
Security Analysis of Deterministic Re-Keying
with Masking & Shuffling: Application to ISAP

Balazs Udvarhelyi, Olivier Bronchain, and François-Xavier Standaert

Crypto Group, ICTEAM Institute, UCLouvain, Louvain-la-Neuve, Belgium.
firstname.lastname@uclouvain.be

Abstract. Single-trace side-channel attacks are important attack vec-
tors against the security of authenticated encryption schemes relying on
an internal re-keying process, such as the NIST Lightweight Cryptogra-
phy finalist ISAP. In a recent work of Kannwischer et al., it was suggested
to mitigate such single-trace attacks with masking and shuffling. In this
work, we first show that combining masking and re-keying is conceptually
useless since this combination can always be attacked with a complexity
that is just the sum of the complexities to attack a masked implementa-
tion (without re-keying) and a re-keyed implementation (without mask-
ing). We then show that combining shuffling and re-keying is theoreti-
cally founded but can be practically challenging: in low-cost embedded
devices (e.g., ARM Cortex-M0) that are the typical targets of single-
trace attacks, the noise level of the leakages is such that multivariate
attacks can be powerful enough to recover the shuffling permutation in
one trace. This second result does not prevent the shuffling + re-keying
combination to be effective in more noisy contexts, but it suggests that
the best use cases for leakage-resilient PRFs as used by ISAP remain the
ones where no additional countermeasures are needed.

1 Introduction

ISAP [10,9] is an authenticated encryption scheme submitted to the NIST Light-
weight Cryptography Standardization Process.1 It comes with claims of im-
proved resistance against side-channel attacks thanks to leakage-resilient fea-
tures. Precisely, it embeds a re-keying process that mixes a long-term key with
public data (e.g., nonces) at a low rate, which can be viewed as a permutation-
based variant of the tree-based leakage-resilient PRF constructions discussed
in [11,24,13]. The main underlying idea of this construction is that it allows re-
ducing the need to resist against Differential Power Analysis (DPA) to the need
to resist Simple Power Analysis (SPA).2 Since ISAP’s re-keying is quite expen-
sive, this idea is then used sparsely (i.e., for initialization and finalization only),
in the spirit of a leveled implementations [20]. Concretely, the relevance of this
design therefore highly depends on the difficulty to prevent SPA.

1 https://csrc.nist.gov/projects/lightweight-cryptography.
2 By DPA (resp., SPA), we mean side-channel attacks where the adversary can observe

the leakage of many (resp., a few) different inputs of the leaking primitive.

https://csrc.nist.gov/projects/lightweight-cryptography

In two recent and independent works, it has been demonstrated that perform-
ing SPA against a permutation-based re-keying is possible on low-end embedded
devices [3,18]. In both cases, advanced analytical side-channel attacks like [27]
are especially effective because the adversary can average her measurements in
order to obtain a strong (noise-free) side-channel signal. In the CHES 2020 paper
by Kannwischer et al., it is therefore suggested that SPA security on such low-
end devices could be obtained by combining the re-keying of the ISAP design
with algorithmic-level countermeasures like masking, which has been applied to
the Keccak permutation in [14], or shuffling [16,28], for which the application to
bitslice permutation-based designs remains to be investigated.

Combining countermeasures is a popular idea in the side-channel literature.
In general, the hope is that the complexity to attack a combined countermeasure
will be the product of the complexities to attack its components. For example,
in case side-channel measurements are sufficiently noisy, it is known that such
a multiplicative effect happens when combining masking and shuffling [21]. In
this paper, we question whether the same multiplicative effect takes place when
combining re-keying with masking or shuffling, as proposed in [18].

For masking, we answer the question negatively in a definitive manner by
showing that a divide-and-conquer side-channel attack of its combination with
re-keying is always possible. That is, the complexity to attack a masked leakage-
resilient PRF is only the sum of the complexities to (1) extract the useful signal
of its masked state and (2) exploit this useful signal in an analytical attack. The
latter can be explained by the fact that the useful signal of a masked state is the
same as the useful signal of an unprotected state since masking can only amplify
the noise of an implementation.3 In other words, and independent of the level of
noise in the measurements, combining re-keying with masking will never lead to
a multiplicative effect. At best, the masked implementation can become hard to
attack. But in this case, the significant overheads of the re-keying scheme (which
iterates the permutation n times to digest an n-bit value) becomes a waste, since
this re-keying does not bring any significant additional security benefit.

