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Abstract. The evaluation of side-channel measurement setups and the
impact they can have on physical security evaluations is a surprisingly
under-discussed topic. In this paper, we initiate a comprehensive study of
such setups for embedded software and hardware (FPGA) implementa-
tions. We systematically investigate a design space including the choice of
the probing method, the clock frequency of the device under test, its sup-
ply voltage and the sampling rate of the adversary’s oscilloscope. Our re-
sults quantify the impact (i.e., the risk of security over-estimations) that
suboptimal setups can cause and lead to easy-to-use guidelines for secu-
rity evaluators. Despite some of our conclusions are device-dependent, we
argue that the proposed methodology and some of the proposed guide-
lines are of general interest and could be applied to other setups.

Keywords: Probing Techniques · Frequency and Voltage Scaling · Sam-
pling Rate · Signal-to-Noise Ratio · Perceived Information

1 Introduction

The design of a measurement setup is the first step in the evaluation of a crypto-
graphic implementation against side-channel analysis. Due to its physical nature,
this step inherently carries hard to quantify risks of security overstatements.
Noisy setups may indeed lead evaluators to conclude that the measurements
are less informative than they actually are, and this gap will then be increased
in case a countermeasure aiming at noise amplification, like masking [7,13] or
shuffling [15,29], is implemented. Surprisingly, and despite papers focused on
practical side-channel attacks usually describe how they optimized their setups,
especially when targeting challenging real-world devices [21,3], very few works
are dedicated to the systematic evaluation of measurement setups and the im-
pact of their optimization on security evaluations. Besides, and to the best of
our knowledge, the most advanced (published) investigations of this topic were
performed in specific settings such as the exploitation of static leakages, as re-
cently investigated by Moos et al. [19], or the evaluation of physical effects such
as couplings to reduce a masked implementation’s security order [10,11,16]. But
when it comes to the the impact of measurement setups on the noise level in
the context of (standard) attacks exploiting the dynamic part of the leakage,
the only works we are aware of are the one of Guilley et al. which puts for-
ward the Signal-to-Noise Ratio (SNR) as a meaningful metric to quantify the
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quality of side-channel acquisitions [14], and the one of Merino del Pozo and
Standaert that discusses the impact of different setups in the context of leakage
detection [22]. In this respect, and despite these references are important first
steps in specifying relevant comparison metrics and highlighting the existence of
an interesting design space, they are still have a limited scope: [14] estimates its
proposed (univariate) metric for a single measurement setup while [22] compares
different analog amplifiers and filters for a single probing method.

Recognizing that the design space of measurement setups is broader than
investigated in these previous works, this paper aims at analyzing four important
parameters of actual measurement setups. Namely, our goal is to discuss and
evaluate the impact of the probing method used in the setups, the clock frequency
of the Device Under Test (DUT), its supply voltage and the sampling rate of
the oscilloscope used to collect the measurements. We therefore study these
parameters systematically for two DUTs: a software (ARM Cortex) target and
a hardware (Xilinx FPGA) one. We additionally evaluate the effect of these
different parameters for both univariate evaluation metrics like the SNR and
multivariate evaluation metrics like the Perceived Information (PI).

We then use our investigations to extract useful observations regarding how
to select the parameters of our design space. While most of these observations
are admittedly present (implicitly or explicitly) in former experimental works,
we hope their compilation for two different devices and the quantitative analysis
of the losses a poor measurement setup may imply for security evaluators (which
may reach orders of magnitude) make a useful consolidating effort.

2 Background

We will use Mangard’s SNR [17] to evaluate the quality of first-order and uni-
variate leakages, as suggested by Guilley et al., and the PI metric analyzed in [6]
to evaluate the quality of higher-order or multivariate leakages. For the latter we
profile Gaussian templates in a linear subspace. We next recall these different
evaluation metrics and detail the profiling tools used in our analyzes.

