
Packed Multiplication: How to Amortize the
Cost of Side-channel Masking?

Weijia Wang1,2,3, Chun Guo1,2,3, François-Xavier Standaert4,
Yu Yu5,6 and Gaëtan Cassiers4

1 School of Cyber Science and Technology, Shandong University,
Qingdao 266237, China,

2 Key Laboratory of Cryptologic Technology and Information Security of Ministry of
Education, Shandong University, Qingdao, 266237, China

wjwang@sdu.edu.cn,chun.guo@sdu.edu.cn,
3 State Key Laboratory of Information Security (Institute of Information

Engineering, Chinese Academy of Sciences, Beijing 100093)
4 Institute of Information and Communication Technologies, Electronics and Applied

Mathematics (ICTEAM), UCLouvain, B-1348 Louvain-la-Neuve, Belgium
francois-xavier.standaert@uclouvain.be,gaetan.cassiers@uclouvain.be

5 Department of Computer Science and Engineering, Shanghai Jiao Tong University,
Shanghai, 200240
yuyu@yuyu.hk

6 Shanghai Qizhi Institute, Shanghai, 200232

Abstract. Higher-order masking countermeasures provide strong prov-
able security against side-channel attacks at the cost of incurring signif-
icant overheads, which largely hinders its applicability. Previous works
towards remedying cost mostly concentrated on “local” calculations, i.e.,
optimizing the cost of computation units such as a single AND gate or a
field multiplication. This paper explores a complementary “global” ap-
proach, i.e., considering multiple operations in the masked domain as
a batch and reducing randomness and computational cost via amorti-
zation. In particular, we focus on the amortization of ` parallel field
multiplications for appropriate integer ` > 1, and design a kit named
packed multiplication for implementing such a batch. For ` + d ≤ 2m,
when ` parallel multiplications over F2m with d-th order probing se-
curity are implemented, packed multiplication consumes d2 + 2`d + `
bilinear multiplications and 2d2 +d(d+ 1)/2 random field variables, out-
performing the state-of-the-art results with O(`d2) multiplications and
`
⌊
d2/4

⌋
+ `d randomness. To prove d-probing security for packed multi-

plications, we introduce some weaker security notions for multiple-inputs-
multiple-outputs gadgets and use them as intermediate steps, which may
be of independent interest. As parallel field multiplications exist almost
everywhere in symmetric cryptography, lifting optimizations from “local”
to “global” substantially enlarges the space of improvements. To demon-
strate, we showcase the method on the AES Subbytes step, GCM and
TET (a popular disk encryption). Notably, when d = 8, our implemen-
tation of AES Subbytes in ARM Cortex M architecture achieves a gain
of up to 33% in total speeds and saves up to 68% random bits than the
state-of-the-art bitsliced implementation reported at ASIACRYPT 2018.

1 Introduction

Side-channel attacks that exploit leakage emitting from devices pose an impor-
tant threat for cryptographic implementations. Masking [14, 26] is one of the
most investigated protection techniques. The core idea is to randomly split each
secret-dependent variable into a vector of d+ 1 shares called sharing, and then
implements the cryptographic algorithm over sharings instead of the raw secrets.
This ensures that the initial secret cannot be rebuilt from any less than d in-
termediate variables in the implementation, which is called d-private security
(a.k.a. d-probing security).7

To have secure functionalities over sharings, a masking scheme, or a private
circuit, firstly constructs gadgets for various elementary calculations over shar-
ings, and then compose the gadgets to reach the desired functionality. Obviously,
to improve efficiency, it is crucial to have better gadgets (particularly for multi-
plications). This has motivated plenty of works concentrating on e.g., reducing
the randomness complexity [5, 6, 28, 12], and securing processing dependent in-
puts [20, 12].

Recently proposed masking schemes are typically accomplished by formal
proofs of the aforementioned d-private security notion. To establish this notion,
the naive method is to show that the possible tuples of intermediate variables
are all independent of the secret by enumeration. Though, such an enumeration
becomes intricate as the size of function grows, and it is only feasible for small
circuits such as a single multiplication gadget. This naturally motivates the com-
position approach, i.e., proving that under certain conditions, a large circuit built
upon d-private gadgets is d-private. In this respect, several composable security
notions have been introduced, such as the notions of d-Non-Inference (NI) and
d-Strong Non-Inference (SNI) [2]. Thanks to those security notions, a compo-
sition of gadgets with some refreshing added in-between, can be proved to be
globally d-private secure.

Besides the above foundational advances, the past two decades have also
witnessed the rapid efficiency improvement of masking schemes. Despite these,
higher-order masking with many shares remains of limited use due to the over-
head, especially in the resource-constraint environment [27, 19]. It is still com-
pelling and challenging to decrease the complexity of masking schemes.

Local versus Global efficiency optimization. As discussed before, the com-
munity has devoted to designing better gadgets [5, 6, 28, 12] due to their funda-
mental influences on the high-level circuits. In fact, to our knowledge, modulo a
few exceptions that will be discussed later, most of the prior works only concen-
trated on “local” optimizations, i.e., on reducing the complexity of individual
elementary calculation such as an S-box or even a single AND gate. This “local”
approach considerably simplifies the situation and enables pushing the limits
of gadgets. At the same time, by the aforementioned composition framework,

7 While the leakages of all the d+ 1 shares enable reconstruction of information the-
oretically, the intrinsic noise in the leakages renders secret recovery infeasible in
practice [14, 17, 21, 33].

2

this naturally results in high-level circuits with better performance and provable
security.

On the other hand, note that cryptographic algorithms typically consist of
executing a basic function for many times in parallel. For example, the AES
(more generally, virtually all the block ciphers except for the so-called ARX
designs) evaluates an S-box for 16 times within each round. And, at a higher level,
many modes of operations are explicitly designed to support running several
primitives in parallel. For instance, the Counter (CTR) mode encrypts several
blocks in parallel, and the Galois/Counter Mode (GCM) combines the CTR
mode with a structure consisting of several field multiplications in parallel.

Facing this situation, this paper takes a complementary “global” view, con-
siders multiple such parallel functions as a batch, and seeks for optimizations
within such batches. This switch enables many possibilities of improvements
that used to be excluded in the classical “local” optimizations. In particular,
the presence of multiple calculations naturally motivates using the amortization
technique, which aims at reducing the averaged complexity for the masking of
several operations.

While the idea of “global” optimization via amortizing appears natural, the
technique of security proof is quite non-trivial. Particularly, due to amortization,
various operations in the same batch now share randomness or intermediate vari-
ables, and thus cannot be analyzed independently. To cope with this difficulty,
in our security analysis, we will treat parallel operations in the same batch as
a whole, and consider the corresponding gadgets with multiple input and out-
put sharings (shorted as MIMO gadgets in the rest of the paper). This shift of
viewpoint clearly excludes NI/SNI as the security goal. Informally speaking, any
composition of d-NI and d-SNI gadgets is still d-SNI if each sharing is used
at most once as input of any d-NI gadget and the input sharings of a gadget
come from different gadgets. Designing secure circuits under this condition may
requires many refresh gadgets, which are expensive. Therefore, new security no-
tions for MIMO gadgets are required.

1.1 Our Contributions

We investigate global optimizations within batches of several field multiplica-
tions.8 The concrete technique is to amortize the randomness and computational
costs of several parallel masked multiplications. As a result, we propose a new
construction named packed multiplication, which computes ` masked multipli-
cations in parallel for any integer ` ≥ 1. Then, in order to prove security for
our scheme, we introduce a new set of security notions for MIMO gadgets. We
finally demonstrate potential applications and showcase the packed multiplica-
tion method on AES, Galois/Counter Mode (GCM) [30], and a popular disk
encryption scheme TET (which is short for linear-Transformation; ECB; linear-
Transformation) [23]. We details these contributions below.

8 Note that the AND gate can be viewed as the field multiplication in F2.

3

Packed Multiplication. To maximize the efficiency of linear gadgets, this pa-
per concentrates on Boolean sharings (a.k.a. additive sharings) over the finite
field Fq of characteristic 2, meaning that the XOR of the shares equals the ini-
tial secret. In this setting, a packed multiplication scheme takes two vectors of
` Boolean sharings as inputs, which encode the 2` inputs of the ` field multipli-
cations, and gives ` Boolean sharings as outputs encoding the ` multiplication
results, as depicted in Figure 1 (right). Packed multiplication proceeds in two
steps. First, each input vector is (re)encoded as a “packed” sharing using a ran-
domized linear code. When the field size q ≥ `+d, each resulted “packed” sharing
consists of only `+d shares in total, meaning that the size of data is compressed
from `(d+1) to `+d. Second, a multiplication over the packed sharings is cal-
culated, resulting in Boolean sharings (the number of result shares is `(d+1)).
This step can be seen as a batch of ` masked local multiplications sharing some
randomness and intermediate results. Besides, our scheme is compatible even
when the field size q ≤ `+d, at the cost of raising the number of shares, say n,
to n > d+ 1 with security order d, as long as the linear codes of length `+n−1
with dual distance d+ 1 exist.

In contrast, following the classical “local” approach, the two input vectors
are viewed as ` pairs of sharings, and each of the ` pairs is processed indepen-
dently, as shown in Figure 1 (left). As mentioned before, such independence
simplifies security analysis at the expense of limiting optimizations to local. For
a more complete comparison, we consider the setting of masking ` parallel mul-
tiplications, and list the complexities of packed multiplication and some other
popular schemes in Table 1, where the complexity of our scheme is typical esti-
mated when the field size q ≥ ` + d. In the comparison, we regard the number
of bilinear multiplications (i.e., of general multiplications of two non-constant
variables in the finite field) and the number of random elements as the metrics
for computational [6] and randomness complexities respectively.

