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Abstract—We extend the study of efficient profiled attacks on masking schemes initiated by Lerman and Markowitch (TIFS, 2019) in
different directions. First, we study both the profiling complexity and the online attack complexity of different profiled distinguishers.
Second, we extend the range of the noise levels of their experiments, in order to cover (higher-noise) contexts where masking is
effective. Third, we further contextualize the investigated distinguishers (e.g., in terms of adversarial capabilities and a priori
assumptions on the leakage probability density function). Finally, we complete the list of distinguishers considered in this previous work
and add expectation-maximization, soft analytical side-channel attacks and multi-layer perceptrons in our comparisons.
Our results allow shedding an interesting new light on the respective strengths and weaknesses of these different statistical tools, both
in the context of a side-channel security evaluation and for concrete attacks. In particular, they confirm the experimental relevance of
evaluation shortcuts leveraging the masking randomness during profiling, in order to speed up the evaluation process.
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1 INTRODUCTION

1.1 State-of-the-art & research problem

Side-Channel Attacks (SCAs) are among the most important
threats against the security of cryptographic embedded de-
vices. Such attacks exploit the unintended leakages of an
implementation in order to recover sensitive information
such as secret keys [1], [2]. As a result of their publication
in the late 1990s, a vast body of work has investigated
solutions to mitigate them, ranging from heuristic solutions
(trying to hide the leakages in noise) to more formal ones [3].
Among the more formal solutions, masking has emerged
over the last decade as an essential building block of side-
channel resistant implementations. Its underlying principle
is to split any sensitive variable of an implementation into
d independent shares, and to perform all the operations on
those shares only. As a result, the adversary is forced to
“combine” the leakage of all the shares in order to recover
sensitive information. Intuitively, if the leakages of these
shares are sufficiently noisy and independent, exploiting
this combination implies the estimation of a dth-order sta-
tistical moment. Formally, it has been shown that (under
the noise and independence assumptions) masking ensures
a security level that increases exponentially in the number
of shares while requiring a quadratic performance over-
head [4], [5], [6], [7], [8], [9]. Yet, ensuring these noise and
independence conditions in practice turns out to be non-
trivial and various types of imperfections can break them.
Some problems already appear (and can be prevented) at
the algorithmic level. For example, a lack of randomness
can break the independence condition when composing
gadgets in the abstract probing model (and be repaired in
the same model) [10], [11], [12]. Some problems such as
glitches are of more physical nature but can be prevented

at the algorithmic level [13], [14]. Eventually, couplings [15],
[16], [17] and a lack of noise in the leakages [18], [19] require
lower-level abstractions for their analysis and can only be
mitigated thanks to implementation tweaks.

In view of this state of the art, an equally large body
of work has investigated tools in order to evaluate masked
implementations. At a high-level, the first question is to
determine the goal of the evaluation, which can range to
qualitative detection to quantitative attacks or proofs.

Roughly speaking, leakage detection aims to answer the
question “does my device leak information?”, independently
of whether this information can be exploited in an efficient
attack. This can lead to fast conformance-based testing at
the cost of a usually harder interpretation, especially in cases
where no detection occurs [20], [21], [22], [23], [24], [25], [26].
Alternatively, attack-based evaluations aim at quantifying
the amount of measurements (and time) needed to perform
a full key recovery. They can take advantage of a wide
variety of distinguishers introduced in the literature, such
as Template Attacks (TAs) [6], [27], [28], [29], Correlation
Power Analysis (CPA) [30], [31], [32], Linear Regression
(LR)-based attacks [33], [34], [35] or Mutual Information
Analysis (MIA) [36], [37], [38], [39]. Proof-based evaluations
finally aim at bounding the security level of an imple-
mentation based on the aforementioned formal security
guarantees, and typically work by “extrapolating” security
evaluations obtained for low number of shares to larger
number of shares. To a large extent, these approaches are
complementary and correspond to a tradeoff between the
time and expertise needed to perform the evaluations and
the confidence that they provide. In this paper, we are
concerned with attack-based evaluations which are at the
core of any quantitative side-channel security evaluation.
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Worst-case side-channel attacks essentially require to
have a perfect understanding of the target device, usually
reflected in the literature as a leakage model. Indeed, in case
an exact leakage model is available, it is possible to perform
an attack that maximizes the likelihood of the target key
given the observed leakages [40], [41], [42], [43]. In this
context, one recurrent source of discussion in the literature
relates to the definition of relevant adversarial capabilities.
To give one prominent example, side-channel attacks can
be profiled — in which case the adversary can use a device
she controls in order to estimate an accurate leakage model
from collected measurements, or non profiled – in which
case the model is based on engineering intuition. Typically,
TAs and LR-based attacks are profiled, while CPA and MIA
are non-profiled. Whenever trying to estimate the worst-
case security level, the profiled setting is preferable, since
there is no generic attack strategy that can succeed against
any device without profiling [44]. This has led Lerman and
Markowitch to initiate a study of efficient profiled attacks
against masking schemes as a central ingredient for the
security evaluation of cryptographic implementations, and
to propose a systematic comparison of parametric and non-
parametric distinguishers for this purpose [45].

