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* Introduction to side-channel analysis
 Masking (aka secret sharing) countermeasure

e Leakage evaluation and certification
* Problem statement & first approach
* Bounding the Perceived Information

* Conclusions: white box design & evaluation



* Introduction to side-channel analysis



Cryptographic algorithms 1

® e.g. encryption:
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e Public algorithms and secret keys
* Essential for both security and trust



Cryptographic implementations 2

® e.g. encryption:

—-() channel (




Cryptographic implementations 2

® e.g. encryption: fault analysis

Wﬁ‘w‘}‘hwﬂ}*”v’\’”“l \ h‘!\u‘i ‘:“J”‘*'{M‘U‘{‘\J ’mi‘wv““.‘.‘j‘h“%@WWJ.

|f
LL

side-channel analysis



Side-channel analysis (in two slides) 3
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* =~ physical attacks that decreases security
exponentially in the # of measurements



Side-channel analysis (in two slides) 4
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* ... & where each bit of secret is learned by
distinguishing noisy (leakage) distributions



Standard DPA [KJJ99]
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Standard DPA [KJJ99]
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Standard DPA [KJJ99]
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Standard DPA [KJJ99]
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Standard DPA [KJJ99]
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Prediction and modeling 6

* General case: profiled DPA [CRRO2]
* Build “templates”, i.e. f (L;|k, x;)
e e.g. Gaussian, regression-based
 Maximum likelihood attack



Prediction and modeling 6
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Important attack features 7

e Side-channel attacks are continuous
e Better evaluated with information theoretic metrics
that capture the attack data complexity

SR < 1— (1 — MI(Y; Ly))™

c(n)
M I(Y;Ly)

—# of tracesmtoreachSR = 1 «



Important attack features 7

e Attacks target two secrets in parallel
* The block cipher long-term key
* The leakage model of the implementation

—> An optimal attack requires a perfect model



 Masking (aka secret sharing) countermeasure



Noise (hardware) is not enough




Noise (hardware) is not enough




Noise (hardware) is not enough

Additive noise = cost X 2 = security X 2
= not a good (crypto) security parameter

~y
~y

same holds for all hardware countermeasures



Masking (= noise amplification)

e Example: Boolean encoding

y=y1 Dy, D - Dysg_1Dyqg
* Withyy, ¥, ., ¥a—2,Ya-1 < {0,1}"



Masking (abstract view)

* Private circuits / probing security [ISWO03]

V=1 DYy, D D ys—1Dyq




Masking (abstract view)

* Private circuits / probing security [ISWO03]

V=1 DYy, D D ys—1Dyq

T

* d — 1 probes do not reveal anything on y




Masking (abstract view)

* Private circuits / probing security [ISWO03]

V=1 DYy, D D ys—1Dyq

i

 But d probes completely reveal y




Masking (concrete view)

Yy=y1D Y20 D Ya-1 D Va

leakage
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' serial implementation.

* Noisy leakage security [PR13]



Masking (concrete view)

Yy=y1D Y20 D Ya-1 D Va
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' serial implementation.

* Bounded information MI(Y; L)<MI(Y;; Lyi)d



Masking (reduction)

* Private circuits / probing security [ISWO03]

* Bounded information MI(Y; L)<MI(Y;; Lyi)d

9Juapuadapul + asiou



Masked operations [ISW03]

* Linear operations: f(a) =f(a;) @ f(ay) D - D f(ay)



Masked operations [ISW03]

 Multiplications: ¢ = a X b in three steps



Masked operations [ISW03]

 Multiplications: ¢ = a X b in three steps

a;b, a.b, aib;
a,b; ayb, a,bs
azb, azb, asbs

partial products



Masked operations [ISW03]

 Multiplications: ¢ = a X b in three steps

aq b1 aq bz aq b3 0 (&1 &)
a, bl a, b2 a, b3 + —1 0 13
as b]_ as b2 as b3 —71 —7T3 0

partial products refreshing



Masked operations [ISW03]

Multiplications: ¢ = a X b in three steps
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Masked operations [ISW03]

 Multiplications: ¢ = a X b in three steps

-albl a1b2 albg- _ 0 (&1 7"2- C1
a, bl a, bz a, b3 + |- 0 3| = |C2
as b]_ as bz as b3 —T, —T173 0 C3

partial products refreshing  compression

a,b; @ a;b, @ a;b; = a1bleakson b



Masked operations [ISW03]

= Quadratic overheads & randomness
 (Many published optimizations [R+15,Be+16,GM18])



Statistical intuition (2 shares)

L2 L2
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(a) Y=0, serial. (b) Y =1, serial.

* Leakage mean vectorforY = 0,1 = [0.50.5]



Statistical intuition (2 shares)

L2 L2
A A
1 1
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0 1 0 1
(a) Y =0, serial. (b) Y =1, serial.
: T AR
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0O 1 2 0O 1 2
(c) Y=0, parallel. (d) Y=1, parallel.