2.1 Mangard’s SNR

Introduced in the context of side-channel analysis by Mangard, the SNR intu-
itively captures the data-dependent signal as the variance of the mean traces
and the noise as the mean of the variance traces, for each time sample [17]. As
a result, for a target intermediate variable y, it is defined as the ratio:

ˆSNR =
V̂ary
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i )
)

Êy
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i )
) , (1)

where V̂ar and Ê are the sample variance and the sample mean estimated on
lyi ∈ L, which represents the i-th side-channel observation generated by a target
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variable y. It must be pointed out that the noise in Mangard’s definition is the
result of two contributions. First, physical noise is due to physical phenomena
(e.g., thermal noise, flicker noise) and electrical conditions (e.g., impedance mis-
match, unwanted coupling with unrelated equipment). Second, algorithmic noise
is due to the presence of operations that are independent of the target ones and
are processed in parallel to them (i.e., at the same time). As argued by Guilley
et al., it is a good metric for assessing the quality of side-channel measurements
to be exploited by first-order univariate attacks [14], since it can be related to
the the complexity of popular attacks such as the Correlation Power Analysis
(CPA) and (univariate Gaussian) Template Attacks (TA) [5,8,18].

2.2 Subspace based Gaussian templates

Gaussian template attacks are a standard method to exploit multivariate leak-
ages [8]. We combine them with a dimensionality reduction step in order to re-
duce the possibly high number of informative dimensions d of the leakage traces
to a lower value d′ < d. The profiling consists of an estimation, using n leakage
traces l, of the parameters µx, Σx and W of a Probability Density Function
(PDF) of the form:

m̃n(l|x) =
1√

(2π)d′ · |Σx|
· exp 1

2 (Wl−µx)Σx(Wl−µx)
′ , (2)

where x is the value of the profiled variable, µx the mean vector of length d′,
Σx the covariance matrix of size d′ × d′ and W is the projection matrix of
size d′ × d. This projection matrix is determined thanks to Linear Discriminant
Analysis (LDA)[25]. LDA aims to find the subspace that maximizes the inter-
class variance (i.e., the signal of Mangard’s SNR) and minimizes the intra-class
variance (i.e., the noise of Mangard’s SNR). In practice, we applied this dimen-
sionality reduction to all the samples with sufficient SNR (which d ranging from
30 to 500 depending on the cases) and usually kept a dozen dimensions for d′.
Next, in the online attack phase, the likelihood of x is obtained by applying
Bayes’ law to the leakage models estimated beforehand such that:

m̃n(x|l) =
m̃n(l|x)∑

x∗∈X m̃n(l|x∗)
. (3)

The estimated PDF and the likelihood of the profiled variable can then be used
to calculate the amount of information contained in the leakages.

2.3 Information theoretic metrics & bounds

For higher-order or multivariate attacks, the SNR metric is not directly appli-
cable and a more general information theoretic metric has to be used. In the
context of side-channel attacks, the Mutual Information (MI) is the most fre-
quently considered candidate [26]. It generalizes the SNR in the sense that it
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can be related to the the complexity of worst-case higher-order & multivari-
ate attacks [12,9] (and it is essentially equivalent to the SNR in the first-order
univariate case [18]). However, as recently discussed in [6], estimating the MI
is in general a hard problem. Known estimators are biased and distribution-
dependent. Perfect estimations would therefore require the exact knowledge of
the leakage distribution. As a workaround, they proposed the use of the previ-
ously introduced PI metric, which represents the amount of information that can
be extracted from a device thanks to an the adversary’s model, possibly biased
due to estimation and assumption errors. For a target secret variable X with
leakage variable L, and denoting the leakage model m̃n(l|x) as described in the
previous section, the PI is expressed as:

P̂In(X;L) = H(K) +
∑
x∈X

p(x)
∑
l∈L

p(l|x) · log2(m̃n(x|l)), (4)

with H(X) the Shannon entropy of the variable S ∈ S. The PI is a lower bound
to the worst-case MI and equality holds in case the adversary’s model is perfect.
It can be viewed as the amount of information extrated by the best practical
attack tried by an evaluator. Concretely, the PI is usually estimated with k-fold
cross-validation and we used k = 10 in our following experiments.