For shuffling, the situation is different since it is known that its combination
with a leakage-resilient PRF is at least theoretically founded [15]. Intuitively,
the reason is that in case of sufficient noise, the shuffling countermeasure is
modifying the shape of the signal since it emulates a parallel implementation
that would combine (e.g., sum) the deterministic parts of multiple byte’s leakage
functions into a single leakage sample. So the security of this proposal boils
down to the question whether the noise of a low-end embedded device such
as considered in [3,18] is always sufficient for this emulation to take place. We
answer the question negatively by describing a multivariate attack against a
shuffled implementation of Keccak in an ARM Cortex M0. We show that we can

3 Concretely, it could even make the situation worse since the computational overheads
of some masked computations (e.g., multiplications) could even increase the signal,
which we do not investigate since quite implementation-specific and leading to the
same conclusion that masking and re-keying do not combine well.

2

recover its permutation in a single trace. It implies that a trivial side-channel
dissection (in the sense of [6]) of the shuffling + re-keying combination is possible,
leading to the same powerful single-trace attacks as without shuffling. So while
shuffling ISAP in a more noisy device remains a good strategy in order to prevent
averaging traces, it is not a sufficient one to gain high confidence in low-end
embedded devices where shuffling can be the target of highly multivariate attacks
that further circumvent the already low noise available on such devices.

So overall, our results mitigate the hope that countermeasures aiming to
amplify the side-channel noise or to limit the side-channel signal always com-
bine well when a leakage-resilient authenticated encryption scheme like ISAP
is implemented on a low-end embedded software platform. They rather suggest
that the best use cases for such schemes remain the ones where no additional
countermeasures are needed, like larger parallel hardware implementations.

Besides, for designers aiming at securing low-end Cortex-like microcontrollers
with a leakage-resilient primitive, relying on AES coprocessors (when available)
is currently a better option. In terms of security, such coprocessors inevitably
leak less than a software implementation. In terms of performances, they are
faster. We refer to [25,5] for two recent examples in this direction.

Related work. To some extent, our conclusion regarding masking and re-keying
could be inferred from a previous work of Beläıd et al. [2]. It concluded that the
cost vs. security trade-off of a standalone leakage-resilient primitive is better
than its combination with masking when the leakage is sufficiently bounded,
and that masking alone is preferable otherwise. We consolidate this conclusion
by exhibiting the poor (additive) combination of complexities that such a mix
implies in general. As for shuffling, it is also known that multivariate attacks
can be quite damaging against them and the analysis in [15] was coming with
a cautionary note in this direction. Yet, our results show the sensitivity of such
security evaluations to small variations of the attack methodology. In particular,
the main addition that we made compared to this previous analysis is to extract
more information thanks to a dimensionality reduction step [22].

We finally note that we take the ISAP scheme as a case study, but our
conclusions also apply to the application of single-trace attacks in the context
of post-quantum cryptographic primitives investigated in [18].

2 Background

We next describe necessary background for the rest of the paper. We start by
describing the notations, follow with reminders about template attacks (in linear
subspaces) and conclude with the description of the two countermeasures we
study, masking and shuffling, along with attacks against them.

2.1 Notations

A random variable is expressed with a capital letter and its realisation with a
lower case letter such that x is a realisation of X. When clear from the context,

3

we use the shortcut notation of x for X = x. In the context of shuffling, we denote
random vectors with bold letters such that x is a realisation of the random vector
X. Vectors can be indexed with subscripts such that xi is the i-th element in the
vector x. In the context of masking, the shares are denoted with superscripts
such that xi is the i-th share of x. The measured side-channel leakages are
realisations of random vectors that we always denote l. We use the subscript to
distinguish the leakage source. For example, lx is the leakage generated by the
manipulation of x and lx is the leakage vector originated from the vector x.

2.2 Profiled template attacks

A profiled template attack is performed in 2 steps. The first one is called profiling
phase. There, the adversary constructs an estimation of the Probability Density
Function (PDF) of the leakages l conditioned on a secret variable x. In this
work, we will use Gaussian template attacks in a linear subspace [8,22]. It is
similar to Gaussian template attacks with a preliminary linear projection of the
leakage samples of length n to a n′-dimensional subspace with n′ ≤ n. Formally,
the adversaries we consider build a PDF estimation of the form

f̂(l|x) =
1√

(2π)n′ · |Σ|
· exp

1
2 (Wl−µx)Σ(Wl−µx)

′ , (1)

where l is a leakage vector of length n, W is a linear projection matrix of size
n′×n, µx a mean vector of length n′ andΣ a covariance matrix of size n′×n′. The
profiling consists in estimating a projection matrix W with Linear Discriminant
Analysis (LDA), the covariance matrix Σ and the means µx for all x.4

The second step in profiled attacks is to leverage the PDF estimation to
recover a secret realisation x from leakage observations l. Namely, based on the
estimated PDFs, the adversary applies Bayes’s rule such that

p̂(x|l) =
f̂(l|x)∑

x∗∈X f̂(l|x∗)
. (2)

Based on the observed leakage l, the adversary will guess the value of x as

x̂ = argmax
x∗

p̂(x∗|l). (3)

The adversary can optionally combine multiple leakage observations in order to
recover a long-term secret such as an encryption key. To do so, she calculates
the likelihoods of each possible secret by multiplying the p̂(x|l) obtained with
Equation (2) for multiple leakages.5

4 If W is the identity, this is equivalent to standard Gaussian templates attacks [8].
5 The realisation x may not always be a long term secret. For example, when targeting

a block cipher, x is usually an intermediate value that is bijectively mapped to a
secret key byte k with the relation x = Sbox(k ⊕ p), with p a public plaintext.

