power analysis

attacks. In: Joye and Tunstall [14], pp. 257–

272. DOI 10.1007/978-3-642-29656-7 15. URL

https://doi.org/10.1007/978-3-642-29656-7 15

25. Schneider, T., Moradi, A., Güneysu, T.: ParTI

- towards combined hardware countermeasures

against side-channel and fault-injection attacks. In:

CRYPTO, pp. 302–332 (2016)

26. Standaert, F.X., Malkin, T., Yung, M.: A unified

framework for the analysis of side-channel key re-

covery attacks. In: A. Joux (ed.) Advances in Cryp-

tology - EUROCRYPT 2009, 28th Annual Interna-

tional Conference on the Theory and Applications

of Cryptographic Techniques, Cologne, Germany,

April 26-30, 2009. Proceedings, Lecture Notes in

Computer Science, vol. 5479, pp. 443–461. Springer

(2009). DOI 10.1007/978-3-642-01001-9 26. URL

https://doi.org/10.1007/978-3-642-01001-9 26