3 Setup model & design space

We now introduce our model and design space for measurement setups, alongside
with the two devices we have adopted to conduct our investigations.

3.1 Setup model

The setup model is illustrated in Figure 1. Its goal is to highlight important
parameters for the informativeness of the leakages such as the probing method,
the DUT’s parameters and the Digital Storage Oscilloscope (DSO)’s parameters.
As reported in [27], the choice of those components and how they interact with
each other impact sensibly on the final outcome of the practical side-channel
security evaluation of a leaking implementation. A bit more precisely, the current
absorbed by the DUT is first monitored by a probe, which has the role to convert
the current signal into a voltage signal. This signal can then be amplified using
a preamplifier stage in order to increase its magnitude, to mitigate noise in the
measurements and to improve electrical characteristics for the following blocks.
At the end of the so-called measurement chain, a DSO samples and quantizes
the analog voltage signal, converting it in a digital representation. Usually, the
sampling operation is handled following a specific timing, that exploits a trigger
signal in order to synchronize different measurements.1 The precise design space
that we will consider for each block of the model will be detailed later.

1 The availability of a good trigger may raise additional challenges [4].
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Fig. 1: Measurement setup model for power analysis evaluation.

We note that our investigations do not consider the question of filtering,
which we view as an orthogonal one, since it can be performed after the mea-
surements took place in order to compensate a too noisy setup.

3.2 Platforms

In our investigations, we have used two devices in order to cover both hardware
and software implementations of cryptographic algorithms. This choice is moti-
vated by the expected differences between the two types of targets. For example,
hardware implementations generally allow better controlling the design aspects
(from the level of parallelism to low-level implementation choices) while software
implementations are usually more general purpose and serial.

Hardware DUT. Our target hardware DUT is a Xilinx Spartan-6 LX75 FPGA,
mounted on a Sakura-G board, implementing an AES-128 processor with a 32-
bit architecture. It is illustrated in Figure 2. In order to provide synchronization
between measurements, we generate a trigger signal on one of the IO pins of
the FPGA, rising to logical ‘1’ one cycle before the starting of the encryption
and set back to ‘0’ one cycle after the end of the AES encryption. We used the
integrated measurement point for our measurements.

Software DUT. Our target software implementation is running on a Cortex-
M0 MCU from the STM32F0308 Discovery board. Small modifications were
performed on the board. Namely, we added a crystal oscillator to provide a stable
clock source for the measurements and decoupling capacitors were desoldered.
The MCU is running tiny-AES [2], an open source AES-128 implementation. We
used the same trigger methodology as for the hardware DUT. Our measurements
were performed on the dedicated current measuring point for the MCU.

3.3 Design space

We explored our design space and DUTs by testing the following parameters:
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Fig. 2: Architecture of the 32-bit AES encryption co-processor.

Regarding the probing methodology, we used both a 2Ω resistor in series with
the power supply voltage and an inductive probe (the Tektronix CT-1, which
gives a transresistance of 5mV/mA in the frequency range 25kHz–1GHz [1]).
When using the CT-1 current probe, the shunt resistor was short-circuited. We
optionally used a preamplifier, namely a R&S HZ16 [24] providing a gain of 20dB
with a noise figure of 4.5dB, in the frequency range 100kHz–3GHz.2

Next, the DUT’s clock frequency is an important macroscopic feature of a
side-channel trace, since it usually reflects the frequency spectrum where leakage
can be found. We chose three clock frequency values (1MHz, 6MHz and 24MHz)
for the hardware DUT and three clock frequencies (4MHz, 24MHz and 48MHz)
for the software DUT. Note that 48MHz is the maximal clock frequency of the
device. Those sets of values were chosen to observe the impact of the clock
frequency on the shape and distinguishability of the leakage cycles.