1.2 Contributions
In this paper, we observe that despite initiating a necessary
systematization effort, the work by Lerman and Markowitch
is still limited in a few directions. We therefore extend their
results with the following contributions:

• Easier to interpret metrics. Lerman et al.’s analyzes com-
pare profiling methods by first fixing a number of
profiling and attack measurements followed by an eval-
uation of the attacks’ probability of success [45]. While
this is a natural first step, it does not give an easily
exploitable intuition about the profiling complexity of
distinguishers (since this complexity is fixed rather than
parametrized). To solve this limitation, we use an infor-
mation theoretic approach in order to efficiently assess
the profiling complexity and the attack complexity of
different tools [46], [47]. In particular, we use the Per-
ceived Information (PI) metric introduced by Renauld
et al. [48] and further formalized in [40], [43] as a natu-
ral indicator of the profiling complexity (i.e., the number
of measurements needed to reach a positive PI) and the
attack efficiency, reflected by the asymptotic PI value –
which is inversely proportional to the number of traces
needed to perform a key recovery [9], [49]. As a result,
and compared to the success rate centric methodology
used by Lerman et al., the methodology of this work
allows omitting the attack data complexity to estimate
the metrics used to compare the distinguishers.1.

• Larger noise levels. Lerman and Markowitch consider
very low to low noise levels, typically in a range limit-
ing the effectiveness of the masking countermeasure.
We consider noise levels ranging from low – corre-
sponding to a Signal-to-Noise Ratio (SNR) of 10 – to

1. Lerman et al. study the estimation/assumption errors of profiled
models with respect to the mean square error, leveraging the bias-
variance decomposition paradigm for this metric. We pursue a similar
goal but use PI instead, which is a natural candidate for this task [40]

medium (SNR=1) and large (SNR=0.1), reflecting both
insecure and secure masked implementations.

• Improved contextualization. Lerman and Markowitch
consider parametric and non-parametric distinguishers.
But a discussion of what is the impact of the adversarial
capabilities, for example regarding the control of the
masking randomness during profiling, is still lacking.
The latter limits the usability of the results in helping
evaluators to determine which tool to use in which
situation. We further contextualize the attack settings
based on adversarial capabilities and consider profiled
attacks with known or unknown masking randomness.

• Additional distinguishers The authors of [45] evaluate
Gaussian TAs, Kernel Density Estimation (KDE) and
Random Forests (RFs), but some natural candidates for
the efficient profiling of masked implementations are
still missing, for example the Expectation-Maximization
(EM) algorithm to profile Gaussian mixtures [28], [50],
Soft Analytical Side-Channel Attacks (SASCA) [51] and
Multi-Layer Perceptrons (MLP) [52], [53]. We include
these distinguishers in our experiments.2

2 BACKGROUND

2.1 Notation
Random variables are denoted with capital letters X and
their realizations with small caps x. Random vectors, such
as leakage traces L, are denoted in bold, leading to realisa-
tions l. Probability for a given realization of X is written
as Pr [X = x] and if clear from the context as p (x). The
continuous distribution of a random variable conditioned to
another one is denoted as f (l |x). Estimations are denoted
with a hat. The Boolean (bitwise) addition is denoted with
⊕ while addition over the reals is denoted with +.

2.2 Information theoretic metrics
Next, we introduce the information theoretic (IT) metrics we
use with their interest for side-channel evaluations.