4

In order to evaluate our attacks, we will use the success rate (SR) as met-
ric [23]. It is the probability that the adversary recovers the correct value of the
secret variable, which we denote as

SRx = Pr[x = x̂], (4)

where the subscript notation defines the target variable (in this case, x).

2.3 Masking countermeasure

Masking is a popular countermeasure against side-channel attacks. It consists
in randomizing the manipulated data by replacing x by d random shares xi.
The shares are uniformly distributed and ensure that x =

∑d
i=1 x

i. Thus, any
combination of d− 1 shares remains independent of x which corresponds to the
so-called d-probing security [17]. In order to maintain this property during the
entire computation, the linear operations can be applied straightforwardly in a
share-by-share fashion, which has a cost that is linear in d. Non-linear operations
(e.g., multiplications) are more challenging and require to mix shares, which
implies heavier overheads and randomness. Since our following investigations
hold already at the encoding level, we do not detail these multiplications.

In order to attack a masked (software) implementation, an adversary can
first perform an attack on each of the shares individually as in the unprotected
case from subsection 2.2 to obtain p̂(xi|l) for all the xi. The probability of the
shared secret x is then given by

p̂(x|l) ∝
∑

{x0,....xd−1}∈Xd−1

d∏
i=1

p̂(xi|l). (5)

Informally, this equation shows the interest of masking that is “multiplying” the
uncertainty (or noise) of the different shares. This results in the attack complex-
ity growing exponentially in d [7]. We note that in practice, this (exponential)
guarantee only holds under the assumptions that measurements are sufficiently
noisy and that leakages are a linear combination of shares [12].

2.4 Shuffling countermeasure

Shuffling is another popular side-channel countermeasure. While masking ran-
domizes the manipulated data, shuffling randomizes the execution flow. Namely,
when an algorithm is composed of independent operations, these can be exe-
cuted in a random order while maintaining correctness. One typical application
of shuffling is an Sbox layer applied to an input vector x of size |x| (e.g., 16 for
the AES). Next we detail such an application of shuffling thanks to Algorithm 1.
There, the first step is to generate a random uniform permutation π over of the
set {0, 1, . . . , |x| − 1}. This is done with gen perm(·, ·) that takes as input the

5

permutation size together with randomness R.6 The second step is to iterate
over all the indexes i with 0 ≤ i < |x|. At every iteration, one value j = πi is
fetched from the permutation π. The Sbox is then applied to j-th entry of the
input vector and stored at the corresponding index of the output vector.

Algorithm 1 Shuffled Sbox layer.

Input: x and randomness R.
Output: y such that ∀i, 0 ≤ i < |x|, yi = Sbox(xi)

1: π ← gen perm(R, |x|)
2: for i in {0, 1, ..., |x| − 1} do
3: j ← πi

4: yj ← Sbox(xj)

Informally, in order to perform a side-channel attack against a shuffled imple-
mentation, an adversary has to map the leakage of xj to the correct xi for every
iteration. If the permutation is known by the adversary, such an implementa-
tion is equivalent to an unprotected one. If it is not, the adversary is forced to
perform a so called “integration” attack which sums together every lxj

(resp.,
lyj) [28]. This has the effect of turning the leakage of a serial implementation
(e.g., software) into the leakage of a parallel one (e.g., hardware) where the ad-
versary has only access to the sum of all leakages. In practical case studies, the
permutation generally leaks partially to the adversary through lπi

. These leak-
ages can be due to the generation of the permutation π itself, to its storage and
loading from memory and to the addresses used to load xj and to store yj . We
analyse template attacks exploiting such leakages in section 4.

3 Re-keying + masking

In order to break the re-keying scheme of ISAP with an SPA, the first step is to
recover a maximum of information on each of the intermediate variables. To do
so, the adversary is allowed to blend measurements, meaning that she can observe
multiple leakages for the same secret input. The second step is to recombine this
partial information on the intermediate variable to obtain a key guess [27,18,3].
Next, we study the case where masking is combined with re-keying.