Towards Provable Security. Packed multiplication schemes produce MIMO
gadgets. For their provable security, Cassiers el al. introduced a stronger variant
of SNI named Multiple-Inputs / Multiple-Outputs Strong Non-Inference (MIMO-
SNI) [13]. They also introduced Probe Isolating Non-Interference (PINI) [13]
notion that enables the building of more efficient gadgets. Unfortunately, both
MIMO-SNI and PINI are too strong and could not be achieved by ours. To
rescue, we identify a set of intermediate composable security notions for MIMO
gadgets that interpolates between the stronger MIMO-SNI and the weaker (S)NI.
In addition, ours are orthogonal to PINI. We refer to Figure 2 for an illustration.
With the new notions, our gadgets can be securely composed with each other,
either by satisfying our specialized composition theorem, or through direct proof
in the probe propagation framework introduced in [5, 11].

Applications. As parall multiplications exist almost everywhere in symmetric
cryptography, our packed multiplication has potentially broad applicability and
deep impact. To demonstrate, we showcase the method on the AES Subbytes
step and the polynomial-evaluation hash.

4

·

·

·

·

······

sharing

sharing

sharing

sharing

······

sharing

sharing

sharing

sharing

······

······

······

�
······

sharing

sharing

sharing

sharing

` sharings

` sharings

` sharings

Security requirement: NI/SNI, . . .

Security requirement: security notions for MIMO gadgets

(a) ` masked multiplications with isolating approach (b) ` masked multiplications with our packed approach

sharings of

sharings of

packed sharing

packed sharing

Packing

Packing

multiplying
sharings` secret inputs

` secret inputs

of ` secret outputs

Fig. 1. Packed multiplication in general (right) and the comparison with classical iso-
lating approach (left).

SNI
NI

d-probing secure

implication:

New security notionsMIMO-SNI

PINI

Lemma 1Lemma 3

Fig. 2. Relations among different security notions.

Table 1. Complexities of ` parallel multiplications with security order d

Computational
complexity 1

Randomness
complexity 2

Our Scheme

Packing 0 d2

Multiplying d2 + 2`d+ ` d(d+ 1)/2

Total d2 + 2`d+ ` 2d2 + d(d+ 1)/2

Tight private circuits [26] `d2 + 2`d+ ` `d(d+ 1)/2

Masking with reduced randomness [5] `d2 + 2`d+ ` `
(
d+

⌊
d2/4

⌋)
Multiplication

over finite fields *

[6, Algorithm 4] 2`d+ ` `
(
2d2 + d(d+ 1)/2

)
[6, Algorithm 5] `d2 + 2`d+ ` `d

Code-based masking [38] d2 + 2`d+ `2 2d(d+ `)
* Despite the small instantiations for d ≤ 4 [28], it requires large enough

finite fields, e.g., the field size q > d(d+ 1)(12d)d [6, Theorem 5.4].

5

The AES Subbytes step consists of parallel S-boxes evaluations. Based on
the ARM Cortex M architecture, we implement 16 AES S-boxes by applying
the packed multiplication and report the performance results. Notably, when
the security order is of d = 8, our implementation achieves a gain of up to 33%
in speeds and saves up to 68% random bits compared with the state-of-the-art
bitsliced implementation [9].

The polynomial-evaluation hash involves a structure of several multiplica-
tions in parallel, and thus our packed multiplication is well suited. This benefits
the SCA resilience for two scenarios: GCM and TET.

1.2 Related works

Previous amortization. As mentioned before, global view and amortization
were only considered in very few early works. Roughly, they fall into three con-
crete approaches, i.e., randomness re-use, masking with robust Pseudorandom
Generator (PRG) and the code-based masking. The former two approaches aim
at amortization of randomness rather than reducing computational cost, while
the last addresses both.

Randomness re-use. This approach aims at re-using random bits in different
gadgets. Faust et al. [18] introduce a security model allowing multiple gadgets
to securely re-use randomness, and proposed threshold implementation-based
gadgets in their model. This method provides a quite efficient scheme for small
values of security order.

Masking with robust PRGs. Ishai et al. proposed to expand the randomness using
the so-called robust PRG [25] in the private circuits, where the number of True
Random Number Generator (TRNG) calls for seeds is independent of the circuit
size. A recent work of Coron et al. describes a quite practical construction in
this direction [15], where the number of random bits is only Õ(t2) for security
against t probes. This strategy can be regarded as a certain form of amortization
(of TRNG calls), but it is a bit of orthogonal to ours. In contrast, we consider
the amortization of both randomness and computational costs.

Code-based masking. It was recently shown by Wang et al. [38] that the general
type of masking called code-based masking is able to encode multiple secrets
together into one codeword and calculate parallel operations over these secrets
together in the masked domain. Admittedly, the packed multiplication proposed
in this paper shares some ideas with the code-based masking. But we give a
practical and much more efficient scheme. Notably, our scheme generally works
with Boolean sharings, which enables more efficient masked linear operations. In
contrast, the code-based masking proposed in [38] was a generic scheme, whose
further specification and optimization were left as an open problem. We give a
complexity comparison in Table 1 to highlight the improvement of our scheme.

Polynomial masking with packed secret sharing technique [22] can be re-
garded as a variant of the code-based masking, and its multiplications are per-
formed based on the MPC protocol of Damg̊ard et al. [16]. This scheme however

6

requires a heavy random generation process that becomes an efficiency bottle-
neck.

Security notions for MIMO gadgets. Cassiers el al. introduced a stronger
variant of SNI named Multiple-Inputs / Multiple-Outputs Strong Non-Inference
(MIMO-SNI) [13].9 Though, MIMO-SNI gadget comes at a higher complex-
ity compared to the SNI ones. They also introduced the Probe Isolating Non-
Interference (PINI) [13] notion that enables the building of more efficient gad-
gets. Informally speaking, a composition of multiple gadgets is d-PINI (resp.,
d-MIMO-SNI) if every gadget is d-PINI (resp., d-MIMO-SNI). In addition, d-
PINI (resp., d-MIMO-SNI) alone implies the d-private security. Unfortunately,
these two notions are both too strong for our new multiplication gadget. For this
reason, we will propose in Section 3 a set of new security notions that bridge our
new gadgets to the probing security.

1.3 Organization

In the remainder of this paper, we present notations and necessary notions in
Section 2. We then introduce our new security notions in Section 3. We propose
the packed multiplication in Section 4, and in Section 5 propose a construction
of the linear operations that complies with the new security notions. Section 7
illustrates the applications.

2 Preliminary

2.1 Notations

In the following, we denote by Fq a characteristic 2 finite field, where q = 2m for
any m ≥ 1, and denote field elements by lower-case letters. We use ⊕ to denote
plus over the finite field. For simplicity, we use

∑
for the summation over any

fields or rings. For a natural number n we denote by [n] the set of integers from 1
to n both included. Let calligraphies (e.g., I) be sets, and |I| denote the length

of the set I. Let bold lower cases (e.g., x) be the vectors over F|x|q , where |x|
denotes the length of the vector, x[i] denotes the ith element of vector x, and
x[i : j] denotes the vector made up of ith to jth elements of vector x. Unless
otherwise noted, we assume the vectors are row vectors in this paper, and the
column vectors are denoted as xT.

Let bold capital letters (e.g., A) be the matrices in Fr×cq (or r×c matrix), for
row and column counts being r and c respectively. A[i, j] denotes the element
of A at ith row and jth column, A[i,] (resp., A[, i]) denotes the ith row (resp.,
column) of matrix A, and A[i :j,] denotes the matrix made up of ith to jth rows
of A. Let AT denote the transpose of the matrix A. For a r × c matrix A and

9 The notion of MIMO gadgets shall be distinguished from MIMO-SNI: the former
are gadgets with multiple input and output sharings, while the latter is a security
model for MIMO gadgets.

7

a set I ⊆ [r] (resp., J ⊆ [c]), A[I,] (resp., A[,J]) denotes the submatrix of A
made up of the rows (resp., columns) indexed by I (resp., J). For matrices A
and B, we denote their product as A × B, or in short AB in non-ambiguous
cases. Specifically, we use Or×c to denote the zero matrix in Fr×cq and In the
identity matrix in Fn×nq ; to ease understanding, when there is no ambiguity,
their superscripts will be omitted. For two matrices A and B, [A,B] is the
concatenation of A and B by columns, and [A; B] is the concatenation of A and

B by rows. A set of n variables can be represented as {xi}ni=1
def
= {x1, . . . , xn},

and this representation can be adopted for a set of vectors or matrices.

2.2 Private Circuits

We view a circuit C as a directed acyclic graph with gates and wires being
vertices and edges respectively. We assume that the wires carry variables in
Fq and the gates are elementary calculations over Fq. A randomized circuit is
a circuit augmented with random gates. A random gate is a gate that puts a
random variable in its output wire. Variables carried in the wires of a circuit C
are called intermediate variables of C. A probe to a circuit is an intermediate
variable whose value is assumed to be revealed to the adversary. For a circuit C

with input x ∈ F`q, C(x) produces the output y ∈ F`′q that we denote C(x)
def
= y.

And for a set P of probes, CP(x) returns the values of the probes by feeding x as
the input of C. We call a set (or vector) of variables (say, x) over Fq independent
of the other vector of variables y if Pr(x = α | y = β) = Pr(x = α) for any value
α of x and any value β of y, where the probability is taken over the random
coins used to generate these vectors.

We begin by recalling the notion of sharings, the basis of masking. We also
provide our new notion of packed sharing. It should be noted that, for the notion
of sharing, we let the number of shares be n (rather than d+1) for compatibility
(of any field sizes) reason. As mentioned in the introduction, our scheme is also
compatible with a small field size (i.e., q < `+d with ` parallel multiplications),
at the cost of raising the number of shares in a sharing to n > d+1 with security
order d.

Definition 1 (Sharing and packed sharing) For a variable x ∈ Fq, we say
x̂ ∈ Fnq is a sharing of x if there exists an encoder Enc : (Fq,Fn−1q) → Fnq , a
decoder Dec : Fnq → Fq and r ∈ Fn−1q such that x̂ = Enc(x, r) and x = Dec(x̂).
Particularly, a sharing x̂ of x is called a Boolean sharing, if x = Dec(x̂) =∑n
i=1 x̂[i].

