
Leveraging Inexact Computing 
in Post-Quantum Cryptography

Davide Bellizia, François-Xavier Standaert

UCLouvain (Belgium)

DFT 2021, Virtual



Learning Parity with Noise (LPN)

• 𝐷𝑘
𝜀 = 𝑥, 𝑥, 𝑘 ⨁𝑒 ∶ 𝑥 ← 0,1 𝑛; 𝑒 ← Ber𝜀

• LPN problem: recover 𝑘 thanks to samples from 𝐷𝑘
𝜀

• Assumed to be hard, quite versatile problem
• Extension in ℤ𝑞 (LWE) popular for PQ crypto

1



Learning Parity with Noise (LPN)

• 𝐷𝑘
𝜀 = 𝑥, 𝑥, 𝑘 ⨁𝑒 ∶ 𝑥 ← 0,1 𝑛; 𝑒 ← Ber𝜀

• LPN problem: recover 𝑘 thanks to samples from 𝐷𝑘
𝜀

• Assumed to be hard, quite versatile problem
• Extension in ℤ𝑞 (LWE) popular for PQ crypto

• Standard implementation with a (P)RNG

(P)RNG
• May be expensive

• E.g., require a block cipher

• Especially against leakage
• Single probe on 𝑒 makes

LPN easy to solve

1



Learning Parity with Physical Noise (LPPN)

• Physical Inner Product (෨ℇ-PIP) ≈ device that
directly outputs 𝑥, 𝑘 with error probability ෨ℇ

• E.g., thanks to frequency/voltage overscaling, jitter, …

2



Learning Parity with Physical Noise (LPPN)

• Physical Inner Product (෨ℇ-PIP) ≈ device that
directly outputs 𝑥, 𝑘 with error probability ෨ℇ

• E.g., thanks to frequency/voltage overscaling, jitter, …

+ Conceptually appealing (don’t explicitly compute 𝑒)
+ May lead to performance gains (e.g., in energy) 

− Physical assumption (rather than mathematical one)
⇒ Can the error probability be controlled accurately?
⇒ Is the physical distribution close enough to Bernoulli?

2



Feasibility & defaults #1: ASIC prototype

• Parallel then serial inner product architecture
• Glitch-induced deterministic errors in serial part
• Error control harder when serial part depth ↗

3



Feasibility & defaults #1: ASIC prototype

Step 1: error calibration 

• Can be made quite accurate!
• 6 bits of control
• 1024 queries per bit
• E.g., Target 𝜀 = 0.25

• Example: 512-bit LPPN co-processor
• 64-bit parallel × 8-bit serial architecture

4



Feasibility & defaults #1: ASIC prototype

Step 1: error calibration 

• Can be made quite accurate!
• 6 bits of control
• 1024 queries per bit
• E.g., Target 𝜀 = 0.25

Step 2: samples generation

• Input-dependent Pr[error]
• E.g., by setting the bits of the 

serial part to all zeros / ones
• Mitigated by the parallel part

• Example: 512-bit LPPN co-processor
• 64-bit parallel × 8-bit serial architecture

4



Defaults #2: output error dependencies

• Data-dependent Pr[error] extends to outputs
• Cannot be made computationally hard to exploit
• Cannot be completely cancelled by design

5



Defaults #2: output error dependencies

• Data-dependent Pr[error] extends to outputs
• Cannot be made computationally hard to exploit
• Cannot be completely cancelled by design

Δ =
Pr 𝑒 ← 𝜀0−PIP − Pr 𝜀1−PIP

2

A. Parallel
B. Serial (min. size gates)
C. Parallel + jitter
D. B + power gating
E. D + bigger gates

5



Security reduction: LPN-OD ≈ LPN

• LPN-OD ≈ LPN with output-dependent errors

𝐷𝑘
𝜀0,𝜀1 =

𝑥, 𝑥, 𝑘 ⨁𝑒 ∶ 𝑥 ← 0,1 𝑛;
𝑒 ← Ber𝜀0 if 𝑥, 𝑘 = 0; 𝑒 ← Ber𝜀1 if 𝑥, 𝑘 = 1

6



Security reduction: LPN-OD ≈ LPN

• LPN-OD ≈ LPN with output-dependent errors

• Theorem: LPN-OD with 𝜀0 = 𝜀 − Δ, 𝜀1 = 𝜀 + Δ is at 
least as hard as LPN with adapted security parameter