Since our goal is to show that re-keying and masking generically combine
badly, we perform our investigations in a simulated setting where the noise level is
tightly controlled. This allows us to illustrate our claims in an easily interpretable
context and to show that they hold even in case masking is perfectly implemented
(e.g., without independence flaws). We next present the parameters selected for
our simulations and then discuss the obtained results.
6 In this work, we assume that gen perm(·, ·) is pre-computed and the permutation is

stored in memory. It can also be generated on-the-fly if needed.

6

3.1 Simulation settings

For our simulations, the leakage of a given variable is its Hamming weight (HW)
with additional Gaussian noise (as previously considered in the simulated setting
of [18]). We consider different noise levels σ2

n, such that the Signal to Noise Ratio
(SNR) of our leakages corresponds to 0.1, 1 and 10 [19]. Our simulation settings
are summarized in Figure 1, where the sensitive variable x is an 8-bit word. For
the unprotected setting (see Figure 1a), the leakage of each variable x is written
as lx. For the first-order masking (see Figure 1b), the leakage on both shares x1

and x2 are respectively denoted as lx1 and lx2 .

We performed our experiments 1000 times to average the results. For each
experiment, we used 5000 measurements of the leakages lx, lx1 and lx2 .

(a) Unmasked implementation. (b) Masked implementation.

Fig. 1: Simulation settings with Hamming weight leakages and Gaussian noise.

3.2 Security analysis

In the following, we will first detail how the adversary can blend measurements
in both the masked and unmasked settings. Then, we detail what is her SR in
recovering an intermediate variable x first for unmasked and then for masked
implementation. We will show that their asymptotic SR are equivalent, making
the effect of masking and shuffling independent for the adversary.

In order to blend independent measurements, and to exploit multiple traces
that manipulate the same secret x, the adversary can use the equation

p̂′(x|l) =

t−1∏
i=0

p̂(x|li), (6)

where li is one of the t traces to combine and l is their concatenation. In the
unmasked case, the adversary can simply use Equation (2) for p̂(x|li). In the
masked case, Equation (5) has to be used.

7

Unmasked implementation. In the unmasked setting, computing Equation (6)
is equivalent to directly averaging all the li’s. It allows recovering the mean of
the leakages µx, which is HW(x) in our simulation since it averages the additive
Gaussian noise η (see Figure 1a). By averaging, the adversary can increase the
SNR and have a tighter approximation of HW(x).

The success rate of this adversary is reported on the blue curves of Figure 2
for different Hamming weights and SNRs. Since we focus on a SPA setting, the
amount of information that can be extracted from the leakage (and therefore
the SR) indeed depends on this Hamming weight. The x-axis corresponds the
number of averaged traces t, the y-axis is the SRx and the different plots are for
different HW(x). We observe that: (i) the SRx first increases with t and then
saturates: this is because the noise is averaged and so the estimate of leakage
mean becomes more accurate up to the point where there is no noise left; (ii)
lowering the SNR (i.e., adding noise), slows down the convergence of SRx but
does not affect its asymptotic value: this is because the asymptotic value of SRx

only depends on the side-channel signal (i.e., the deterministic part of the – here
Hamming weight – leakage function); (iii) this asymptotic value is larger for
extreme Hamming weights (e.g., it is worth 1 for the Hamming weights 0 and
8) and lower for the intermediate Hamming weights: this is because multiple
values of x then lead to the same HW, making it impossible for the adversary
to recover it with probability one. More precisely, SRx is inversely proportional
to the number of values with the same HW. For example, when HW(x) = 1 (or
HW(x) = 7), the asymptotic SRx is equal to SRx = 1/8 = 0.125 as we count 8
values on an 8-bit bus that have HW(x) = 1 (resp., HW(x) = 7).

Masked implementation. We now observe that moving to a masked implementa-
tion leads to essentially similar observations. For this purpose, we first report the
histograms of the two-dimensional leakages corresponding to a masked encoding
with two shares in Figure 3. The x-axis corresponds to the leakage on the first
share (lx1) and the y-axis corresponds to the leakage on the second share (lx2).
Each subplot is for a different Hamming weight. Clearly, we observe that just
as in the unprotected case where the adversary could distinguish 9 distributions
corresponding to the 9 Hamming weights, we still have 9 different distributions
in the masked case. As a result, the side-channel signal that can be obtained
when masking is the same as in the case of an unprotected implementation (up
to the comment of Footnote 3) and this actually holds independently of the
leakage function: masking amplifies the noise but does not affect the signal.

This fact is directly reflected in the orange SRx curves of the masked im-
plementation that are reported in Figure 2. On the one hand, the asymptotic
values are equal to the ones of the unprotected case. On the other hand, con-
verging to this asymptotic value (i.e., extracting all the signal) will need more
measurements as expected from masking security proofs [12].