For ` > 1 and a vector of variables x ∈ F`q, we say (x̃, û) ∈ (F`q,Fn−1q) is a

packed sharing of x if there exists an encoder Enc : (F`q,Fn−1q) → (F`q,Fn−1q), a

decoder Dec : (F`q,Fn−1q) → F`q and r ∈ Fn−1q such that (x̃, û) = Enc(x, r) and
x = Dec(x̃, û). Moreover, an element of a packed sharing (x̃, û) is an element of
either x̃ or û.

Elements of a sharing or packed sharing are called shares.

8

In the rest of the paper, unless explicitly stated, all sharings are Boolean
sharings. We next recall the notion of private circuit compiler [26] as follows.

Definition 2 (Private circuit compiler [26]) A private circuit compiler for
a circuit C with input in F`q and output in F`′q is defined by a triple (I,T,O) where

– I : Fq → Fnq , is an encoder that randomly maps each input x ∈ Fq to a
sharing.

– T is a circuit transformation whose input is circuit C, and output is a ran-
domized circuit C′ with ` sharings as the input, and `′ sharings as the output.

– O : Fnq → Fq is a decoder that maps each output sharing ẑ ∈ Fnq to the
corresponding output z ∈ Fq.

We say that (I,T,O) is a private circuit compiler and C′ is a d-private circuit
(or d-probing secure) if the following requirements hold:

– Correctness: for any input x ∈ F`q, Pr
(
O◦
(
C′(I◦(x))

)
= C

(
x
))

= 1, where

I◦ (resp., O◦) is a canonical encoder (resp., decoder) that encodes (resp., de-
codes) each element of input secrets x (resp., each sharing of output sharings)
by repeatedly calling I (resp., O).

– Privacy: for any input x ∈ F`q and any set of probes P such that |P| ≤ d,

C′P
(
I(x)

)
are independent of the input x, where d is called the security order.

We consider the circuit transformation T realized by the composition of gad-
gets. An gadget is a randomized circuit whose inputs (resp., outputs) are either
sharings or packed sharings. We say that a gadget G implements a function

f : F`q → F`′q , if and only if O◦
(
G
(
I◦(x)

))
= f(x) for any x ∈ F`q, where I◦

(resp., O◦) encodes (resp., decodes) each input (resp., output). Gadget compo-
sition builds bigger circuits from a number of gadgets, by connecting the output
wires of some gadgets to the input wires of the others. To cleanly pinpoint the
“pattern” of a composition, we appeal to an acyclic graph C. I.e., the resulted
bigger circuit is obtained by replacing the vertices of C with the gadgets. In
such a graph, the involved gadgets are called sub-gadgets, and the edges carry
sharings or packed sharings. An MIMO gadget is a gadget with multiple input
sharings or output sharings. Note that the composed gadget C′ is a gadget, and
thus a recursive composition of gadgets is also a gadget.

2.3 Composable security notions

While the notion of d-private security nicely protects against side-channel at-
tacks, it is not trivial to prove that large circuits such the AES fulfill it. The
difficulty stems from enumerating the probes within the circuit, the complexity
of which increases exponentially with the circuit size. The natural solution is to
use the composition method, so that one can focus on each individual gadget,
while the global d-private security is ensured by composition. Barthe et al. intro-
duced first composable security notions [2] for (small) gadgets that are sufficient
to result in provable probing security.

9

Simulatability. We first recall the definition of simulatability introduced in [5]:

Definition 3 (Simulatability [5]) Let P = {p1, ..., pd} be a set of d probes of a
gadget G with input shares X . Let S ⊆ X be a subset of input shares. A simulator

is a randomized function S: F|X |q → Fdq . A distinguisher is a randomized function

D:
(
Fdq ,F

|X |
q

)
→ {0, 1}. The set of probes P can be simulated with shares in S if

and only if there exists a simulator S such that for any distinguisher D and any
inputs shares X , we have:

Pr
[
D
(
GP(X),X

)
= 1
]

= Pr
[
D
(
S(S),X

)
= 1
]
,

where the probability is over the random coins in G, S and D.

(Strong) Non-Inference. We then recall the first set of composable security
notions introduced in [2]. The probes of a gadget are separated as follows:

– Output probes: output variables.
– Internal probes: variables except for the output probes.

Definition 4 (d-(Strong) Non-Inference
(
(S)NI

)
[2]) Let G be a gadget with

sharings as inputs and outputs. G is d-NI (resp., d-SNI), if any probes consist-
ing of tint internal probes and tout outputs probes with tint + tout ≤ d can be
simulated with tint + tout (resp., tint) shares of each input sharing.

As shown in Lemma 1, both d-NI and d-SNI imply the d-private security.

Lemma 1 (NI/SNI implies probing security [2]) If a gadget G is d-SNI
or d-NI, then G is a d-private circuit if any d shares in each input sharing are
independent of the secrets and all input sharings are independently encoded.

More importantly, in the proof of probing security, NI and SNI can reduce the
elaboration from trying all tuples of probes of a full circuit to only verifying each
small gadget. Informally speaking, any composition of d-NI and d-SNI gadgets
is still d-NI if each sharing is used at most once as input of any d-NI gadget and
the input sharings of a gadget come from different gadgets.

2.4 Different types of gadgets

As gadgets can be used as building blocks of private circuits, it is necessary
to specify types of gadgets that are required for protecting cryptographic algo-
rithms.

The first type of gadgets is linear gadgets that implement linear functions. As
the encoder is usually homomorphic (for example, the encoder of the Boolean
sharing) over linear functions, linear gadgets can be correctly constructed by
applying linear functions on the shares of the same index, which we will denote
as the trivial implementation of a linear function. It becomes more difficult for
(nonlinear) gadgets implementing nonlinear functions such as multiplication,

10

since the encoder is usually not homomorphic over nonlinear functions. The last
type of gadgets is the refresh gadget (a.k.a, the refreshing) that re-randomizes a
sharing, which is usually needed for the composition of gadgets. Existing works
(e.g., [4, 3, 1]) have provided different refresh gadgets that are asymptotically
more efficient than multiplication gadgets. In the rest of the paper, we mainly
focus on a typical nonlinear gadget: multiplication gadget that implements the
multiplication over Fq in the masked domain.

3 New security notions for MIMO gadgets

To motivate, this section begins by recalling the limitation of NI/SNI with MIMO
gadgets. Then, to ease understanding, we serve intuition for our new security
notions in sub-section 3.2. The core concept will be the notion of t-chunk that
describes a set of shares from the input or output sharings of a gadget. The
formal definitions are finally given in sub-section 3.3.

3.1 Limitation of NI/SNI with MIMO gadgets

The notions of NI and SNI are not perfectly suitable for MIMO gadgets. To see
this, let’s consider, for example, the compositions of two gadgets, as illustrated
in Figure 3. In Figure 3-(a), the composition of G1 and G2 subjects to the rule
in Lemma 1, and thus is 3-SNI. Figure 3-(b) shows an improper composition,
where two probes (one internal and one output) of G2 requires 4 input variables
to simulate, which cannot be further simulate with the input of G1 since G1 is
3-SNI. Figure 3-(c) fixes the issue of Figure 3-(b) by adding SNI refreshings,
which however comes at huge overheads. Note that a similar illustration can be
found in [13, Figure 5], where the authors considered a linear operation between
two outputs of a nonlinear gadget.

3-SNI3-SNI

1 probe

3-SNI

1 probe

3-SNI

1 probe

3-SNI 3-SNI

1 probe

3-SNI

3-SNI

3-SNI

(a) 3-SNI (b) improper compostion (c) a fix of (b)

G1

G2
G1 G2 G1 G2

Fig. 3. Limitation of (S)NI.

In the rest of this section, we investigate more suitable security notions for
gadgets with multiple input and output. However, for example, the packed multi-
plication that we will introduce in Section 4 is neither d-MIMO-SNI nor d-PINI,
but is d-SNI. It indicates that there should exist some security notions between
MIMO-SNI and SNI (stronger than SNI and weaker than MIMO-SNI) and more
suitable to the packed multiplication. In this respect, we put forward a set of
new security notions.

11

3.2 Intuition behind the new security notions

The notion of simulatability captures that a set of output shares and tint internal
shares can be simulated with some input shares called propagated shares. In this
respect, how to define the output shares and the propagated shares is critical in
different security notions. Let x̂1, . . . , x̂` be ` sharings that can be either input
sharings or output sharings of a gadget. For an integer t, we define the types of
set X consisting of some shares in x̂1, . . . , x̂` as follows:

i. |X | = t, i.e., X consists of t shares in x̂1, . . . , x̂`.
ii. |X | = `t, and X consists of t shares in each sharing of x̂1, . . . , x̂`.

It can be seen that, in (S)NI, output and propagated shares relate to types i
and ii respectively. The only difference between SNI and NI is the values of the
parameters t for output and propagated shares. And in MIMO-SNI, output and
propagated shares relate to types ii and i respectively, which makes it a stronger
property than (S)NI. It is because, compared with (S)NI, MIMO-SNI allows that
a larger set of output shares can be simulated with a smaller set of propagated
shares. Examples can be found in Figures 5-(a) (b) and (c).

For our new security notions, we introduce a new type of set X as follows:

iii. X consists of a t-chunk of x̂1, . . . , x̂`, where the t-chunk is defined below,
and we also depict an example in Figure 4.

Definition 5 A t-chunk of sharings x̂1, . . . , x̂` ∈ Fnq , . . . ,Fnq is a subset of a set
made up of the following two parts:

1. (α part) {x̂k[i] | k ∈ K, i ∈ I} for K ⊆ [`], I ⊆ [n] and |K|+ |I| = tα.
2. (β part) tβ shares from x̂1, . . . , x̂`.

such that t ≥ tα + tβ.