Similarly, we chose three power supply voltage (0.8V, 1.2V and 1.4V) for the
hardware DUT and three power supplies (2.6V, 3.0V and 3.6V) for the software
DUT. Those sets of values were chosen in order to observe the impact of working
at nominal supply voltage vs. in minimum and maximum corner cases.

Finally, we used a Picoscope 6424E providing a vertical resolution of 12 bits
and running at three different sampling rates as DSO. We chose sampling rates
values according to the clock frequency of the given DUT, to analyze the impact
of the collected number of samples per clock cycles (which impacts the acquisition
bandwidth and memory requirements). Precisely, we set the sampling rate of the
DSO at approximately ×1 , ×5, ×25 the chosen DUT’s clock frequency. We note

2 The on-board Sakura amplifier was not used for consistency with the software setup.
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that the sampling rate of our DSO is not an integer multiple to the DUT’s clock
frequency as it may induce correlated noise in the measurements.

In total, we performed 4×3×3×3 = 108 experiments on each DUT. In each
experiment, we targeted the first key byte of the first AES round and collected
4 × 106 traces for the hardware DUT and 105 for the software one. Both the
input plaintexts and keys have been picked up uniformly at random, in order to
stimulate the combinational and sequential logics of both platforms.

4 Experimental results and discussion

In this section, we present the results of our analyses for the proposed metrics
throughout our design space. We first introduce the set of plots (e.g., for the
SNR and PI) that summarize our experiments and will be the basis of our dis-
cussions. We then extract the best configurations for the measurement setup of
both platforms. We finally propose general guidelines for the design of good mea-
surement setups. Given the granularity of the explored design space, we organize
this discussion according to the setup model in Section 3. We also evaluate the
relevance of univariate evaluation metrics as predictors of multivariate ones.

Figure 3 shows the highest SNR value we found for each set of parameters
for both platforms (in logarithmic scale). We present the results in the form
of a matrix where the X-axis contains the different power supply values and
sampling speeds, and the Y-axis contains the DUT clock frequencies and the
probing method used in each experiment. The thick orange lines delimit the
probing methods on the X-axis and the sampling speeds on the Y-axis. Darker
blue blocks represent setup parameters where the SNR is higher. Figure 4 shows
a similar matrix for the PI values obtained after LDA, in order to evaluate the
impact of setup choices from a multivariate attack perspective.

A bit more in detail, the SNRs in Figure 3 were calculated on the whole
leakage trace and the maximum value was then taken. In the hardware case,
as shown in Figure 3a, the best SNR is obtained using the CT-1 current probe
combined with the amplifier, setting the DUT to the slowest clock speed and
lowest power supply value, and sampling at the highest rate. In the software
case, as shown in Figure 3b, the differences are more subtle and many sets of
parameters give a peak SNR value close to the best one. The latter is obtained
using the resistor combined with the amplifier, setting the DUT to the highest
clock speed and sampling at lowest rate (contrary to the hardware case) while
still using the lowest power supply value (like in the hardware case).

Regarding our multivariate analysis, we calculated the PI for each set of
parameters. Concretely, for each experiment independently, we first pre-selected
samples based on the SNR traces, keeping the ones above the noise floor for
profiling. We then built Gaussian templates combined with LDA as presented
in Section 2.2. We next analyzed the impact of the d′ parameter, trying d′ = 1
up to 25 for the hardware platform and 50 for the software one. We finally kept
the d′ leading to the highest PI, which is reported in Figure 4.
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Fig. 3: Peak SNR values observed for the hardware (a) and software (b) DUTs.
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Fig. 4: Peak PI values observed for the hardware (a) and software (b) DUTs.
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For the hardware platform’s results reported in Figure 4a, we observe that
the experiment leading to the highest PI is obtained with the same set of param-
eters that leads to the highest SNR in Figure 3a. Generally speaking, comparing
the two metrics, the PI follows the same trend as the SNR in this case.3 For the
software platform’s results reported in Figure 4b, we see that the effect of the
probing method and the power supply voltage are negligible, which is different
from the univariate SNR analysis of Figure 3b. By contrast, observations regard-
ing the clock frequency and sampling rate remain similar as in the univariate
case. We also note that our highest PI value is 7.96 for an 8-bit bus.