• Lower Δ (by design) ⇒ less security degradation

𝐷𝑘
𝜀0,𝜀1 =

𝑥, 𝑥, 𝑘 ⨁𝑒 ∶ 𝑥 ← 0,1 𝑛;
𝑒 ← Ber𝜀0 if 𝑥, 𝑘 = 0; 𝑒 ← Ber𝜀1 if 𝑥, 𝑘 = 1

𝜀′ =
𝜀 − Δ

1 − 2Δ

6



FPGA instance 7



FPGA instance 7



FPGA instance

• Native Δ of ≈ 8.2%
⇒ As hard as LPN with 𝜀 ≈ 0.2
• Reduced to 5.8% with design 

tweaks (dummy operations)
⇒ As hard as LPN with 𝜀 ≈ 0.22

7



Secure implementation: masking

• Unprotected implementation: 𝑦 ← ε−PIP 𝑥, 𝑘

• Masking: share 𝑘 = 𝑘1⨁ 𝑘2⨁… ⨁𝑘𝑑 and compute

𝑦 ← ε−PIP 𝑥, 𝑘1 ⨁ 𝑥, 𝑘2 ⨁… ⨁ 𝑥, 𝑘𝑑

• Helps preventing side-channel attacks

8



Secure implementation: masking

• Unprotected implementation: 𝑦 ← ε−PIP 𝑥, 𝑘

• Masking: share 𝑘 = 𝑘1⨁ 𝑘2⨁… ⨁𝑘𝑑 and compute

𝑦 ← ε−PIP 𝑥, 𝑘1 ⨁ 𝑥, 𝑘2 ⨁… ⨁ 𝑥, 𝑘𝑑

• Helps preventing side-channel attacks
• Also mitigates data-dependent errors since for 

𝑧 = ε−PIP 𝑥, 𝑘1 the adversary only sees

Pr 𝑧 𝑙 =
1

2
+ 𝛿, leading to LPN-OD with

𝜀0
′ = 𝜀0 ∙

1

2
+ 𝛿 + 𝜀1 ∙

1

2
− 𝛿

𝜀1
′ = 𝜀1 ∙

1

2
+ 𝛿 + 𝜀0 ∙

1

2
− 𝛿

8



Conclusions and open problems

• Conceptually appealing but provocative
+ Performance gains & side-channel security
− Physical assumption (harder to assess)

• Interesting mix between physics & maths
• Physics used to limit defaults by design

• Many other implementations could be studied
• Maths to prove security despite defaults

• Next step: from LP(P)N to LW(P)E and PQ crypto 
• May not be obvious with KEMS using FO-transform

9



THANKS

• D. Kamel, F.-X. Standaert, A. Duc, D. Flandre, F. Berti, Learning with 
Physical Noise or Errors, in IEEE Transactions on Dependable and Secure 
Computing, vol 17, num 5, pp 957-971, October 2020

• D. Kamel, D. Bellizia, F.-X. Standaert, D. Flandre, D. Bol, Demonstrating 
an LPPN Processor, in the proceedings of ASHES 2018, pp 18-23, 
Toronto, Canada, October 2018

• D. Kamel, D. Bellizia, O. Bronchain, F.-X. Standaert, Side-channel Analysis 
of a Learning Parity with Physical Noise Processor, in the Journal of 
Cryptographic Engineering, vol 11, num 2, pp 171-179, June 2021

• D. Bellizia, C. Hoffmann, D. Kamel, Hanlin Liu, P. Meaux, F.-X. Standaert, 
Yu Yu, Learning Parity with Physical Noise: Imperfections, Reductions 
and FPGA Prototype, in IACR Transactions on Cryptographic Hardware 
and Embedded Systems, vol 2021, num 3, pp 390-417