As a result, attacking a combination of masking and re-keying can always pro-
ceed in two steps with additive complexities. The first one is the attack against
all intermediate values x to recover partial information. The number of traces t

8

100 101 102 103

Number of averaged attack traces

10 2

10 1

100

Su
cc

es
s R

at
e

(a) HW of variable = 0 or 8

100 101 102 103

Number of averaged attack traces

10 2

10 1

100

Su
cc

es
s R

at
e

(b) HW of variable = 1 or 7

100 101 102 103

Number of averaged attack traces

10 2

10 1

100

Su
cc

es
s R

at
e

(c) HW of variable = 2 or 6

100 101 102 103

Number of averaged attack traces

10 2

10 1

100

Su
cc

es
s R

at
e

(d) HW of variable = 3 or 5

100 101 102 103

Number of averaged attack traces

10 2

10 1

100

Su
cc

es
s R

at
e

(e) HW of variable = 4

104 1.00002 × 104 1.00004 × 104 1.00006 × 104 1.00008 × 104 1.0001 × 104

Number of averaged attack traces

10 2

10 1

100

Su
cc

es
s R

at
e

8-bit bus, SNR = 10
8-bit bus, SNR = 1
8-bit bus, SNR = 0.1
8-bit masked bus, SNR = 10
8-bit masked bus, SNR = 1
8-bit masked bus, SNR = 0.1

(f) Legend

Fig. 2: Success rate of a value-recovery attack against unprotected and masked
implementations at different noise levels and for different target values.

required for each of them is impacted by masking but not the amount of signal
that can be recovered asymptotically. The second one is the attack that recom-
bines all these partial informations with SASCA, which remains unchanged. So
no multiplicative effect takes place in this combination of countermeasures which
can always be broken with a divide-and-conquer approach. As mentioned in in-

9

0 2 4 6 8
lx1

0

2

4

6

8

l x
2

HW (x) = 0

0.00

0.05

0.10

0.15

0 2 4 6 8
lx1

0

2

4

6

8

l x
2

HW (x) = 1

0.00

0.02

0.04

0.06

0.08

0 2 4 6 8
lx1

0

2

4

6

8

l x
2

HW (x) = 2

0.00

0.02

0.04

0.06

0.08

0 2 4 6 8
lx1

0

2

4

6

8

l x
2

HW (x) = 3

0.00

0.02

0.04

0.06

0 2 4 6 8
lx1

0

2

4

6

8

l x
2

HW (x) = 4

0.02

0.04

0.06

0.08

0 2 4 6 8
lx1

0

2

4

6

8

l x
2

HW (x) = 5

0.00

0.02

0.04

0.06

0 2 4 6 8
lx1

0

2

4

6

8

l x
2

HW (x) = 6

0.00

0.02

0.04

0.06

0.08

0 2 4 6 8
lx1

0

2

4

6

8

l x
2

HW (x) = 7

0.00

0.02

0.04

0.06

0.08

0 2 4 6 8
lx1

0

2

4

6

8

l x
2

HW (x) = 8

0.00

0.05

0.10

0.15

Fig. 3: Masked PDFs fx(lx1 , lx2 |x) for different HW(x) values and SNR 10.

troduction, this result is expected since the security of a PRF-based re-keying
scheme depends on the amount of side-channel signal that a leaking implemen-
tation provides. Therefore, a countermeasure aiming at amplifying the noise
cannot be of any help to satisfy this assumption: it can only make the signal
extraction more difficult, as would be provided by masking used as a stand-alone
countermeasure. This conclusion holds for any number of shares.

4 Re-keying + shuffling

Since combining re-keying with masking cannot lead to a strong (multiplicative)
impact on the security of an implementation, we now consider shuffling as an
alternative option. The situation is different in this case since in order to make the
shuffling ineffective, the adversary has to recover the permutation π that is used

10

to randomize the execution of the underlying operations in a single measurement.
There is no possibility to combine multiple leakages for this part of the attack
since the permutation is an ephemeral secret. If she succeeds, the situation is
similar to an unprotected setting and the leakage of x can be averaged again. If
not, the shuffling affects the shape of the leakage function, ultimately emulating
a parallel implementation where the shuffled operations cannot be distinguished.
While this ideal situation is not expected to happen [28], the question we tackle
in this section is whether shuffling always adds some complexity to the attack.
We next show that in the case of a low-noise MCU (e.g., an ARM Cortex M0),
the leakage may be enough to recover the whole permutation with a single trace,
making the combination of shuffling and re-keying irrelevant.

4.1 Implementation and measurement setup

The previous published attacks against re-keying schemes focused on the Kec-
cak permutation [18,4] and its usage in the ISAP authenticated encryption
scheme [3]. Next, we describe both our software implementation and the mea-
surements setup that we keep as close to the one used in [3] as possible.