Mutual Information. In general, determining the minimum
number N⋆

kr of measurements that an adversary must ob-
serve to recover a secret (e.g., key) is an important part of a
side-channel security evaluation. For the best possible (i.e.,
worst-case) attack, this quantity can be linked to the MI:

N⋆
kr ≥

c(sr, κ)

MI(L; X)
,

where c(sr, κ) is a small constant that depends on the
success rate sr and the bitsize of the target secret κ [9], [49].
The MI is then defined as:

MI(L; X) = H(X) +
∑
x∈X

p (x) ·
∑
l∈L

p( l |x ) · log2 p(x | l ),

where H(·) denotes Shannon’s entropy and p (· | ·) is the
Probability Mass Function (PMF) derived by applying
Bayes’s rule to f (· | ·). Despite its theoretical interest, directly

2. We also considered other non-parametric tools such as Gaussian
Processes [54], but due to the large size of our profiling sets, it did
not improve over other tools so we do not include these results in our
comparison and leave the optimization/specialization of such powerful
machine learning tools as an interesting scope for further research.
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computing this quantity is not possible because it requires
knowing the leakage distribution, which adversaries and
evaluators do not know a priori.3 Practical evaluations
therefore estimate this leakage distribution. The qualily of
this estimation can then be quantified with the PI.
Perceived Information. The PI quantifies the amount of
information that can be extracted with an estimated model
f̂ (l |x). It can be evaluated “by sampling” as:

P̂Int
(L; X) = H(X) +

∑
x∈X

p (x) · 1

nt (x)

nt(x)∑
i=1

log2 p̂ (x | lxi ) ,

where nt (x) is the number of “test” leakage vectors lx

corresponding to a realisation X = x and the true PMF
is replaced by its corresponding estimation p̂ (x | lxi ). For
the estimation to be unbiased, it is important that the test
leakage vectors lxi are fresh validation traces that have not
used to build the PDF estimate.4 As shown by Bronchain
et al., the PI is upper-bounded by MI so that MI ≥ PI [43].
Informally, the PI metric reflects the quality of the model: if
the model is perfect, then the equality is met and the attack
is worst-case; otherwise the attack is suboptimal.

2.3 Boolean masking
General principle. Boolean masking is a popular counter-
measure against side-channel attacks. It consists in repre-
senting all the sensitive variables x of a leaking implemen-
tation as encodings {x} which are collections of d shares xj

such that x =
∑d−1

j=0 x
j . The minimum target property of

most masking schemes is called probing security: it ensures
that an adversary who can observe d − 1 noise-free inter-
mediate values (i.e., probes) in an entire implementation
cannot learn any information about x. For encodings, it is
easily obtained since regardless the value of x, every xj is
uniformly distributed, so any subset of at most d− 1 shares
remains independent of the x. Computing on encodings
while preserving probing security is more challenging but
not necessary for our following investigations.

Under the assumption that the actual shares’ leakages
are sufficiently noisy and independent, probing security
ensures that for any side-channel adversary having access
to physical observations for all the intermediate variables,
the complexity of the attack grows exponentially in d [7],
[8], [9]. More precisely, the impact of masking on the MI is
reflected by the following inequality:

N⋆
kr ≥

c∏d−1
j=0 MI(L; Xj)

, (1)

where MI(L; Xj) is the information on a single share [9].
Impact on leakage PDF. Since masking involves random-
ness, the true leakage PDF f (l |x) becomes a mixture with
the following expression:

f (l |x) =
∑
{x}

p ({x}) · f ′( l | {x} ). (2)

3. Excepted in the case of simulated attacks, which therefore come in
handy for comparing distinguishers (as we will do next), but do not
help for the analysis of concrete implementations.

4. Note that the same sampling strategy can be used in order to
estimated the MI, which can be useful in case its direct computation
becomes intensive (e.g., due to large dimensionalities).

It is therefore a weighed sum of |X|d terms, each of them
being the leakage PDF conditioned to an encoding {x}.
The weights are the probabilities p ({x}) that the processed
encoding of x is {x}. In our context, where the randomness
is (assumed) ideal, this probability is uniform.

2.4 Profiled distinguishers

We now detail various methods to estimate a model PMF
p̂ (x | l) or PDF f̂ (l |x) from profiling samples (l, {x}).5

2.4.1 Gaussian Mixture Template Attack (GMTA).

A first solution to build a model is simply to estimate all
the PDFs in Equation 2. The complete estimated conditional
PDF of x is then expressed as:

f̂ (l |x) =
∑
{x}

p({x}) · f̂ ′( l | {x} ), (3)

where every f̂ ′(·|·) is the estimated conditional PDF for one
component of the mixture. In this work, we propose to use
the usually considered Gaussian approximation for this PDF
and next call the resulting distinguisher GMTA.

