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ABSTRACT

This paper presents a practical evaluation of a RADIal Soft
Hash algorithm, an image hashing technique used for image
and visual content authentication. First we evaluate its col-
lision resistance and susceptibility to geometrical deforma-
tions and image processing attacks. Second we investigate
its actual efficiency on different platforms. Although soft-
ware implementations allow managing sizes and throughput
for most applications, they suffer from some troubles for real
time applications such as video and for images in high def-
inition. For these more constrained contexts, we propose
hardware implementations. In practice, throughput up to218

(resp.226) pixels/sec are managed in a single SW (resp. HW)
implementation.

1. INTRODUCTION

Present networks allow millions of users to share their digital
multimedia products and this allows the unlimited copy and
transmission of almost every digital data. Therefore, the
Digital Right Management issue constitutes a bottleneck for
a large use of digital contents. The watermarking technique
is a first attempt to solve copyright management. It intends
to embed a hidden, robust digital signal in a multimedia
content that allows the detection of an illegal copy and
demand of legal responsibilities. However it is not a low
cost process and the efficiency of such an approach is not yet
unanimously recognized [6].

In recent writing about visual content authentication,
the term image hashing has been introduced to refer to the
computation of a content based image digest [3, 4, 13]. In
accordance with this terminology, we also call hashing the
extraction of a content-based image or video digest, but
we make the distinction between cryptographic hashing
and robust hashing. Hash functions are well-known in
cryptography and are generally used for digital signatures.
In essence, they summarize a message in a short and constant
bit length digest, which uniquely identifies the original mes-
sage. Cryptographic hashing has to be resistant to collision,

and computationally non-invertible [10] (i.e it should be
computationally impossible to construct a different file
producing the same hash value). In cryptography, the output
message digest dramatically changes when a single bit of
the input message changes [10]. One says that cryptographic
digests are discontinuous. Discontinuous hashes are useful
to guarantee strong integrity and authenticity. However, in
visual content management applications, continuous hash
functions are preferred. A continuous hash function, also
called robust hash function, alters the output message (or
media) digest in proportion to the changes in the input
message. When applied to image or video signals, such
functions are designed to capture the essence of the visual
content.

The purpose of robust image hashing is thus to define
an image digest that satisfies two properties. On the one
hand, similar to cryptographic message digest, the robust
image digest characterizes the image in the sense that it
uniquely identifies its content, i.e. the digests derived from
a pair of visually distinct inputs have a low probability to be
identical. On the other hand, the hashing process is robust
in the sense that the digest is only slightly affected when
the image changes due to compression or minor processing,
i.e. visually indistinguishable images generate equal or
similar digests. Conversely to cryptographic hashing, robust
hashing is thus able to deal with visually non-significant
changes of the content, and supports common manipulations
like compression or reformating (e.g. spatial or temporal
subsampling).

Because it defines a vector that identifies the image
contents, robust hashing is an obvious solution for content
identification and indexing. When used in combination with
conventional cryptographic digital signature methods, robust
hashing can also be used for integrity and authentication
purposes [3, 9]. Finally, in watermarking, hashing enables
the creation of payloads that depend on the media content,
and which are thus resistant to the copy attack reported by
Fridrich and al. in [4,5].



In [7], a technique was proposed for copyright protection
and video recognition (RASH). It is a new one-way function
for images, based on the Radon transform, and adapted to
the particularities of image and video signals. In this paper,
we improve its authentication properties and define a new
hash function (RADISH). We also evaluate its actual imple-
mentation efficiency. The rest of this paper is structured as
follows. In section 2 and 3, we briefly describe the RASH
and RADISH algorithms. Section 4 provides results that
validate the collision resistance of the RADISH algorithm.
Section 5 investigates its SW performances and sections 6,
7 discuss hardware implementation concerns. Performance
evaluation on FPGAs are also provided. Finally, conclusions
are in section 8.

2. RADON SOFT HASH ALGORITHM (RASH)

Reference [7] presented a new visual content descriptor for
images. This method is based on Radon transform,R:

R(g, p,θ) =
∫ ∞

−∞
g(p.cosθ −q.sinθ , p.sinθ +q.cosθ)dq

(1)
The transform properties allow obtaining good invariance
against rotation, scaling and image processing attacks. To ex-
tend the Radon transform to discrete images, the line integral
alongx.cosφ +y.sinφ = d is approximated by a summation
of the pixels lying in the one-pixel-wide strip:

d− 1
2
≤ x.cosφ +y.sinφ ≤ d+

1
2

(2)

Reference [2] gives a quick and good approximation of
this discrete Radon transform. However, the RAdon Soft
Hash algorithm [7] suffers from some troubles due to a
hight energy along the angle45 and 135 (see figure 1).
This is notably due to the fact that, in this first method,
the pixel luminances along the line projection were summed.
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Figure 1: RASH feature vector for Lena.