Regarding the software, we modified the reference implementation of ISAP
[1]. We leveraged the shuffling with double indexing from Algorithm 1 and mod-
ified the Keccak implementation to combine shuffling and re-keying. More pre-
cisely, since a Keccak state contains 25 lanes, we generate permutations π with
25 elements and shuffle 25 independent operations.7 The permutations are gen-
erated before the re-keying process and stored in memory. Therefore during the
attack, the leakages lπi

on the permutation indices πi is independent of the per-
mutation generation. They only result from the memory loadings and from other
bijectively related leaking variables (e.g., memory addresses).

Regarding the measurement setup, our implementation is running on an
STM32F0308 Discovery board, based on an ARM Cortex M0 as in [3]. An ad-
ditional crystal was added to the board to provide stable a clock source for the
side-channel measurements. Decoupling capacitors were also removed. We mea-
sured our traces thanks to the Tektronix CT-1 AC current probe and a Picoscope
5244D oscilloscope. The clock frequency of our MCU was set to the maximum
value of 48MHz and we sampled at 500 MSamples/s.

4.2 Leakage modeling

In order to recover the permutation indices πi, our adversary needs to obtain
probabilities p̂(πi|l). To do so, she uses the templates from subsection 2.2. More
precisely, she first computes the SNR for each permutation index πi [19]. Then,
she selects the Points-Of-Interest for each of them by only considering samples

7 It is not always possible to find 25 independent operations within the Keccak round
function. Yet, we will show that even in this best case (for the designer) where there
are 25 independent operations, shuffling is ineffective.

11

above the noise floor. On average, we used n = 450 samples for each permutation
index. For each of them, we then estimated a PDF with Equation (1), with the
number of subspace dimensions n′ as a parameter.

4.3 Permutation index recovery

We first focus on an adversary attempting to recover each of the permutation
indexes πi within the permutation π independently, next denoted as A1. To do
so, she uses the previously described templates. Namely, with a single leakage
observation l, she assumes a value π̂i for the permutation index πi with Equa-
tion (3). On Figure 4, we present the average SRπi of the first permutation within
the shuffling implementation of ISAP described in subsection 4.1. We observe
that by increasing the number of dimensions in the linear subspace n′, the SRπi

increases. Its maximum is of 99.18% with n′ = 15 when all our 20,000 profiling
traces are used. We can also see that the use of 5000 profiling traces and n′ = 7
is enough to obtain the asymptotic SR values.

0 2500 5000 7500 10000 12500 15000 17500 20000

Number of profiling traces

0.0

0.2

0.4

0.6

0.8

1.0

S
R
π
i

n′ = 15

n′ = 7

n′ = 3

n′ = 2

n′ = 1

Fig. 4: Estimated SRπi
for 1 ≤ n′ ≤ 15 and various number of profiling traces.

4.4 Full permutation recovery

We now discuss how to turn the information about the permutation indexes
πi into a full permutation recovery. To do so, we introduce the corresponding
success rate SRπ that is defined as

SRπ = Pr[πi = π̂i, ∀i]. (7)

A first intuitive solution, denoted A2, is to derive an estimate for the full per-
mutation π̂ by leveraging the A1 adversary and directly plugging the obtained
πi within π̂. The SR of these two adversaries are linked as SRπ =

∏
i SRπi

.
From this, we observe that even though the observed SRπi

in Figure 4 is close
to 100%, it is not sufficient to recover the full permutation with overwhelming
probability. Namely we have that SRπ ≈ 0.991825 ≈ 0.8139.

12

In order to improve these results, the adversary A3 that we describe in Al-
gorithm 2 takes advantage of a characteristic of permutations which are under
attack. Namely, ∀i, j such that i 6= j we have πi 6= πj and this constraint is
not enforced with the straightforward divide & conquer adversary A2. A simple
option to exploit this constraint is to enumerate the π̂’s from the most to the
least probable, and to keep as guess the first one being a permutation.

Algorithm 2 Permutation adversary A3.

Input: Lists for probabilities p̂(πi|l) ∀i and ∀πi.
Output: Permutation guess π̂ with π̂i 6= π̂j ∀i, j and i 6= j.

1: for π̂ ← Enumerate(p̂(π0|l), p̂(π1|l), . . .) do
2: if π̂i 6= π̂j ∀i, j and i 6= j then
3: return π̂

Various enumeration algorithms exist in the literature: A3 takes the key enu-
meration algorithm of [26] to instantiate Enumerate(·), which has the advantage
to be optimal. The SRπ of this adversary is reported in Figure 5 where the y-
axis is 1−SRπ in log-scale. The x-axis is the maximum number of permutations
enumerated (i.e., the maximum number iterations of the loop) in Algorithm 2.
The dashed horizontal lines are for a single iteration and correspond to A2.
First, we observe that by enabling more enumeration steps, the SR increases.
Second, we observe that the SR also increases with the number of dimensions
n′ in the template’s linear subspace. Putting things together, for the best tem-
plates (n′ = 15), we observe that SRπ starts from 0.814 if no enumeration is
allowed and increases up to 0.995 when setting the maximum number of steps
to 20. Enumerating more was useless in our case, since with high probability, a
permutation was found with at most 20 steps. Hence, the computational cost of
the enumeration is negligible compared to the rest of the attack.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Maximum number of enumerated permutations

10−2

10−1

100

1
−
S
R
π

n′ = 15

n′ = 10

n′ = 7

n′ = 6

n′ = 5

Fig. 5: 1− SRπ for different subspace dimensions n′ and as function of the enu-
meration depth. Dashed lines represent the value without enumeration.