 Leakage meanvalueforY =0,1 =1



Case study: ARM Cortex M4 [JS17]

—31st-order security| -
—15th-order security|
7th-order security

— 2128 pit secu rity
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Case study: ARM Cortex M4 [JS17]

cycles per byte
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Case study: ARM Cortex M4 [JS17]
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Summarizing

e Sounds easy but implementation is complex



Summarizing

e Sounds easy but implementation is complex

* Independence issue: physical defaults (e.g., glitches)
can re-combine shares (e.g., [MPGO5,NRS11,F+18])

e Security against horizontal attacks require more
noise/randomness as d increases [BCPZ16,CS19]

* Scalability/composition are challenging [Ba+15,Ba+16]



Summarizing

= High security against DPA can be reached but
* Itimplies large performance overheads
 E.g., industry currently uses 2-4 shares (?)
* It « only » protects the key (plaintexts are not shared)



Summarizing

e SPA security expected to be (much) cheaper



e Leakage evaluation and certification
* Problem statement & first approach



Leakage evaluation

1. Directly estimate the leakage PDF (or PMF)

2. Try to attack with this estimated model
 Good if it works (but no guarantees of optimality)
 Hardto interpret if it does not work:

- either the leakages are sufficiently noisy, or
- the model is not accurate (“false sense of security”)



Leakage certification [DSV14]

1. Directly estimate the leakage PDF (or PMF)
2. Try do distinguish estimation & assumption errors



Leakage certification [DSV14]

e Example:
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Leakage certification [DSV14]

’ Example: no samples
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Leakage certification [DSV14]
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Example:
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estimation errors dominate
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—> need to measure more



Leakage certification [DSV14]

* Example: ni > no samples
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Leakage certification [DSV14]

. :
Example: assumption errors dominate
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— need another statistical model



Leakage certification [DSV14]

—> good enough model: ass. err << est. err. given n



Information theoretic view [R+11]

PI(Y; L) = HOD + ) p0u) - [ Ly l) - loga mu(viL,,)
y

* Information extracted by a statistical model
 Possibly biased by estimation & assumption errors



Information theoretic view [R+11]

- log, My, (Vi lyi)

PI(Y;; Ly,) = H(Y)) + Z p(yi) - Z
- .

e Computed in two 2-steps: (1) model estimation
(2) integral by sampling (the true distribution)



Information theoretic view [R+11]

 PI=MIif the model is perfect (PI # MI otherwise)
 E.g., can be negative if the model is too incorrect



Information theoretic view [R+11]

IT metric (Iog10 scale)
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Information theoretic view [R+11]

IT metric (Iog10 scale)

4 71 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8
Iogm(# of modeling samples)

Pl curve “saturates” too far from the Mi
Evaluator has to look for another statistical model



Concrete limitation #1

— -1r . pe . . H
© certification did not fail (yet?)
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* We may lack samples to be conclusive
* Because estimation errors decrease slowly



Concrete limitation #2
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* Such certification tests are only qualitative
 They give no indication about the security loss



e Leakage evaluation and certification

* Bounding the Perceived Infdrhation



Hypothetical Information [DSM16]

HI(Y; Ly,) = HOR) + ) pOi) - ) iy (ilLy,) - 10g, Ty (vl )
Yy l

e |Information that would be extractable from the
samples if the true distribution was the model



Hypothetical Information [DSM16]

HI(Y; Ly,) = HOR) + ) pOi) - ) iy (ilLy,) - 10g, Ty (vl )
Yy l

+ Easier/faster to compute (known distribution)



Hypothetical Information [DSM16]

HI(Y; Ly,) = HOR) + ) pOi) - ) iy (ilLy,) - 10g, Ty (vl )
Yy l

— Disconnected from the true distribution
 Remains positive even if model is incorrect



Hypothetical Information [DSM16]

HI(Y; Ly,) = HOR) + ) pOi) - ) iy (ilLy,) - 10g, Ty (vl )
Yy l

— Disconnected from the true distribution

* Unless specific model families are considered
* Next: empirical distribution eHIn(Yi; Lyi)



Bounds for the Mutual Information

 Upper bound for the MI metric

E (eHL,(Y; Ly,)) = MI(¥;; Ly,)

lim eHI,(Y;; Ly,) = MI(Y;; Ly,)

n—>0o



Bounds for the Mutual Information

 Upper bound for the MI metric

E (eHL,(Y; Ly,)) = MI(¥;; Ly,)

lim eHI,(Y;; Ly,) = MI(Y;; Ly,)

n—>0o

Uniform (constant) distribution for the secret Y;
= Ml biased upwards everywhere (like the entropy)
 Monotonic convergence of the empirical distrib.



Bounds for the Mutual Information

 Lower bound for the MI metric
PL,(Y;; Ly,) < MI(Y;; Ly,)
» We can only loose information if m,(y;|l,.) # p(¥ill,,)



Experimental results (simulations)
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* eHIl converges faster than ePl (no cross-validation)



Experimental results (simulations)
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Bound becomes tighter as n increases
More eval. efforts lead to better sec. guarantees



Experimental results (real device)
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e Quite similar results (but unknown Ml & lower n)



Experimental results (real device)
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* Gaussian HI/PI converge (much) faster
* And are close to the eHI/ePI (in our case study!)



Multivariate analyzes
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* Curse of dimensionality = need assumptions?
 (But then the connection with the Ml is lost)

* Nice learning problem: multivariate & higher-order
e Link with statistical learning theory (Vapnik)



* Conclusions: white box design & evaluation



Evaluation challenge

standard practice

evidence-based evaluations
(assumptions tested per device!)
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Evaluation challenge

)

evidence-based evaluations
(assumptions tested per device!)
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Evaluation challenge 27

open design & evaluation

evidence-based evaluations

on reduced versions proof-based evaluations [DFS15,GS18]
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Design challenge
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* Try leveraging « leveled implementations »
e Strongly protected BC: high-order masking
* Weakly protected permutation: low-latency

e Raises many definitional challenges (leakage-resilience)

* For such implementations, two different primitives are
not an issue (since implementations are different)



Design challenge
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* Performance gains of leveled implementations
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(32-bit ARM)

% 10°

100-byte message

\

——uniform
—leveled

- —

N oW A
factor of gain

—

10

15 20

number of shares

o
o



Design challenge
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Transparency (as a measure of maturity)

* Block ciphers & symmetric encryption

A 2021
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Transparency (as a measure of maturity)

* Secure cryptographic implementations

>

practical security

research advances
(understanding)




THANKS

http://perso.uclouvain.be/fstandae/
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