In order to overcome this problem, we observed that
the variance efficiently captures much better luminance
discontinuities along the projection lines. In the image, these
discontinuities correspond to edges that are orthogonal to
the projection direction. Hence, the variance is expected to

Figure 2: Image definitions.

capture relevant information about the visual content of an
image. This led us to define a new identification method,
called RADIal Hashing. In the rest of the paper, we denote
it as the RADISH transform.

3. RADIAL SOFT HASH ALGORITHM (RADISH)

Formally, we define the RADIal Hashing feature vector as
follows. Let Γ(φ) denote the set of pixels(x,y) on the pro-
jection line corresponding to a given angleφ . Let (x′,y′) de-
note the coordinates of the central pixel. According to figure
2, (x,y) ∈ Γ(φ) if and only if:

−1
2
≤ (x−x′).cosφ +(y−y′).sinφ ≤ 1

2
(3)

Let I(x,y) denote the luminance value of the pixel(x,y), the
RADISH feature vectorR[φ ], 0≤ φ < 180, is then defined
by:

R[φ ] =
∑(x,y)∈Γ(φ) I2(x,y)

#Γ(φ)
−

(∑(x,y)∈Γ(φ) I(x,y)
#Γ(φ)

)2
(4)

Figure 3 present the RADISH feature vector obtained for
Lena. The energy is now correctly spread in accordance
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Figure 3: RADISH feature vector for Lena.



with the pixel luminance information and not according to
the number of pixel along a certain direction.

4. COLLISION RESISTANCE

To evaluate the robustness and collision resistance of our
proposed hashing method, we experimented RADISH on 40
real-world images taken from the USC-SIPI database [12].
Note that those are preliminary results performed on a small
data base. Further experiments are required, for example
using consecutive frames in a movie or other transforms.

For each of the 40 images of the dataset, we consid-
ered 7 image processing attacks, generating 280 images,
named processed images or intra images. The attacks are:

• Filtering : 3x3 Gaussian filtering with standard
deviation of 0.5.

• Compression: JPEG compression with 80% and 60%
quality factor.

• Geometric: scaling (factors = 1.2 and 0.8), rotation
and rotation with centered cropping.

In figures 4, we observe that for all RADISH message
digest, the peaks of cross-correlation (PCCs) between
reference images and processed images are larger than 0.85.
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(a) Gaussian attack.
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(b) Jpeg attack.
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(c) Scaling attack.

5 10 15 20 25 30 35 40
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Scaling 1.2
Scaling 0.8

(d) Rotation attack.

Figure 4: Peaks of cross correlation based on RADISH image
digests for Intra images

To evaluate the risk of collision, we need to compare,
for each original image from the dataset, the worst Intra
matching with the best Inter matching. Given a reference
original image, we classify the 280 processed images in
Intra and Inter processed images, depending on whether they
derived from the reference image or not.
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Figure 5: Collisions in RASDISH image digests.

Figure 5 presents the worst Intra PCCs and the best
Inter PCCs for each image from the dataset. From this
figure, we observe that all Intra PCC’s are larger than
0.85, and that no Inter PCC lies under 0.85. We conclude
that cross correlation is an efficient way to compare two
RADISH digests, and that 0.85 is a good threshold to decide
whether two images are visually similar or not.

5. SOFTWARE IMPLEMENTATIONS

A software implementation of the RADISH transform al-
lowed us to evaluate its time-performances for different im-
age sizes, from 512× 512 to 4000× 2000 pixels. We ob-
served that the memory requirements of the algorithm do not
significantly increase with the image size whereas its com-
putational requirements linearly depend on it. Therefore, the
throughput of the RADISH transform is independent from
the image size. On a AMD Athlon, XP 1800 with 512
MBRAM, we found218 pixels/sec. In practice, the RADISH of
a 512× 512 image is computed in 1 second whereas a 4000
× 2000 image will need about 30 seconds. In the next sec-
tion, we investigate the relevance of a hardware coprocessor
for computing the RADISH transform.

6. HARDWARE IMPLEMENTATIONS

For hardware implementations, we assume that the pixels are
received in a one by one serial way. That is, we first re-
ceive(0,0), then(1,0), (2,0), ... , and finally(X,Y). The
resources needed to implement the RADISH are divided as
follows:

R1. Resources for computing condition (3). Those are not
mandatory as this computation does not change with the
input data and may therefore be performed offline.

R2. Squaring multipliers for the left term of equation (4).