As a complement, Figure 5 depicts exemplary SNR and leakage traces for
both platforms, corresponding to the best cases in Figure 3. The SNR traces are
in the upper subplots and mean leakage traces in the lower subplots.
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Fig. 5: Exemplary SNR and leakage traces: hardware (left) and software (right).

These experimental investigations lead to the following observations:

Probe. The choice of a probe was more critical for the hardware platform than
the software one in our experiments. In the hardware case, the inductive probe
gave better results than the resistor. A plausible explanation is that the CT-1
interferes less with the side-channel signal and is intrinsically less noisy than a
shunt resistor. So as long as the target leakage is covered by the probe’s band-
width, it seems to be a good choice. In the software case, both the inductive probe

3 The experiments where the log10 PI is -inf correspond to a negative PI, indicating
the no information could be extracted from the estimated model.
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and the resistor gave good results, presumably due to the easier-to-exploit mea-
surements (reflected by the higher SNR and PI values). As for the use of the
amplifier, it does not show a significant impact as in most of our design space,
the signal that we sample is within the vertical range of our DSO.

We posit that the observation regarding the inductive (CT-1) probe could
change if targeting higher clock frequencies, and the observation regarding the
amplifier could change if targeting more advanced technologies or a side-channel
signal with lower amplitude (e.g., an electromagnetic one).

Clock frequency. This parameter is in general important for side-channel anal-
ysis. Whenever it can be controlled by the adversary, both our hardware and
software results suggest the same rule-of-thumb: “use the highest available clock
frequency such that independent clock cycles are easy to distinguish”.

We first illustrate this rule-of-thumb with Figure 6. It shows the traces we
recorded with the best parameter set and varying clock frequencies for the FPGA
platform. At 1MHz, the independent peaks for each clock cycle are clearly dis-
tinguishable. At higher clock frequencies, the leakage traces are smoother and
the overlapping between the clock cycles in the measurements increases.
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Fig. 6: Clock frequency effect on the hardware setup.
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We next turn to the software case study to explain the first part of the
rule-of-thumb (i.e., why it is not advisable to reduce the clock frequency uncon-
ditionally). In this respect, we first note that for this software DUT, the clock
cycles were clearly distinguishable even for the maximum clock frequency (so
the second part of the rule-of-thumb was fulfilled). In this case, the best SNR
and PI values are observed for higher clock frequencies. We explain this effect
by observing that all the samples in a clock cycle are not equally informative.
During an MCU clock cycle, most of the dynamic power is contained right after
the rising edge of the clock as the effect of the registers changing state. The
leakage from the remaining of the clock cycle is mostly due to static power and
is usually less informative [23,20]. Therefore, the interest of decreasing the clock
frequency can become detrimental when conditioned on a sampling frequency.

More precisely, and as illustrated in Figure 7, decreasing the clock frequency
can lead the collected samples (represented by red diamonds in the figure) to
correspond mostly to the static part of the leakage, and to miss the information
of the dynamic part (represented by the green rectangles of the figures). Overall,
this can lead to a collection of samples that is less informative: the univariate
SNR can be lower by missing the most informative sample and the multivariate
PI can be lower by cumulatively covering less relevant samples.
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Fig. 7: Sampling with different DUT clock frequencies.

VDD. Despite less definitive than the clock frequency, the supply voltage also
affects the shape of the leakage traces, as it increases the critical path and
therefore spreads the information towards more samples. This naturally causes
the multivariate PI to be improved when lowering the supply voltage below the
nominal one. Interestingly, we also observed that for both targets and most sets
of other parameters, decreasing VDD is also beneficial to the univariate SNR.

