Leveraging Inexact Computing
in Post-Quantum Cryptography

Davide Bellizia, Frangois-Xavier Standaert

UCLouvain (Belgium)
DFT 2021, Virtual

Learning Parity with Noise (LPN)

o Dy ={(x(x,k)®Pe): x < {0,1}"; e « Ber,}

e LPN problem: recover k thanks to samples from D,
 Assumed to be hard, quite versatile problem

* Extensionin Z, (LWE) popular for PQ crypto

Learning Parity with Noise (LPN)

e Standard implementation with a (P)RNG

[(P)RNG] May be expensive
* E.g., require a block cipher

e e Especially against leakage
M D , * Single probe on e makes
<kx> d LPN easy to solve

Learning Parity with Physical Noise (LPPN)

* Physical Inner Product (£-PIP) =~ device that
directly outputs {x, k) with error probability €

inexact
inner product z
<Kk,x>

 E.g., thanks to frequency/voltage overscaling, jitter, ...

Learning Parity with Physical Noise (LPPN)

+ Conceptually appealing (don’t explicitly compute e)
+ May lead to performance gains (e.g., in energy)

— Physical assumption (rather than mathematical one)
= Can the error probability be controlled accurately?
= [s the physical distribution close enough to Bernoulli?

Feasibility & defaults #1: ASIC prototype

Inner Product

Léf Parallel\ (Serial \
Deserializer iniE Be .
t Bl
Bl
J Sl D-
, sl -
— :DD- = B
Deserializer Jt-}} D-
DD'
5 D- o] |Pin
DfD—
FSM e y
Target 5: EE r GNge
i AT 816732
Y Y MIVar.
1o-b{ : L Del. Line
Error e .DFFA

Counter

A A

|
e
lDFF
s

A ' 3

<
-

Error Controller

Ly

Parallel then serial inner product arc
Glitch-induced deterministic errors in serial part
Error control harder when serial part depth /

nitecture

Feasibility & defaults #1: ASIC prototype

* Example: 512-bit LPPN co-processor
* 64-bit parallel X 8-bit serial architecture

Step 1: error calibration

' ‘ ! ‘ ' —Measured
— 0 . 5 — Expected
- .
T T - Margin__
m ———
2.0.25 —
0 R e em e eee e man .

R 7

3 4
Error controller steps

 Can be made quite accurate!
* 6 bits of control
1024 queries per bit
 E.g., Target € = 0.25

Feasibility & defaults #1: ASIC prototype

Example: 512-bit LPPN co-processor
64-bit parallel X 8-bit serial architecture

Step 2: samples generation

06 0.32 x ‘ XRandom
0.28 O8LSB0
8 g g ¥ § 0.24 ° é 064LSB0
— 0.4/ o é § 02 36 1/0128LSBO
- o....o.. Pesttuetoh o S - R RS— p——
,g, o (o] é é
a 0.2 o o J %
O .
------------------------ 0---------------
o ¥
(o] (o) K
(o) (o]
07 | | \O O O O 8\© g 3]
10 20 30 40 50 60
CNTL

* |nput-dependent Prerror]

* E.g., by setting the bits of the
serial part to all zeros / ones

* Mitigated by the parallel part

Defaults #2: output error dependencies

 Data-dependent Pr[error] extends to outputs
 Cannot be made computationally hard to exploit
 Cannot be completely cancelled by design

Defaults #2: output error dependencies

A [%]

_ |Prle < &-PIP] — Pr[e;-PIP]|

A
2

mooOwXr

Parallel

Serial (min. size gates)
Parallel + jitter

B + power gating

D + bigger gates

Security reduction: LPN-OD = LPN

* LPN-OD = LPN with output-dependent errors

pEoEL — { (x,{x, k)®e) : x « {0,1}"; }

k e « Ber, if(x,k) = 0;e « Ber, if(x,k) =1

Security reduction: LPN-OD = LPN

* Theorem: LPN-OD withegy = e —A, ¢y =+ Aisat
least as hard as LPN with adapted security parameter
e—A

1-2A

!

&

 Lower A (by design) = less security degradation

FPGA instance

LPPN Processor Pout
x<511:0> Pout
k<SB £ L 1;?12 Inner Product corr
clk del locked
— > Err.
Variable Dela: ol en0_out
clk Line Y Z] enl out | Control
&
T ctrl err<5:0> | FSM
f-? gvt sens<3:0> THRSH—» st v
8 & (;)—v L i
[¢]
| L

FPGA instance

=)

enable
e

-
=
=) 2
- :
. =P
Parallel 4D1’D‘
— — XOR tree .]
512 s12| 5 Serial XOR -
x_ ’I ,I
| 1 . tree o &
2 |al2 3 El:
i »)
ﬁa 3 Corr
512 512 A > P Pout
k ,1 y N L
[3 L— Pou‘t
5
=]
=4
(]

FPGA instance 7

1

0.4- Native A of = 8.2%
e = As hard as LPN with € = 0.2
-- * Reduced to 5.8% with design
b - i P tweaks (dummy operations)

=
¢

Probability

o
()
A
e
1
1
1
{lr
v

o —— Basic LPPN—PI‘[{‘,(Fn—P[P]
001 77 Loy = As hard as LPN with € = 0.22

20000 40000 60000 80000 100000
Number of Queries

Secure implementation: masking

* Unprotected implementation: y < €-PIP(x, k)
* Masking: sharek = k;® k,D... Bk, and compute
y < €-PIP(x, k{)®{x, k,)D... ® (x, k)

* Helps preventing side-channel attacks

Secure implementation: masking

* Also mitigates data-dependent errors since for
Z = €-PIP(x, k) the adversary only sees

Pr(z|l] = % + 0, leading to LPN-OD with
eézeo-(%+5>+el-(%—5>
, 1 1
81—81°<§+5)+80°<§—5)

Conclusions and open problems 9

 Conceptually appealing but provocative
+ Performance gains & side-channel security
— Physical assumption (harder to assess)

* |nteresting mix between physics & maths
* Physics used to limit defaults by design
* Many other implementations could be studied
 Maths to prove security despite defaults

 Next step: from LP(P)N to LW(P)E and PQ crypto
 May not be obvious with KEMS using FO-transform

THANKS

D. Kamel, F.-X. Standaert, A. Duc, D. Flandre, F. Berti, Learning with
Physical Noise or Errors, in IEEE Transactions on Dependable and Secure
Computing, vol 17, num 5, pp 957-971, October 2020

D. Kamel, D. Bellizia, F.-X. Standaert, D. Flandre, D. Bol, Demonstrating
an LPPN Processor, in the proceedings of ASHES 2018, pp 18-23,
Toronto, Canada, October 2018

D. Kamel, D. Bellizia, O. Bronchain, F.-X. Standaert, Side-channel Analysis
of a Learning Parity with Physical Noise Processor, in the Journal of
Cryptographic Engineering, vol 11, num 2, pp 171-179, June 2021

D. Bellizia, C. Hoffmann, D. Kamel, Hanlin Liu, P. Meaux, F.-X. Standaert,
Yu Yu, Learning Parity with Physical Noise: Imperfections, Reductions
and FPGA Prototype, in IACR Transactions on Cryptographic Hardware
and Embedded Systems, vol 2021, num 3, pp 390-417