R3. Averaging adders for the sums of Eq. (4) (i.e.∑ I , ∑ I2,
#Γ(φ)).

R4. Registers or memory to store the averages of Eq. (4).



We may therefore build different implementation scenarios:

6.1 Serial-serial

This scenario refers to the situation where we compute con-
dition (3) for one pixel(x,y) and one angleφ in one clock cy-
cle. The resulting design has the lowest possible area require-
ments and a low throughput. As only one pixel is managed
by clock cycle, only one multiplier is necessary for the squar-
ing operation of equation (4). For the averaging, we need a
memory with 180*3 addresses and three adders1 to compute
the different sums of equation (4). In terms of throughput,
if the work frequency isf , we expect to have a throughput
of about f

180 pixels/sec. It should not significantly improve
software performances.

6.2 Serial-parallel

This scenario refers to the situation where we compute con-
dition (3) for one pixel and all the 180 anglesφ in one clock
cycle. The resulting design needs to compute condition (3)
180 times in parallel (which, again, can be done offline and
stored in a memory). However, as only one pixel is managed
by clock cycle, we still only need one multiplier. For the av-
eraging, we need the same number of memory addresses, but
they have to be accessed in parallel so that we need 180*3
registers. 180 times more adders2 are also necessary. As a
consequence, the expected throughput becomesf pixels/sec.

6.3 Parallel-parallel

This scenario refers to the situation where we compute con-
dition (3) for several (n) pixels and all the 180 anglesφ in one
clock cycle. Compared with the previous scenario, we have
to multiply by n the number of times we compute equation
(3) and the number of multipliers for the squaring operations
of equation (4). As several pixels may influence the same an-
gle in one clock cycle, we need either multi-operand adders
or additional FIFO memories for the averaging of equation
(4). The resulting design has an increased complexity and an
expected throughput off .n pixels/sec.

6.4 Comparisons

The estimations for the different implementation scenarios
are summarized in Table 1, where the symbol * indicates that
additional resources are needed to deal with multiple pixels.
(M) means that the storage is implemented in a single access
memory and (R) means that the storage uses registers. Based
on these estimations, the serial-parallel scenario appears to
be an interesting combination of circuit size, throughput and
simplicity.

1Due to the three sums that we have to compute, that is∑ I2, ∑ I and#Γ.
2Because some pixels are included in several angle lines, e.g.(x′,y′) is

included in all of them (although in practice most pixels influence only one
angle line).

S-S S-P P-P
#R1 (may be offline) 1 180 180.n

#R2 1 1 n
#R3 3 180.3 180.3*
#R4 180.3 (M) 180.3 (R) 180.3*(R)

Throughput f
180 f n. f

Table 1: Area and throughput (pixels/sec) estimations for dif-
ferent implementation scenarios.

Nbr LUTs Nbr Flip flops Nbr slices
Cond.(3) 84 19 47

Table 2: Implementation results for condition (3).

In the next section, we investigate its efficient implementa-
tion for a 512 x 512 pixels image with 8-bit luminance, with
or without precomputation for condition (3).

7. EFFICIENT IMPLEMENTATION OF A
SERIAL-PARALLEL ARCHITECTURE

This section describes the FPGA implementation of a serial-
parallel architecture. We provide implementation results in
the Xilinx Virtex-II technology [14]. Synthesis and imple-
mentation were performed with Xilinx ISE 6.1. The fre-
quency is estimated after implementation and the hardware
cost is evaluated by the number of LUTs, registers and slices.
A short description of these FPGA components is given in
appendix.

7.1 Computation of condition (3) (facultative)

Let X (resp. Y) be the number of pixels by line (resp. col-
umn) as suggested in Figure 2. For every(x,y),φ , we want
to compute the following condition:

−1
2
≤ (x−x′).cosφ +(y−y′).sinφ ≤ 1

2
(5)

As the pixels are provided in a one by one serial way, we
observe that(x−x′).cosφ +(y−y′).sinφ may be modified in
only three different manners:

1. Initially, it is set to: initφ =−x′.cosφ −y′.sinφ .

2. For a new pixel, we add a constant valueaφ = cosφ .

3. For a new line, we add a constant valuebφ = −(X −
1).cosφ +sinφ .

If we store the values foraφ , bφ and initφ in a memory, it
is therefore possible to compute condition (3) with only one
adder, one register and two comparisons (these comparisons
are actually implemented as one adder and one substractor),
as it is shown in Figure 6. The implementation results are in
Table 2.
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Figure 6: Computation of condition (3).

Nbr LUTs Nbr Flip flops Nbr slices
Av. circuit (3) 94 54 54

Table 3: Implementation results for the Av. of (4).
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Figure 7: Averaging circuit (4).