A plausible reason for this observation is that both devices are based on
CMOS technology (even though from different technology nodes and manufac-
turers) which generally exhibits smoother transient current when VDD is lower
than nominal, due to reduced transconductance of digital cells. This can reduce
both the signal and, here more dominantly, the noise of the leakage.
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We note that this observation is admittedly technology-dependent: see [28] for
a report on several technology nodes. It is also not unconditional: as reported
in the same paper, the output noise of a digital cell in subthreshold regime
(that corresponds to extremely low VDD values) is not minimal, as transistors
exhibit higher resistance and thus contribute more to increase the noise level. So
overall, our conclusion regarding the VDD parameter is that reducing it below
the nominal value can have marginal interest, especially for multivariate attacks,
but is not expected to lead to significant gain/loss factors.

Sampling rate. This parameter is especially critical for the cost of the attacks
as it affects the memory requirements to store the leakage measurements.

On the one hand, its selection is related to the clock frequency: as in general
when quantizing signals, the sampling rate should at least be chosen larger than
the Nyquist frequency. This requirement was confirmed in our experiments, and
showed to be more critical (resp., less critical) in the hardware case (resp., soft-
ware case). This is presumably due to the lower (resp., larger) amount of less
(resp., more) informative samples of the harware (resp., software) case.

On the other hand, in the context of side-channel analysis, a natural ques-
tion is whether increasing the sampling rate significantly beyond the Nyquist
frequency can be useful. Namely, can it lead to more powerful multivariate at-
tacks? By testing a sampling frequency of ×1, ×5 and ×25 the clock frequency,
we observed that collecting more samples helps only to a limited extent. In
particular, both for the software and the hardware platforms, the gains when
moving from ×1 to ×5 the clock frequency are more significant than when mov-
ing from ×5 to ×25 the clock frequency, again with more incentive to increase
the sampling rate in the hardware case than in the software case. A plausible
reason for this difference is once more the more condensed and noisy nature of
the hardware leakage (i.e., the fact that it is concentrated in less cycles with
more algorithmic noise, rather than spread over more cycles in software).

Univariate vs multivariate evaluations. Eventually, our results indicate that
whether the SNR is a good predictor of the PI is quite case-dependent.

If the SNR traces present a single peak or a set of peaks that are close to each
other (e.g., within one cycle), they usually indicate correlated leakage coming
from a single operation. In this case, which typically corresponds to our hardware
experiments (see the left part of Figure 5), a good univariate SNR will generally
be a good indicator of a good multivariate PI. Multivariate attacks will always
be more powerful but the SNR can serve as a first-order comparison metric.

By contrast, if the SNR traces contain multiple peaks separated by several
clock cycles, they rather indicate independent leakage coming from different op-
erations. In this case, which typically corresponds to our software experiments
(see the right part of Figure 5), multivariate attacks are expected to be sig-
nificantly more powerful than univariate ones. So the direct estimation of the
multivariate PI is in general a better (i.e., more conclusive) evaluation strategy.



14 Davide Bellizia, Balazs Udvarhelyi, and François-Xavier Standaert

5 Conclusions

This study aims at evaluating the risk of over-estimating the physical security of
an implementation due inadequate parameter choices when configuring a mea-
surement setup. We focus on four main parameters: the probing method, the
clock frequency, the power supply voltage and the sampling rate. We apply our
methodology to an embedded software and a hardware FPGA implementation
of the AES-128 block cipher. It leads to 108 experiments for each DUT, that
we analyze by means of univariate and multivariate evaluation metrics, namely
the SNR and the PI. Our findings show that the losses due to a bad selection of
parameters can be significant and lead to a strong over-estimations of an imple-
mentation’s security level. We also use our experiments in order to consolidate
general intuitions and recommendations regarding the good choice of parameters
and to discuss their device and architecture dependencies.
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