13

Our experiments therefore illustrate that recovering a leaking permutation on
the considered low-end platform is possible with low complexity. An adversary
can then cancel the impact of the shuffling countermeasure, making analytical
attacks against re-keying like [18,3] possible. We finally note that various other
attacks could be applied against the shuffling and refer to [28] for a survey.

5 Conclusions

Single-trace attacks are an important threat against leakage-resilient PRFs such
as used in the ISAP authenticated encryption scheme. A recent work of Kan-
nwischer et al. suggested to avoid them by combining the re-keying scheme that
leakage-resilient PRFs leverage with masking or shuffling. We first showed that
combining such PRFs with masking is in general not a good idea as it just
adds up the complexities to attack the two countermeasures separately. We
then showed that combining these PRFs with shuffling, while theoretically ap-
pealing, can be practically challenging. For low-end embedded devices that are
typical targets for such a combination (since they correspond to the targets
of the single-trace attacks in [18,3]), implementing shuffling securely requires
preventing multivariate side-channel attacks aiming at recovering the shuffling
permutation (which are easy in low-noise settings). This second conclusion is
not a general claim and shuffling could be effectively combined with re-keying
on more noisy targets. But it shows that preventing single-trace attacks on low-
end devices for which single-trace attacks are a concern is not trivial. Whether
this can be achieved on the Cortex M0 device we analyzed is an interesting open
question, which raises the challenge of hiding its leaky load/store operations.
Overall, our results suggest that ISAP may not be the best option to ensure
side-channel security on low-end devices and finds a more natural application to
more parallel (possibly hardware) architectures. If aiming at exploiting a leakage-
resilient PRF, leveraging the AES co-processors available on many Cortex-like
chips seems more adequate, since they leak less and are faster [25,5].

Acknowledgments. François-Xavier Standaert is a senior research associate
of the Belgian Fund for Scientific Research (F.R.S.-FNRS). This work has been
funded in parts by the European Union through the ERC project SWORD.

References

1. ISAP code package. https://github.com/isap-lwc/isap-code-package.
Accessed: 2021-03-10.

2. Sonia Beläıd, Vincent Grosso, and François-Xavier Standaert. Masking and
leakage-resilient primitives: One, the other(s) or both? Cryptogr. Commun.,
7(1):163–184, 2015.

3. Davide Bellizia, Olivier Bronchain, Gaëtan Cassiers, Vincent Grosso, Chun Guo,
Charles Momin, Olivier Pereira, Thomas Peters, and François-Xavier Standaert.
Mode-level vs. implementation-level physical security in symmetric cryptography -
A practical guide through the leakage-resistance jungle. In CRYPTO (1), volume
12170 of Lecture Notes in Computer Science, pages 369–400. Springer, 2020.

14

https://github.com/isap-lwc/isap-code-package

4. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. The KEC-
CAK reference. https://keccak.team/files/Keccak-reference-3.0.pdf.

5. Olivier Bronchain, Charles Momin, Thomas Peters, and François-Xavier Stan-
daert. Improved leakage-resistant authenticated encryption based on hardware
AES coprocessors. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2021(3):XXX–
XXX, 2021.

6. Olivier Bronchain and François-Xavier Standaert. Side-channel countermeasures’
dissection and the limits of closed source security evaluations. IACR Trans. Cryp-
togr. Hardw. Embed. Syst., 2020(2):1–25, 2020.

7. Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards
sound approaches to counteract power-analysis attacks. In CRYPTO, volume 1666
of Lecture Notes in Computer Science, pages 398–412. Springer, 1999.

8. Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In CHES,
volume 2523 of Lecture Notes in Computer Science, pages 13–28. Springer, 2002.

9. Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian Mendel, Bart
Mennink, Robert Primas, and Thomas Unterluggauer. ISAP v2.0. IACR Trans.
Symmetric Cryptol., 2020(S1):390–416, 2020.

10. Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian Mendel, and
Thomas Unterluggauer. ISAP - towards side-channel secure authenticated en-
cryption. IACR Trans. Symmetric Cryptol., 2017(1):80–105, 2017.