It should be noted that the t-chunk is only defined with sharings, rather than
the packed sharings.

The rationale of the t-chunk definition. The t-chunk is defined in accor-
dance with the formalism of packed multiplication given latter in Section 4. We
will mostly consider an abstract computation that takes sharings x̂1, . . . , x̂` ∈
Fnq , . . . ,Fnq as inputs and sums (XOR) the rows of X

def
= X̂ ⊕ Q̂, resulting in

x̃ ∈ F`q, where X̂[, k]
def
= x̂k for k ∈ [`] and Q̂ ∈ Fn×`q is a random matrix. During

the process, there also exist variables f(Q̂[i,]) for any function f : F`q → Fq
and any i ∈ [n]. A specification of such abstract algorithm is the packing in
Gadget 1-P, and an example will be depicted in Figure 6. In this case, a certain
amount of probes to f(Q̂[i,]), X̂, X and x̃ can be simulated with a t-chunk of
x̂1, . . . , x̂` for some t ≥ 0. More concretely (but informally),

– Let I ⊆ [n] and K ⊆ [`], the probes to f(Q̂[i,]) for i ∈ I can be simulated
by sampling the corresponding random distribution, and probes to x̃[k] for
k ∈ K can be simulated with the α part of x̂1, . . . , x̂` corresponding to I and
K. In the example of Figure 4, the probes of this type relate to I = {2, 3, 4}
and K = {5, 6}.

12

x̂1[1], x̂2[1], x̂3[1], x̂4[1], x̂5[1], x̂6[1], x̂7[1], x̂8[1], x̂9[1]

x̂1[2], x̂2[2], x̂3[2], x̂4[2], x̂5[2], x̂6[2], x̂7[2], x̂8[2], x̂9[2]

x̂1[3], x̂2[3], x̂3[3], x̂4[3], x̂5[3], x̂6[3], x̂7[3], x̂8[3], x̂9[3]

x̂1[4], x̂2[4], x̂3[4], x̂4[4], x̂5[4], x̂6[4], x̂7[4], x̂8[4], x̂9[4]

x̂1[5], x̂2[5], x̂3[5], x̂4[5], x̂5[5], x̂6[5], x̂7[5], x̂8[5], x̂9[5]

x̂1[6], x̂2[6], x̂3[6], x̂4[6], x̂5[6], x̂6[6], x̂7[6], x̂8[6], x̂9[6]

x̂1[7], x̂2[7], x̂3[7], x̂4[7], x̂5[7], x̂6[7], x̂7[7], x̂8[7], x̂9[7]

α part, tα = 5
β part, tβ = 3

Fig. 4. An examples of an 8-chunk of sharings x̂1, . . . , x̂7, where tα = 5 and tβ = 3.
Each column of the matrix corresponds to a distinct sharing.

– The probes to X̂ can be simulated with the β part of sharings x̂1, . . . , x̂`.
In the example of Figure 4, the probes of this type are X̂[3,2], X̂[2,4] and

X̂[3,6].

Below in Lemma 2, we show that the union of two t-chunks is a 2t-chunk.
Its proof is in the full version. This property enables merging several t-chunk
probes.

Lemma 2 (Closure of t-chunk under union) If S1 and S2 are t1-chunk and
t2-chunk of sharings x̂1, . . . , x̂` respectively, then S1 ∪ S2 is a (t1 + t2)-chunk of
x̂1, . . . , x̂`.

Cautionary note. By definition, a subset of a t-chunk is also a t-chunk. Thus,
a t-chunk should also be a t′-chunk for any t′ > t. Moreover, the partition of S
(into α and β parts) is not unique. For example, the set of share highlighted in
Figure 4 can also be 9-chunk, if it is partitioned in a way that β part contains
all the highlighted shares and α part is empty. Also note that, there always
exists a minimum value of t for any set of shares. For example, the set of share
highlighted in Figure 4 can not be t-chunk for any t < 8.

3.3 New security notion for MIMO gadgets

In this sub-section, we formally introduce the new security notions. We begin
with the first one:

1. d-Chunk Strong Non-Inference and d-Chunk Non-Inference, abbreviated as
d-CNI and d-CSNI respectively.

They share a similar structure with NI/SNI, but output and propagated shares
are replaced with a t-chunk of the output and input sharings respectively, mak-
ing them to be positioned in-between d-(S)NI and d-MIMO-SNI. The formal
definition of d-C(S)NI is as follows.

13

Definition 6 (d-C(S)NI) Let G be a gadget with sharings as inputs and out-
puts. G is d-CNI (resp., d-CSNI), if any probes consisting of tint internal probes
and a tout-chunk of output sharings with tint + tout ≤ d can be simulated with a
(tint + tout)-chunk (resp., tint-chunk) of input sharings.

In Figure 5-(a)(b)(c)(d), we give examples to illustrate the differences of the d-
C(S)NI, (S)NI and MIMO-SNI. Also note that type iii shares cover type i shares
with the same value of t, and thus, as shown in Lemma 3, d-C(S)NI implies the
(S)NI security. The proof is given in the full version.

Lemma 3 d-CNI ⇒ d-NI, d-CSNI ⇒ d-SNI and d-CSNI ⇒ d-CNI.

3.4 New security notion for gadgets with packed sharings

While the d-C(S)NI meets the minimal requirement for protecting any crypto-
graphic algorithm, it is (by definition) only for gadgets with sharings as inputs
and outputs, and thus incompatible with packed sharings. Such compatibility has
the (obvious) advantage of enabling extension to any gadgets that are composed
of packing, multiplying and linear gadgets. For example the masked AES S-box
that we will present latter in Figure 9, Section 6. The security proof of such
composition can be much simplified if there exist secure notions particularly
for packing and multiplying gadgets, more generally, for gadgets with packed
sharings as inputs or outputs.

Therefore, to facilitate the compositions for gadgets with packed sharings,
two other new notions are necessary:

2. For the gadgets with input sharings and output packed sharings, we propose
d-Input-Chunk Non-Inference and d-Input-Chunk Strong Non-Inference, ab-
breviated as d-ICNI and d-ICSNI respectively.

3. For the gadgets with input packed sharings and output sharings, we propose
d-Output-Chunk Non-Inference and d-Output-Chunk Strong Non-Inference,
abbreviated as d-OCNI and d-OCSNI respectively

The formal definitions are in Definitions 7 and 8. Also see Figure 5-(e)(f) for the
corresponding illustrations.

Definition 7 (d-IC(S)NI) Let G be a gadget with sharings as inputs and packed
sharings as outputs. G is d-ICNI (resp., d-ICSNI), if any probes consisting of tint
internal probes and tout shares from output packed sharings with tint + tout ≤ d
can be simulated with a (tint + tout)-chunk (resp., tint-chunk) of input sharings.

Definition 8 (d-OC(S)NI) Let G be a gadget with packed sharings as inputs
and sharings as outputs. G is d-OCNI (resp., d-OCSNI), if any probes consisting
of dint internal probes and a dout-chunk of output sharings with tint + tout ≤ d
can be simulated with tint+ tout (resp., tint) shares of each input packed sharing.

In Sections 4 and 5, we will propose constructions for d-CSNI and d-CNI
packed gadgets that we will use in tailored analyzes of some relevant circuits

14

d-MIMO-SNI

tint probes

d-CSNI

(b)

(c) (d)

d-SNI

d-ICSNI

(e)

d-OCSNI

(f)

(a)

d-NI
tint+tout shares tout shares of

tint probes tint probes

of each sharing all sharings

tint shares of

each sharing

tout shares of

all sharings

tint shares of

all sharings
tout shares of

each sharing

tint probes tint probes

tint probes

tout-chunk of

all sharings

input outputinput output

outputinput outputinput

tint-chunk of

all sharings

input

tint-chunk of

all sharings

tout shares of

all sharings

output

tint shares of

each sharings

tout-chunk of

all sharings

outputinput

Fig. 5. Difference between the security notions.
(a) d-NI: tout output probes and tint internal probes can be simulated with propagated
shares that consist of tint + tout shares of each input sharing.
(b) d-SNI: output probes are the same as d-NI case, and the propagated shares consist
of tint shares of each input sharing.
(c) d-MIMO-SNI: the output probes consist of tout shares of each output sharing, and
the propagated share is only tint input share of all input sharings.
(d) d-CSNI: output probes consists of a tout-chunk of output sharings, and the
propagated shares consist of a tint-chunk of output sharings.
(e) d-ICSNI: output probes are shares from packed sharings, and the propagated
shares are the same as d-CSNI case.
(f) d-OCSNI: output probes are the same as d-CSNI case, and the propagated shares
are shares from packed sharings.

in Sections 6 and 7.1. We leave the proposition and proof of more generic com-
position rules as an important goal for further research and present in the full
version of the paper first steps in this direction.

Composability of all the new notions
(
i.e., d-C(S)NI, d-IC(S)NI and d-OC(S)NI

)
can be proved by using the probe propagation framework introduced in [11, 3]
(see a description in the full version).

15

4 Packed multiplication gadget

4.1 Construction

We consider the element-wise product (a.k.a., the entrywise product or the

Hadamard product) of two secret vectors. That is, for x
def
=
(
x[1], . . . ,x[`]

)
and

y
def
=
(
y[1], . . . ,y[`]

)
, we consider computing z = x�y

def
=
(
x[1]y[1], . . . ,x[`]y[`]

)
in the masked domain, where � denotes the element-wise multiplication over F`q.
The inputs of the packed multiplication gadget are `× 2 Boolean sharings:

{x̂i}`i=1
def
=
{(

x̂i[1], . . . , x̂i[n]
)}`
i=1

and {ŷi}`i=1
def
=
{(

ŷi[1], . . . , ŷi[n]
)}`
i=1

And the outputs should also be ` Boolean sharings {ẑi}`i=1 such that:

n∑
i=1

ẑk[i] =
(n∑
i=1

x̂k[i]
)(n∑

i=1

ŷk[i]
)
, for any k ∈ [`].