7.2 Computation of the RADISH (4)

Thanks to theaddto φ signals, we can compute the different
sums of equation (4) for a fixedφ with three adders, three
registers and three multiplexors. We decided to implement
only ∑(x,y)∈Γ(φ) I2(x,y), ∑(x,y)∈Γ(φ) I(x,y) and#Γ(φ) in hard-
ware. The final squaring, division and substraction can be
more efficiently implemented in software. An efficient solu-
tion to do it would be to use the embedded processors avail-
able inside some recent FPGAs. Anyway, these operations
are not critical in software and do not involve any need for
hardware implementation. The design is represented in Fig-
ure 7 and its implementation results are in Table 3. Remark
the use of output multiplexors allow chaining the different
averaging registers in order to have a serial output of the
180.3 coefficients os the RADISH.

Nbr LUTs Nbr Flip flops Nbr slices
full RADISH 28979 13174 16846

Nbr LUTs Nbr Flip flops Nbr slices
RADISH + prec. 17012 9756 9770

Frequency Throughput
RADISH 75 Mhz 75.106 pixels/sec

Table 4: Complete implementation results.

7.3 Complete implementation

The complete implementation uses the previous cells 180
times in parallel. An additional multiplier is used to com-
pute the currentI2. Some additional logic is required for
the control signals. After implementation within a XILINX
Virtex2-6000, we obtain the results of Table 4 for a 512×
512 image. The hardware cost is presented with or without
the precomputation and illustrates that removing the compu-
tation of equation (3) allows us to roughly divide the cost by
two. For larger image sizes, the work frequency is only very
slightly reduced (e.g. 74 Mhz for 4000× 2000 images). It
is due to the slight modification in the averaging adders size.
As a consequence, we may assume that, as in the case of SW
implementations, the throughput is independent from the im-
age size.

8. CONCLUSION

We evaluated the performances of a new robust hash function
and presented results to validate its authentication proper-
ties. Based on a simple parallelization of the algorithm, an
FPGA implementation of the RADISH signature of an 8-bit
luminance image has a throughput of 75.106 pixels/sec.
Compared with software implementations, we compute the
hash of a complete 512 x 512 image in 3.5 milliseconds in
place of about 1 seconds. These performances allow the
RADISH transform to be an efficient solution for visual
content authentication in a wide range of applications.
Associated with a frame detection, a software implementa-
tion of the RADISH allows a direct computation of small
signatures of a video content. Combined with watermark-
ing, its geometrical properties also permit the correction
of certain critical deformations for watermark detection.
Finally, hardware implementations allow dealing with high
definition images and high throughput videos. Further
research is required in a deeper evaluation of the collision
properties of the hash function, using larger image databases.
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APPENDIX

All the implementation results provided in this paper were
obtained using Xilinx Virtex-II devices [14]. In general, FPGAs
may be viewed as a “sea” of programmable logic gates where the
logic, but also the routing are user programmable. In this section,
we briefly describe the logic resources in Virtex-II FPGAs.

The main component of the Xilinx Virtex-II devices is the
Configurable Logic Block (CLB) that is made up of two slices,
each one divided into two Logic Cells (LC). An LC includes a
4-input function generator, carry logic and a storage element. The
output from the function generator in each LC drives both the CLB
output and the D input of the flip-flop. Figure 8 shows a simplified
view of a single slice.

Virtex-II function generators are implemented as 4-input
LUTs that can also provide a 16×1-bit synchronous RAM or a
16-bit shift register. In addition, the F5 multiplexer in each slice
combines the LUT outputs. This combination provides a function
generator that implements any 5-input function, a 4:1 multiplexer,
a 32× 1-bit synchronous RAM or selected functions of up to
nine bits. Similarly, the F6 multiplexer combines the outputs of
all four LUTs in the CLB by selecting one of the F5-multiplexer
outputs. Finally, the arithmetic logic includes fast carry chains and
additional logic gates (e.g. XORCY) to improve the efficiency of
adder/multiplier implementations. Additional resources also allow
combining different slices.
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F5outF5
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LUTout1
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F6out

Rout1

Rout2

Cin

Cout

LUT
in1
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carry
XORCY

carry
XORCY

Fig. 9. The Virtex-II slice.

The storage elements can be configured either as edge-triggered
D-type flip-flops or as level-sensitive latches. The D inputs can be
driven either by the function generators within the slice or directly
from slice inputs, bypassing function generators.

Finally, Virtex-II FPGAs incorporate several large RAM Blocks
(RAMB). These ones complement the distributed LUT implemen-
tations of RAMs. Every block is a fully synchronous dual-ported
RAM with independent control signals for each port. The data
widths of the two ports can be configured independently.