11. Yevgeniy Dodis and Krzysztof Pietrzak. Leakage-resilient pseudorandom functions
and side-channel attacks on Feistel networks. In CRYPTO, volume 6223 of Lecture
Notes in Computer Science, pages 21–40. Springer, 2010.

12. Alexandre Duc, Sebastian Faust, and François-Xavier Standaert. Making masking
security proofs concrete - or how to evaluate the security of any leaking device.
In EUROCRYPT (1), volume 9056 of Lecture Notes in Computer Science, pages
401–429. Springer, 2015.

13. Sebastian Faust, Krzysztof Pietrzak, and Joachim Schipper. Practical leakage-
resilient symmetric cryptography. In CHES, volume 7428 of Lecture Notes in
Computer Science, pages 213–232. Springer, 2012.

14. Hannes Groß, David Schaffenrath, and Stefan Mangard. Higher-order side-channel
protected implementations of KECCAK. In DSD, pages 205–212. IEEE Computer
Society, 2017.

15. Vincent Grosso, Romain Poussier, François-Xavier Standaert, and Lubos Gaspar.
Combining leakage-resilient PRFs and shuffling - towards bounded security for
small embedded devices. In CARDIS, volume 8968 of Lecture Notes in Computer
Science, pages 122–136. Springer, 2014.

16. Christoph Herbst, Elisabeth Oswald, and Stefan Mangard. An AES smart card
implementation resistant to power analysis attacks. In ACNS, volume 3989 of
Lecture Notes in Computer Science, pages 239–252, 2006.

17. Yuval Ishai, Amit Sahai, and David A. Wagner. Private circuits: Securing hardware
against probing attacks. In CRYPTO, volume 2729 of Lecture Notes in Computer
Science, pages 463–481. Springer, 2003.

18. Matthias J. Kannwischer, Peter Pessl, and Robert Primas. Single-trace attacks on
Keccak. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2020(3):243–268, 2020.

19. Stefan Mangard. Hardware countermeasures against DPA ? A statistical analysis
of their effectiveness. In CT-RSA, volume 2964 of Lecture Notes in Computer
Science, pages 222–235. Springer, 2004.

20. Olivier Pereira, François-Xavier Standaert, and Srinivas Vivek. Leakage-resilient
authentication and encryption from symmetric cryptographic primitives. In CCS,
pages 96–108. ACM, 2015.

15

https://keccak.team/files/Keccak-reference-3.0.pdf

21. Matthieu Rivain, Emmanuel Prouff, and Julien Doget. Higher-order masking and
shuffling for software implementations of block ciphers. In CHES, volume 5747 of
Lecture Notes in Computer Science, pages 171–188. Springer, 2009.

22. François-Xavier Standaert and Cédric Archambeau. Using subspace-based tem-
plate attacks to compare and combine power and electromagnetic information
leakages. In CHES, volume 5154 of Lecture Notes in Computer Science, pages
411–425. Springer, 2008.

23. François-Xavier Standaert, Tal Malkin, and Moti Yung. A unified framework for
the analysis of side-channel key recovery attacks. In EUROCRYPT, volume 5479
of Lecture Notes in Computer Science, pages 443–461. Springer, 2009.

24. François-Xavier Standaert, Olivier Pereira, Yu Yu, Jean-Jacques Quisquater, Moti
Yung, and Elisabeth Oswald. Leakage resilient cryptography in practice. In To-
wards Hardware-Intrinsic Security, Information Security and Cryptography, pages
99–134. Springer, 2010.

25. Florian Unterstein, Marc Schink, Thomas Schamberger, Lars Tebelmann, Manuel
Ilg, and Johann Heyszl. Retrofitting leakage resilient authenticated encryption to
microcontrollers. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2020(4):365–388,
2020.

26. Nicolas Veyrat-Charvillon, Benôıt Gérard, Mathieu Renauld, and François-Xavier
Standaert. An optimal key enumeration algorithm and its application to side-
channel attacks. In Selected Areas in Cryptography, volume 7707 of Lecture Notes
in Computer Science, pages 390–406. Springer, 2012.

27. Nicolas Veyrat-Charvillon, Benôıt Gérard, and François-Xavier Standaert. Soft
analytical side-channel attacks. In ASIACRYPT (1), volume 8873 of Lecture Notes
in Computer Science, pages 282–296. Springer, 2014.

28. Nicolas Veyrat-Charvillon, Marcel Medwed, Stéphanie Kerckhof, and François-
Xavier Standaert. Shuffling against side-channel attacks: A comprehensive study
with cautionary note. In ASIACRYPT, volume 7658 of Lecture Notes in Computer
Science, pages 740–757. Springer, 2012.

16

	Security Analysis of Deterministic Re-Keying with Masking & Shuffling: Application to ISAP