The gadget requires an (n−1) × ` matrix A such that any d < n columns
of [I,A] are independent. In other words, [I,A] is the generating matrix

(
with

the size (n−1) × (`+n−1)
)

of a liner code with dual distance d + 1. A typical
example of A is an (n−1)× ` MDS matrix, and in this case, d = n− 1.

The packed multiplication can be divided into two sub-gadgets: Packing
and Multiplying. Generally speaking, the first gadget manipulates {x̂i}`i=1 and

{ŷi}`i=1 separately to compute the packed sharings (x̃, û) ∈ (F`q,Fn−1q) and

(ỹ, v̂) ∈ (F`q,Fn−1q), and the second gadget computes the result from the packed
sharings. More details are elaborated as follows:

– Packing: This sub-gadget packs the sharings {x̂i}`i=1 into a packed sharing
that is a tuple (x̃, û) ∈ (F`q,Fn−1q), such that for any k ∈ [`], xk can be
reconstructed from x̃[k] and û via xk = x̃[k]⊕ ûA[, k]. The packed sharings
should also meet the requirement of security, that is, any d elements of (x̃, û)
are independent of the secret variables x.

Similarly, {ŷi}`i=1 are also packed into a packed sharings (ỹ, v̂) in the same
vein.

– Multiplying: This sub-gadget computes the sharings of x�y from the packed
sharings (x̃, û) and (ỹ, v̂). At a high level, for each k ∈ [`], this sub-gadget
perform a calculation with two-stages that first calculates outer product
of the input shares (x̃[k], v̂)T × (ỹ[k], û), and then compresses the results
with some randomness. More importantly, the random matrix R and the
calculation of S are shared (amortized) for different values of k.

We give the packed multiplication gadget in Gadget 1, which is made up of
Gadget 1-P and Gadget 1-M for packing and multiplying respectively. We also
present examples of Gadget 1-P and Gadget 1-M in Figures 6 and 7 respectively.

16

[
Q[1,1],Q[1,2]
Q[2,1],Q[2,2]

]
A

⊕

∑∑

x̃[1] x̃[2]∑∑
û[1] û[2]

Q̂

x̂1[1], x̂2[1], x̂3[1]
x̂1[2], x̂2[2], x̂3[2]
x̂1[3], x̂2[3], x̂3[3]

 X[1,1],X[1,2],X[1,3]
X[2,1],X[2,2],X[2,3]
X[3,1],X[3,2],X[3,3]

∑
x̃[3]

Q̂[1,1], Q̂[1,2], Q̂[1,3]

Q̂[2,1], Q̂[2,2], Q̂[2,3]
0 0 0

$

input

output

Fig. 6. Illustration of Gadget 1-P for n = 3 and ` = 3

[
ek = x̃[k]ỹ[k], kT

k = x̃[k]v̂
wT
k = ỹ[k]v̂T, S = ûTv̂

]

[
x̃[k], û

]T [
ỹ[k], v̂

]
×

[
ek, 0
wT
k , (S⊕R)

] [
1
aT
k

]
=

[
ek

wT
k ⊕ (S⊕R)aT

k

]

t̂k[1]

t̂k[2]

t̂k[3]

ẑk[1]

ẑk[2]

ẑk[3]

Output

⊕
[
akRdiaga

T
k

kT
k

]

[
x̃[`], û

]T [
ỹ[`], v̂

]
×

[
x̃[1], û

]T [
ỹ[1], v̂

]
×

...

·ak[1]

·ak[2]

[
e1 = x̃[1]ỹ[1], kT

1 = x̃[1]v̂
wT

1 = ỹ[1]v̂T, S = ûTv̂

]

[
e1, 0
wT

1 , (S⊕R)

] [
1
aT

1

]
=

[
e1

wT
1 ⊕ (S⊕R)aT

1

]

t̂1[1]

t̂1[2]

t̂1[3]

ẑ1[1]

ẑ1[2]

ẑ1[3]

⊕
[
a1Rdiaga

T
1

kT
1

]

·a1[1]

·a1[2]

[
e` = x̃[`]ỹ[`], kT

l = x̃[`]v̂
wT
` = ỹ[`]v̂T, S = ûTv̂

]

[
e`, 0
wT
` , (S⊕R)

] [
1
aT
`

]
=

[
e`

wT
` ⊕ (S⊕R)aT

`

]

t̂`[1]

t̂`[2]

t̂`[3]

ẑ`[1]

ẑ`[2]

ẑ`[3]

⊕
[
a`Rdiaga

T
`

kT
`

]

·a`[2]

·a`[2]

...

·1 ·1 ·1

aTk = A[, k] for k ∈ [`]

R is a 2× 2 symmatric random matrix

Rdiag is the diagonal matrix of R

...

Fig. 7. Illustration of Gadget 1-M for n = 3

17

Gadget 1 Packed Multiplication

Input: Boolean sharings {x̂i}`i=1 ∈ (Fnq , . . . ,Fnq) and {ŷi}`i=1 ∈ (Fnq , . . . ,Fnq).

Output: Boolean sharings {ẑi}`i=1 ∈ (Fnq , . . . ,Fnq).
1: The gadget ensures that:

ẑk[1]⊕ . . .⊕ ẑk[n] =
(n∑
i=1

x̂k[i]
)(n∑

i=1

ŷk[i]
)
, for any k ∈ [`].

2: A is an (n−1)×` matrix over Fq such that any d columns of [I,A] are independent.

Gadget 1-P: Packing

Input: Boolean sharings {x̂i}`i=1

Output: Packed sharings (x̃, û) ∈ (F`q,Fn−1
q)

The gadget ensures that: xk = x̃[k]⊕ ûA[, k], for any k ∈ [`].

1: Randomly generate a matrix Q ∈ F(n−1)×(n−1)
q

. Amortization: The size of Q is independent of `

2: Q̂ := QA
3: X := [x̂T

1 , . . . , x̂
T
`]⊕ [Q̂;0`] . 0` denotes an `-length zero vector.

4: û :=
∑n−1
i=1 Q[i,] and x̃ :=

∑n
i=1 X[i,]

For the packing from {ŷi}`i=1 to (v̂, ỹ): Repeat Gadget 1-P with input {ŷi}`i=1. It
ensures that: yk = ỹ[k]⊕ v̂A[, k], for any k ∈ [`].

Gadget 1-M: Multiplying

Input: Packed sharings (x̃, û) and (ỹ, v̂).
Output: Boolean sharings {ẑk}`k=1.

The gadget ensures that
∑n
i=1 ẑk[i] =

(
x̃[k] ⊕ ûA[, k]

)(
x̃[k] ⊕ v̂A[, k]

)
, for any

k ∈ [`].

1: Randomly generate a symmetric matrix R ∈ F(n−1)×(n−1)
q

2: Let Rdiag be the diagonal matrix such that Rdiag[i,i] = R[i,i] for i ∈ [n−1]
3: for k = 1; k ≤ `; k++ do
4: Let aT

k = A[, k]
5: ek := x̃[k]ỹ[k],kk := x̃[k]v̂,wT

k := ûTỹ[k],S := ûTv̂

. Compute the outer product:

[
ek, kk
wT
k , S

]
=
[
x̃[k], û

]T × [ỹ[k], v̂
]

. Amortization: S only need to be computed once for different values of k

6: t̂T
k :=

[
ek, 0
wT
k , (S⊕R)

] [
1
aT
k

]
⊕
[
akRdiaga

T
k

kT
k

]
. Amortization: R and Rdiag are re-used for different values of k

7: ẑk := t̂k � [1,ak]
8: end for

4.2 Correctness of Gadget 1

In the following, we claim the correctness of Gadget 1, and the proof is given in
the full version.

18

Theorem 1 The correctness of Gadget 1-P and Gadget 1-M are ensured, i.e.,
for any k ∈ [`], xk = x̃[k] ⊕ ûA[, k], yk = ỹ[k] ⊕ v̂A[, k], and

∑n
i=1 ẑk[i] =(

x̃[k]⊕ ûA[, k]
)(

x̃[k]⊕ v̂A[, k]
)
.

4.3 Security of Gadget 1

We first describe some intuitions behind the construction with respect to the
security. Then, we give the security claim of Gadget 1 in Theorem 2, where the
proof will be given in the full version.

Gadget 1-P first generates a uniformly distributed matrix Q, which is then
multiplied by A. And, the result is used to mask the input sharings, resulting
in X. As any d columns of [I,A] are independent, any d columns of [Q,QA]
are uniformly distributed. We can see that all probes (at most d) to Gadget 1-P
should relate to no more than d columns of [Q,QA]. To ease the analysis, we can
consider a simple case that the entries of Q are unknown (and there is no probe
to the calculation of QA), the process of summing the rows of [Q,X] should be
randomized by uniform random elements, preventing the leaks of inputs. Then,
regarding the case that Q leaks, one can refer to the rationale of the t-chunk
definition in Section 3.2.

The intuition behind the construction of Gadget 1-M is similar, but analysis
will be more scrupulous, since the random matrix R is symmetric.

Theorem 2 Gadget 1-P is d-ICSNI, Gadget 1-M is d-OCNI, and Gadget 1 is
d-CSNI.

5 Linear gadgets

In this section, we discuss how to implement a linear transformation L : F`q → F`′q
with sharings. First, sub-section 5.1 shows that the trivial implementation of a
linear function is d-NI. Though, such a trivial implementation suffers from limita-
tions in the composition with d-CSNI gadgets (e.g., the packed multiplication),
which is shown in sub-section 5.2. This motivates the construction of a more
secure d-CNI linear gadget in sub-section 5.3.

