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Learning Parity with Noise (LPN)

o Dy ={(x(x,k)®Pe): x < {0,1}"; e « Ber,}

e LPN problem: recover k thanks to samples from D,
 Assumed to be hard, quite versatile problem

* Extensionin Z, (LWE) popular for PQ crypto



Learning Parity with Noise (LPN)

e Standard implementation with a (P)RNG

[(P)RNG]  May be expensive
* E.g., require a block cipher

e e Especially against leakage
M D , * Single probe on e makes
<kx> d LPN easy to solve




Learning Parity with Physical Noise (LPPN)

* Physical Inner Product (£-PIP) =~ device that
directly outputs {x, k) with error probability €

inexact
inner product z
<Kk,x>

 E.g., thanks to frequency/voltage overscaling, jitter, ...




Learning Parity with Physical Noise (LPPN)

+ Conceptually appealing (don’t explicitly compute e)
+ May lead to performance gains (e.g., in energy)

— Physical assumption (rather than mathematical one)
= Can the error probability be controlled accurately?
= [s the physical distribution close enough to Bernoulli?



Feasibility & defaults #1: ASIC prototype
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Feasibility & defaults #1: ASIC prototype

* Example: 512-bit LPPN co-processor
* 64-bit parallel X 8-bit serial architecture

Step 1: error calibration
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 Can be made quite accurate!
* 6 bits of control
1024 queries per bit
 E.g., Target € = 0.25



Feasibility & defaults #1: ASIC prototype

Example: 512-bit LPPN co-processor
64-bit parallel X 8-bit serial architecture

Step 2: samples generation
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* |nput-dependent Prerror]

* E.g., by setting the bits of the
serial part to all zeros / ones

* Mitigated by the parallel part



Defaults #2: output error dependencies

 Data-dependent Pr[error] extends to outputs
 Cannot be made computationally hard to exploit
 Cannot be completely cancelled by design



Defaults #2: output error dependencies
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B + power gating

D + bigger gates



Security reduction: LPN-OD = LPN

* LPN-OD = LPN with output-dependent errors

pEoEL — { (x,{x, k)®e) : x « {0,1}"; }

k e « Ber, if(x,k) = 0;e « Ber, if(x,k) =1



Security reduction: LPN-OD = LPN

* Theorem: LPN-OD withegy = e —A, ¢y =+ Aisat
least as hard as LPN with adapted security parameter
e—A

1-2A

!

&

 Lower A (by design) = less security degradation



FPGA instance
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FPGA instance
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FPGA instance 7
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Secure implementation: masking

* Unprotected implementation: y < €-PIP(x, k)
* Masking: sharek = k;® k,D... Bk, and compute
y < €-PIP(x, k{)®{x, k,)D... ® (x, k)

* Helps preventing side-channel attacks



Secure implementation: masking

* Also mitigates data-dependent errors since for
Z = €-PIP(x, k) the adversary only sees

Pr(z|l] = % + 0, leading to LPN-OD with
eézeo-(%+5>+el-(%—5>
, 1 1
81—81°<§+5)+80°<§—5)



Conclusions and open problems 9

 Conceptually appealing but provocative
+ Performance gains & side-channel security
— Physical assumption (harder to assess)

* |nteresting mix between physics & maths
* Physics used to limit defaults by design
* Many other implementations could be studied
 Maths to prove security despite defaults

 Next step: from LP(P)N to LW(P)E and PQ crypto
 May not be obvious with KEMS using FO-transform
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