5.1 Trivial implementation

Gadget 2 shows the trivial implementation of a linear operation with Boolean
sharings {x̂i}`i=1. The gadget manipulates shares with different indices sepa-

rately. Each internal probe relates to at most one index of {x̂i}`i=1, and any

tout shares of {ẑi}`i=1 relates to at most tout indices of {x̂i}`i=1, and in total any

tint internal probes and tout shares of {ẑi}`i=1 can be simulated with at most

(tint + tout) shares of {x̂i}`i=1. Thus, Gadget 2 is d-NI for any d ≤ n.

However, Gadget 2 is not d-CNI. For example, if L({x̂k[i]}`k=1) =
∑`
k=1 x̂k[i]

for i ∈ [n], then for t ≤ d, any t shares of ẑ depend on t shares of each of x̂k[i]

19

Gadget 2 Trivial linear operation

Input: Boolean sharings{x̂i}`i=1 ∈ (Fnq , . . . ,Fnq)

Output: Boolean sharings {ẑ}`
′

i=1 ∈ (Fnq , . . . ,Fnq)
1: for i = 1; i ≤ n; i++ do
2: ẑ1[i], . . . , ẑ`′ [i] = L(x̂1[i], . . . , x̂`[i])
3: end for

for i ∈ [n], rather than a t-chunk of input sharings. An exception is when shares
of input sharings are operated separately, which is shown in Lemma 4, and the
proof is given in the full version.

Lemma 4 Any gadget that manipulates the shares of input sharings separately
(i.e., there is no single variable related to more than one input shares), is d-CNI
for any d ≥ 0.

5.2 Why a d-CNI linear gadget is necessary?

While trivially implemented linear gadgets are quite efficient, its composition
with the d-CSNI packed multiplication gadget (described in Section 4) is not.
Below we elaborate with an example.

Figure 8-(a) shows an improper composition: G1 and G2 are 3-CSNI and 3-NI
respectively, and one probe of G2 can be simulated with one share of each G2’s
input sharing, which however cannot be simulated with the input of G2. To fix
this issue, one can rely on the strategy of adding refreshings between the two
gadgets in the same way as Figure 3-(c) in Section 2.3. Note that a d-SNI refresh
gadget for one sharing of size n asymptotically requires up to O(n log n) random
elements [4, 1], and with all the sharings, it leads to an inefficient composition.
Figure 3-(b) shows a more efficient solution, where G2 is changed with a 3-CNI
gadget to make the composition work. The latter solution (of Figure 3-(b)) raises
the following question:

Can a d-CNI linear gadget be more efficient than the strategy of com-
bining a trivial linear gadget with d-SNI refreshings?

5.3 New construction of linear operation

We answer the question affirmatively. In Gadget 3, we give a new construction
of linear operation for Boolean sharings. It first refreshes each input sharing
by using the so-called locality refreshing [25, 15], which requires n − 1 random
elements. Then, it performs the linear operation on the refreshed sharings. In
total, Gadget 3 uses `(n−1) random elements for ` input sharings. In Theorem 3,
we claim the security of Gadget 3, and the proof is given in the full version.

Theorem 3 Gadget 3 is d-CNI for any d such that d ≤ n.

20

3-CNI 3-NI

1 probe

3-CNI

(a) improper compostion of

d-CNI and d-NI gadgets

propagated shares: 4-chunk

3-CNI

1 probe
propagated shares: 2-chunk

(b) proper compostion of

two d-CNI gadgets

G1G2 G2G1

Fig. 8. An example to show the necessity of d-CNI linear gadget

Gadget 3 d-CNI Linear operation

Input: Boolean sharings {x̂i}`i=1 ∈ (Fnq , . . . ,Fnq)

Output: Boolean sharings {ẑi}`
′

i=1 ∈ (Fnq , . . . ,Fnq)
1: for k = 1; k ≤ `; k++ do
2: Generate a uniformly distributed vector rk ∈ Fn−1

q

3: ŷk[1 :n−1] = x̂k[1 :n−1]⊕ rk
4: ŷk[n] = x̂k[n]⊕

∑n−1
i=1 rk[i]

5: end for
6: Call Gadget 2 with input sharings {ŷi}`i=1 and output sharings {ẑi}`

′

i=1

5.4 Linear gadgets for packed sharings

The linear gadget investigated above only considers (Boolean) sharings, which is
already sufficient to protect the cryptographic algorithms. For the packed shar-
ings, the linear gadget are more complicated and may come at high overhead.
The main reason is that, the trivial implementation of linear transformation
gadget is based on the premise that Boolean sharings encode each secret inde-
pendently, which however is not standing for the packed sharings. Besides, the
code-based masking also face this issue, and a similar reasoning can be found
in [38, Sction 5.2].

An exception is that the addition over packed sharings can be trivially im-
plemented by manipulating shares with different indices separately. That is, for
input packed sharings (x̃, û) and (ỹ, v̂), the trivial addition is (x̃⊕ ỹ, û⊕ v̂). In
Lemma 5, we give the security of this trivial addition, which can be regarded
as a variant of d-NI for the packed sharings (note that the d-NI is defined only
for gadgets with input and output sharings). The proof will be given in the full
version.

Lemma 5 For a trivial addition gadget with two input packed sharings, any tout
shares of output packed sharings and tint internal probes can be simulated with
tint + tout shares of each of input packed sharings.

21

6 Application to AES SubBytes

6.1 Implementation approach using the tower field method

AES-128, the internal states, including the round keys, are viewed as a set of 16
variables (say, {x1, . . . , x16}) in F28 . In its SubBytes step, an S-box is computed
over each of the 16 states. The S-box is a nonlinear function F28 → F28 that con-
sists of the inverse in F28 and an affine transformation. In the field inversion can
be decomposed into several multiplications in F24 (that can be fully tabulated)
and linear operations using the tower field method [29]:

1. (ah, al) := δ(x) ∈
(
F24 ,F24

)
2. a := λa2h ⊕ al(ah ⊕ al) ∈ F24

3. a′ := (a2a)4a2 ∈ F24 4. a′h := a′ah ∈ F24

5. a′l := a′(ah + al) ∈ F24 6. S(x) := Aff
(
δ−1
(
(a′h, a

′
l)
))
∈ F28

In detail, the input x ∈ F28 is mapped to ah, al ∈ F24 using a linear isomorphism
mapping δ : F28 → (F24 ,F24), and λ is a constant in F24 . After computations
over F24 in steps 2 to 5, the inverse isomorphism mapping δ−1 : (F24 ,F24)→ F28

maps (a′h, a
′
l) back to an element in field F28 , and finally, an affine transformation

Aff : F28 → F28 yields the S-box output.
We use MDS matrices from the Reed-Solomon code [34], and thus n = d +

1. By the MDS conjecture [36], d × ` MDS matrix over F24 shall satisfy ` +
d ≤ |F24 | = 16. Thus, we set ` = 8 and implement 8 S-boxes together by
using the packed multiplication (16 S-boxes can be achieved by invoking this
implementation twice). The input and output of masked S-boxes are 8 sharings.
The implementation is optimized by separating the packing and multiplying
gadgets to reduce the number of calls to packing, as well as to re-use the packed
sharings to the largest extent. The process is shown in Figure 9, in which P
and M denote the packing and multiplying of Gadget 1-P and Gadget 1-M with
` = 8 respectively. The ()2, ()4, δ, λa2 and ⊕ are trivial implementations of the
corresponding linear operations, and the last gadget that is a combination of
inverse isomorphism and affine is implemented by Gadget 3.

In the security analysis, to be strictly consistent with the definition of circuits,
where all variables are in the same finite field, we map each variables (say a) in
F24 to a variable (say b) in F28 , such that the most significant 4 bits of b are
identical to the 4 bits of a, and the least significant 4 bits of b are zeros. Then,
each function over F24 is isomorphically mapped to a gate over F28 by which the
function is performed only over the most significant 4 bits of the variables. The
function δ : F28 → (F24 ,F24)

(
resp., δ−1 : (F24 ,F24

)
→ F28) is isomorphically

mapped to a gate F28 → (F28 ,F28)
(
resp., F28 → (F28 ,F28)

)
by which each

output (resp., input) is mapped to a variable in F28 by the same vein as before.
Note that these mappings are only for the security analysis and do not impact
the efficiency of the implementation.

Proposition 1 (The SubBytes implementation is d-CSNI) The composed
gadget in Figure 9 is d-CSNI.

The full proof is given in the full version.

22

δ

P

P

M

λa2

⊕

P

()2 P

M ()4 P M

P

M

M

δ−1

Inv

Aff.

⊕

⊕

M: Gadget 1-M

P: Gadget 1-P

Inv

ah

al

: ` sharings
: 1 packed sharing

Fig. 9. Masked AES S-box with packed multiplication.

Though we adopt the tower field method [29] and separate the packing and
multiplying gadgets for the sake of reducing the cost to the utmost. We believe
a simpler implementation using the multiplication chain [35] in a larger field
F28 will be interesting as well. In this respect, we describe such a masked AES
implementation in the full version.

6.2 Implementation results

It can be seen that, the implementation of 8 S-boxes contains 6 instances of
Gadget 1-P and 5 instances of Gadget 1-M. The random requirements of Gad-
get 1-P and Gadget 1-M are d2 and d(d+ 1)/2 4-bit variables respectively. The
δ−1 and affine operation are implemented together by Gadget 3, which requires
8d` bytes of randomness. At last, the total random bits for 16 AES S-boxes is((

d2 × 6 + (d(d+ 1)/2)× 5
)
× 4 + d`× 8

)
× 2 = 68d2 + 20d+ 16d`.

For ` = 8, the above result is 68d2 + 148d.
The S-boxes are implemented with security orders d = 4, 8 based on the ARM

Cortex M architecture. The multiplication by matrix A at line 2 of Gadget 1-P
and line 6 of Gadget 1-M are tabulated, which in total requires 16d` bytes of
memory. For the consistency with the state-of-the-art results, the randomness
in our implementations can be obtained from a constrained TRNG that outputs
32-bit of fresh randomness every 80 clock cycles, which is also used in [9] and
recommended in [27]. For the comparison with the state-of-the-art implementa-
tions, we consider the implementations of bitslice AES S-boxes reported in [19,
9] as the benchmarks.

The performance results are summarized in Table 2. Compared with the
work of [9], our implementation saves 55% and 68% cycles for the generation of

23

randomness for d = 4 and 8 respectively. The code sizes of our implementations
are larger, which is due to the loop unrolling of our implementation. Indeed, our
implementations are slightly slower than the bitsliced methods in computation,
which is because that bitsliced methods perfectly fit the bitwise AND and XOR
instructions. By contrast, our implementations are based on the multiplication
in GF(24), which is not directly supported in microprocessors and can only rely
on pre-computed tables. Nevertheless, we emphasize that this computational loss
could be mitigated or eliminated via the following two approaches:

1. One can optimize the matrix A to make the corresponding multiplication
more efficient. Sometimes an MDS matrix is not needed: even though d <
n− 1, the ratio of cost to security order may be better (than using the MDS
matrix).

2. One can implement the masked AES on hardware, where the field multipli-
cation and linear transformation can be optimized in bit-level.

We refer to them as future works. Finally, despite the computational loss, our
implementation still achieves a gain of up to 33% in total speed when d = 8.

Regarding computational cost, the issue of field multiplication in software
indicates that bitsliced implementations may be more efficient. However, the
bitsliced consumes more randomness. With same value of security order d and
the number of parallel multiplications (say, `), larger field (say, F24 or F28) may
give a smaller number of shares n for a packed sharing. Generally, if `+d ≤ |Fq|,
we can choose A in Gadget 1 an MDS matrix, and then we have n = ` + d.
But for bitsliced case, |Fq| = 2, and thus n > ` + d. Therefore, the situation
of combining bitsliced implementation with the packed multiplication is more
complicated: operation can be more efficient (with the bitwise AND instruction)
at the cost of more randomness bits. We refer to this investigation as a future
work.

Last but not least, we make the source codes of our AES-Sboxes implemen-
tation available on https://github.com/wjwangcrypto/Packed mul.

Table 2. Summary of performances for 16 AES S-boxes

Cycles for
Computation

Cycles for
Generating

Randomness

Total
Cycles

Code
size

RAM
size

[19, R.-P. method], d = 4 19 232 34 944 54 176 4KB unreported

[19, Bitsliced method], d = 4 11 502 17 472 28 974 3.1KB unreported

[9, Bitsliced method], d = 4 9 222 9 282 18 504 unreported unreported

Our work, d = 4 15 998 4 200 20198 9.8KB 10.9KB

[19, R.-P. method], d = 8 70 840 163, 072 233 912 4KB unreported

[19, Bitsliced method], d = 8 34 798 81 536 116 334 3.1KB unreported

[9, Bitsliced method], d = 8 27 028 43 316 70 344 unreported unreported

Our work, d = 8 33 142 13 840 46982 17KB 11.8KB

24

7 Application to GHASH, AES-GCM, and more

7.1 A brief description of GHASH and AES-GCM

Authenticated encryption aims at ensuring both confidentiality and integrity
simultaneously [10], and has became the de facto standard for secure data trans-
ferring. The authenticated encryption algorithm AES-GCM was proposed by
McGrew and Viega in [30] and standardized by NIST since 2007. It combines
an encryption based on the widely used AES algorithm in counter mode and an
authenticator based on the GHASH function involving multiplications in F2128 .
The authenticator mixes ciphertexts, potential associated data and a secret pa-
rameter derived from the encryption key to produce a tag.

It is compulsory to seek for side-channel secure implementations for such a
standard. A crucial step is to secure the GHASH function, which is essentially
a polynomial-evaluation hash. Its takes ι+ 1 variables s0, . . . , sι in F2128 as well
as an authentication key h ∈ F2128 as inputs, and evaluates Equation 2 below.

tag = hιs0 ⊕ hι−1s1 ⊕ . . .⊕ hsι . (1)

A sequential calculation of the polynomial-evaluation hash can be built by
the Horner’s rule [24]:

xi =

{
0 for i = 0

(xi−1 ⊕ si)h for i = 1, . . . , ι
, (2)

where the output tag = xι.
For the underlying block cipher AES, the implementation approach has been

discussed in Section 6. Here we concentrate on the other main indigent GHASH.
Note that various SCAs against GHASH have been reported in e.g., [8, 7], which
enable recovering the key h and creating forgeries. It is thus unsurprising that
masking GHASH has received quite a lot attention, see e.g., [32, 37]. However,
existing masked implementations of GHASH only considered protecting against
known SCAs, leaving out provable security. Here we will fill in the gap. In detail,
we study the case that h and s0, . . . , sι are encoded into sharings: ĥ and ŝ0, . . . , ŝι,
and the masked GHASH outputs the sharing of the tag. The crux is to masking
the polynomial-evaluation hash (Equation 2), on which we will elaborate in the
next sub-section.

7.2 Provably secure masked implementation of polynomial-
evaluation hash

To mask the polynomial-evaluation hash, the most straightforward approach is to
apply ISW multiplication (more concretely, the generalized version for finite field
in [35]) in the sequential calculation of Equation 2. This approach consumes ι+1
ISW multiplications, each of which consists of (d + 1)2 bilinear multiplications
and requires 64(d+1)d random bits. Based on the above, the cost of this approach
is estimated and summarized in Table 3.

25

Note that the computation of polynomial-evaluation hash can be parallelized.

In detail, assuming ` | ι, the parallelized version computes {x(i)1 , . . . , x
(i)
` } from

i = 0 to i = ι
` as follows:

x
(i)
k =

{
skh

k for i = 0

(x
(i−1)
k ⊕ sk+ik)hk for i = 1, . . . , ι`

, for k ∈ [`] (3)

Finally, the summation
∑`
k=1 x

(ι`)

k is taken as the tag. The computation of

{x(i)1 , . . . , x
(i)
` } for i ∈ [ι`] can be parallelized and thus fits our packed multi-

plication of Gadget 1. In Figure 10, we present our new approach based on
packed multiplication.

M: Gadget 1-M

P: Gadget 1-P

: ` sharings

: 1 packed sharing

P

M

P

⊕P

P

M

... ...

... ...

P

⊕P M
∑

: 1 sharing

ĥ, ĥ2, . . . , ĥ`

ŝ1, . . . , ŝ` ŝ`+1, . . . , ŝ2` ŝι−`+1, . . . , ŝι

the sharing of tag

∑
: Gadget 3: summing of ` sharings

... ...

Fig. 10. Masked polynomial-evaluation hash with packed multiplication.

Based on the probing propagation framework, it is easy to see that the com-
posed gadget in Figure 10 is d-CSNI. To estimate the cost, we use the MDS
matrix from the Reed-Solomon code for the matrix A of our packed multipli-
cation gadgets, and thus n = d + 1. By the MDS conjecture [36], ` and d can
be arbitrarily large as long as `+ d ≤ |F2128 | = 2128. The estimated cost of this
approach is also given in Table 3. It can be seen that, asymptotically, the new
scheme with packed multiplication achieves a gain of cost up to ` times from the
straightforward approach.

Table 3. Estimated costs of the masked polynomial-evaluation hash over F2128

Sequential Implementation
with ISW multiplication

Figure 10 with
Packed multiplication

Randomness complexity (in bits) 64(ι+ 1)d(d+ 1) 64(ι+1)d(d+1)+128(ι+1)d2

`

Computational complexity ∗ (ι+ 1)(d+ 1)2 (ι+1)(d+1)2

`

* Metric: the number of bilinear multiplications.

26

7.3 More applications of the masked polynomial-evaluation hash

Besides the GCM, polynomial-evaluation hashes have wide applications, see [39,
31]. We thus believe our approach have a great impact. To demonstrate, we take
disk encryption as another example. For this purpose, Halevi proposed a mode
named TET (short for linear-Transformation; ECB; linear-Transformation) [23].
The mode can be seen as the ECB encryption sandwiched between two layers
of “blockwise-universal hash”. An instance of such hashes proposed in [23] was
named Blockwise Polynomial-Evaluation (BPE). With inputs x1, . . . , xτ ∈ Fι2p
and key (β, τ) ∈ (F2p ,F2p), BPE firstly computes

s = x1τ ⊕ x2τ2 ⊕ . . .⊕ xιτ ι. (4)

Then, the result is obtained by

yi = xi ⊕ s⊕ αi−1β, for i ∈ [ι],

where α ∈ F2p is a constant. It is clear that BPE is essentially a polynomial-
evaluation hash following Equation 1, and thus it can also be parallelized and
implemented in the same vein as that of Figure 10.

Acknowledgments. We would like to thank the anonymous reviewers of Asi-
acrypt 2020. Weijia Wang was partly supported by the Program of Qilu Young
Scholars (Grant No. 61580082063088) of Shandong University. Chun Guo was
partly supported by the Program of Qilu Young Scholars (Grant No. 6158008996-
3177) of Shandong University & National Key Research and Development Project
under Grant No.2018YFA0704702 & Major Scientific and Technological Innova-
tion Project of Shandong Province, China under Grant No.2019JZZY010133 &
Major Scientific and Technological Innovation Project of Shandong Province,
China under Grant No.2017CXGC0704. Gaëtan Cassiers and François-Xavier
Standaert are resp. Research Fellow and Senior Associate Researcher of the Bel-
gian Fund for Scientific Research (FNRS-F.R.S.). This work has been funded
in parts by the European Union through the ERC project SWORD (724725)
and the European Union and Walloon Region FEDER USERMedia project
501907379156. Yu Yu was supported by the National Key Research and De-
velopment Program of China (Grant No. 2018YFA0704701), National Natural
Science Foundation of China (Grant No. 61872236 and 61971192), and the Na-
tional Cryptography Development Fund (Grant No. MMJJ20170209).

References

1. Barthe, G., Beläıd, S., Dupressoir, F., Fouque, P., Grégoire, B., Standaert, F.,
Strub, P.: Improved parallel mask refreshing algorithms: generic solutions with
parametrized non-interference and automated optimizations. J. Cryptogr. Eng.
10(1), 17–26 (2020), https://doi.org/10.1007/s13389-018-00202-2

27

2. Barthe, G., Beläıd, S., Dupressoir, F., Fouque, P., Grégoire, B., Strub, P., Zucchini,
R.: Strong non-interference and type-directed higher-order masking. In: Weippl,
E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) CCS 2016. pp.
116–129. ACM (2016), https://doi.org/10.1145/2976749.2978427

3. Barthe, G., Dupressoir, F., Faust, S., Grégoire, B., Standaert, F., Strub, P.: Parallel
implementations of masking schemes and the bounded moment leakage model. In:
Coron, J., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 535–566
(2017), https://doi.org/10.1007/978-3-319-56620-7 19

4. Battistello, A., Coron, J., Prouff, E., Zeitoun, R.: Horizontal side-channel at-
tacks and countermeasures on the ISW masking scheme. In: Gierlichs, B.,
Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 23–39. Springer (2016),
https://doi.org/10.1007/978-3-662-53140-2 2

5. Beläıd, S., Benhamouda, F., Passelègue, A., Prouff, E., Thillard, A., Vergnaud,
D.: Randomness complexity of private circuits for multiplication. In: Fischlin,
M., Coron, J. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 616–648. Springer
(2016), https://doi.org/10.1007/978-3-662-49896-5 22

6. Beläıd, S., Benhamouda, F., Passelègue, A., Prouff, E., Thillard, A., Vergnaud,
D.: Private multiplication over finite fields. In: Katz, J., Shacham, H.
(eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 397–426. Springer (2017),
https://doi.org/10.1007/978-3-319-63697-9 14

7. Beläıd, S., Coron, J., Fouque, P., Gérard, B., Kammerer, J., Prouff, E.: Im-
proved side-channel analysis of finite-field multiplication. In: Güneysu, T., Hand-
schuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 395–415. Springer (2015),
https://doi.org/10.1007/978-3-662-48324-4 20

8. Beläıd, S., Fouque, P., Gérard, B.: Side-channel analysis of multiplications in
GF(2128) - application to AES-GCM. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT
2014. LNCS, vol. 8874, pp. 306–325. Springer (2014), https://doi.org/10.1007/978-
3-662-45608-8 17

9. Beläıd, S., Goudarzi, D., Rivain, M.: Tight private circuits: Achieving prob-
ing security with the least refreshing. In: Peyrin, T., Galbraith, S.D.
(eds.) ASIACRYPT 2018. LNCS, vol. 11273, pp. 343–372. Springer (2018),
https://doi.org/10.1007/978-3-030-03329-3 12

10. Bellare, M., Namprempre, C.: Authenticated encryption: Relations among notions
and analysis of the generic composition paradigm. J. Cryptology 21(4), 469–491
(2008), https://doi.org/10.1007/s00145-008-9026-x

11. Cassiers, G., Standaert, F.: Improved bitslice masking: from optimized non-
interference to probe isolation. IACR Cryptology ePrint Archive 2018, 438 (2018)

12. Cassiers, G., Standaert, F.: Towards globally optimized masking: From low ran-
domness to low noise rate or probe isolating multiplications with reduced random-
ness and security against horizontal attacks. IACR Trans. Cryptogr. Hardw. Em-
bed. Syst. 2019(2), 162–198 (2019). https://doi.org/10.13154/tches.v2019.i2.162-
198

13. Cassiers, G., Standaert, F.: Trivially and efficiently composing masked gadgets with
probe isolating non-interference. IEEE Trans. Inf. Forensics Secur. 15, 2542–2555
(2020), https://doi.org/10.1109/TIFS.2020.2971153

14. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counter-
act power-analysis attacks. In: Wiener, M.J. (ed.) CRYPTO ’99. LNCS, vol. 1666,
pp. 398–412. Springer (1999), https://doi.org/10.1007/3-540-48405-1 26

15. Coron, J., Greuet, A., Zeitoun, R.: Side-channel masking with pseudo-random gen-
erator. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107,
pp. 342–375. Springer (2020), https://doi.org/10.1007/978-3-030-45727-3 12

28

16. Damg̊ard, I., Ishai, Y., Krøigaard, M.: Perfectly secure multiparty computation and
the computational overhead of cryptography. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 445–465. Springer (2010), https://doi.org/10.1007/978-
3-642-13190-5 23

17. Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: From probing attacks
to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 423–440. Springer (2014), https://doi.org/10.1007/978-3-642-55220-
5 24

18. Faust, S., Paglialonga, C., Schneider, T.: Amortizing randomness complexity in pri-
vate circuits. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624,
pp. 781–810. Springer (2017), https://doi.org/10.1007/978-3-319-70694-8 27

19. Goudarzi, D., Rivain, M.: How fast can higher-order masking be in software? In:
Coron, J., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 567–597
(2017), https://doi.org/10.1007/978-3-319-56620-7 20

20. Groß, H., Mangard, S., Korak, T.: Domain-oriented masking: Compact
masked hardware implementations with arbitrary protection order. In: Bil-
gin, B., Nikova, S., Rijmen, V. (eds.) ACM 2016. p. 3. ACM (2016),
https://doi.org/10.1145/2996366.2996426

21. Grosso, V., Standaert, F.: Masking proofs are tight and how to exploit it in se-
curity evaluations. In: Nielsen, J.B., Rijmen, V. (eds.) Advances in Cryptology -
EUROCRYPT 2018 - 37th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018
Proceedings, Part II. Lecture Notes in Computer Science, vol. 10821, pp. 385–412.
Springer (2018), https://doi.org/10.1007/978-3-319-78375-8 13

22. Grosso, V., Standaert, F., Faust, S.: Masking vs. multiparty computation: How
large is the gap for aes? In: Bertoni, G., Coron, J. (eds.) CHES 2013. LNCS,
vol. 8086, pp. 400–416. Springer (2013), https://doi.org/10.1007/978-3-642-40349-
1 23

23. Halevi, S.: Invertible universal hashing and the TET encryption mode. In:
Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 412–429. Springer (2007),
https://doi.org/10.1007/978-3-540-74143-5 23

24. Horner, W.G.: Xxi. a new method of solving numerical equations of all orders,
by continuous approximation. Philosophical Transactions of the Royal Society of
London (109), 308–335 (1819)

25. Ishai, Y., Kushilevitz, E., Li, X., Ostrovsky, R., Prabhakaran, M., Sahai, A.,
Zuckerman, D.: Robust pseudorandom generators. In: Fomin, F.V., Freivalds, R.,
Kwiatkowska, M.Z., Peleg, D. (eds.) ICALP 201. LNCS, vol. 7965, pp. 576–588.
Springer (2013), https://doi.org/10.1007/978-3-642-39206-1 49

26. Ishai, Y., Sahai, A., Wagner, D.A.: Private circuits: Securing hardware against
probing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–
481. Springer (2003), https://doi.org/10.1007/978-3-540-45146-4 27

27. Journault, A., Standaert, F.: Very high order masking: Efficient implementation
and security evaluation. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS,
vol. 10529, pp. 623–643. Springer (2017), https://doi.org/10.1007/978-3-319-66787-
4 30

28. Karpman, P., Roche, D.S.: New instantiations of the CRYPTO 2017 masking
schemes. In: Peyrin, T., Galbraith, S.D. (eds.) ASIACRYPT 2018. LNCS, vol.
11273, pp. 285–314. Springer (2018), https://doi.org/10.1007/978-3-030-03329-
3 10

29

29. Kim, H., Hong, S., Lim, J.: A fast and provably secure higher-order masking of
AES s-box. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp.
95–107. Springer (2011), https://doi.org/10.1007/978-3-642-23951-9 7

30. McGrew, D.A., Viega, J.: The Galois/Counter Mode of Operation (GCM),
http://luca-giuzzi.unibs.it/corsi/Support/papers-cryptography/gcm-spec.pdf

31. Naor, M., Reingold, O.: A pseudo-random encryption mode
32. Oshida, H., Ueno, R., Homma, N., Aoki, T.: On masked galois-field multiplica-

tion for authenticated encryption resistant to side channel analysis. In: Fan, J.,
Gierlichs, B. (eds.) COSADE 2018. LNCS, vol. 10815, pp. 44–57. Springer (2018),
https://doi.org/10.1007/978-3-319-89641-0 3

33. Prouff, E., Rivain, M.: Masking against side-channel attacks: A formal security
proof. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881,
pp. 142–159. Springer (2013), https://doi.org/10.1007/978-3-642-38348-9 9

34. Reed, I.S., Solomon, G.: Polynomial codes over certain finite fields. Journal of the
society for industrial and applied mathematics 8(2), 300–304 (1960)

35. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard,
S., Standaert, F. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer (2010),
https://doi.org/10.1007/978-3-642-15031-9 28

36. Segre, B.: Curve razionali normali ek-archi negli spazi finiti. Annali di Matematica
Pura ed Applicata 39(1), 357–379 (1955)

37. Seo, S.C., Kim, H.: SCA-resistant GCM implementation on 8-
bit AVR microcontrollers. IEEE Access 7, 103961–103978 (2019).
https://doi.org/10.1109/ACCESS.2019.2930986

38. Wang, W., Méaux, P., Cassiers, G., Standaert, F.: Efficient and private compu-
tations with code-based masking. IACR Trans. Cryptogr. Hardw. Embed. Syst.
2020(2), 128–171 (2020), https://doi.org/10.13154/tches.v2020.i2.128-171

39. Wegman, M.N., Carter, L.: New hash functions and their use in authen-
tication and set equality. J. Comput. Syst. Sci. 22(3), 265–279 (1981),
https://doi.org/10.1016/0022-0000(81)90033-7

30