We note that this approach is computationally inten-
sive. During the profiling phase, a template must be built
for every possible encoding {x}. This increases the total
number of templates to |X|d where |X| is the number of
possible values for x. During the attack phase, in order to
recover f̂ (l |x), the mixture must be explicitly computed
and therefore requires O(|X|d) operations per attack trace.

2.4.2 Multi-Layer Perceptron (MLP).

A Multi-Layer Perceptron aims at directly approximating
the discriminative model p̂ (x | l) – seen as a multivariate
function of l – thanks to a composition of elementary
functions (a.k.a. layers), alternating between linear layers
(denoted as λ), non-linear element-wise activation functions
(denoted as σ), and a final softmax normalization layer
(denoted as s). More precisely, in this study we use MLPs
with only one intermediate layer, as follows:

p̂ (x | l) = s ◦ λ|X| ◦ σ ◦ λC(l) , (4)

where C denotes the number of neurons in the hidden layer,
i.e., the output dimension of the first linear layer.

Each layer is fully described by inner parameters whose
values are tuned during the profiling phase. This step is
done by maximizing the likelihood of the model outputs
given the profiling data providing the ground truth.

Such models are known to be very expressive, since
the approximation error can be made arbitrarily small by
increasing C , provided that λ is not a polynomial [55]. Thus,
MLPs represent a powerful tool when no further hypothesis
can be made on the true leakage model to approximate. As
a drawback, they may require more profiling data to tune
their parameters. In our experiments, we chose ReLU as an
activation function, and C = 1, 000, similarly to the settings
used in the previous work of Masure et al. [53].

5. Recall that the PMF can be derived from the PDF using Bayes.
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2.4.3 Soft Analytical Side-Channel Attack (ESASCA).
In order to limit the computational complexity of GMTAs,
an alternative solution is to express every f̂ ′(·|·) from the
(independent) leakage on each of the shares in {x}, leading
to the following expression:

f̂ (l |x) =
∑
{x}

p({x}) ·
d−1∏
j=0

f̂ ′( l |xj ), (5)

where f̂ ′(l, xi) is the PDF estimated for the share xi. The lat-
ter can be viewed as an application of Soft Analytical Side-
Channel Attacks (SASCA) limited to an encoding rather
than an entire circuit [51]. This strategy has demonstrated
its interest in the context of masked software implemen-
tations [56]. We next denote it as Encoding-only SASCA
(ESASCA). ESASCA is a SASCA for which the factor graph
has a tree structure with the root being the secret and the
leaves begin the shares. In the case where f̂ ′(l, xi) is esti-
mated with a Gaussian distribution, we call it G-ESASCA;
in the case MLPs are used, we call it MLP-ESASCA.

The main advantage of this strategy is that during pro-
filing, the PDFs do not need to be estimated on the entire
encoding but only on the shares independently. As a result,
the number of templates is reduced down to d · |X|.

Its main drawback is that by making such an indepen-
dent estimation of the leakage PDF for each component,
ESASCA is unable to detect flaws due to physical defaults
(like glitches or couplings) that could reduce the statisti-
cal security order of the implementation (defined as the
highest statistical moment of the leakage distribution that
is independent of the secret). We call such a strategy order-
preserving to reflect the fact that it targets the maximum
statistical security order of the masking scheme. We mention
that a similar approach (with same advantages and draw-
backs) can be applied to other masking schemes [57].

2.4.4 Expectation-Maximization (EM).
The next approach we study is based on the EM algo-
rithm [28], [50]. It is an iterative procedure that allows esti-
mating the parameters of a mixture of Gaussian PDFs and
can therefore be used to model Equation 2. The parameters
that the EM algorithm has to estimate are the means and
the covariances of each of the components f̂ (l | {x}), the
weight of each component being known and equal to {x}.
During the profiling phase, one mixture must be estimated
per possible x meaning that EM must be executed |X| times.
Each EM execution has to model a mixture with |X|d−1

components. In our experiments, the EM algorithm is ran
for a maximum of 200 iterations. During the attack phase,
the mixture is explicitly computed as in a GMTA, leading
to a computational complexity of O(|X|d). The adversary
/ evaluator could model a smaller number of components
leading to more (computationally) efficient heuristic attacks.

2.4.5 Kernel Density Estimator (KDE).
For completeness, we briefly recall hereafter the princi-
ples of some other estimators considered by Lerman and
Markowitch, that we use in this paper for comparison. The
first one is a non-parametric method called KDE. It estimates

the leakage pdf thanks to a kernel function, computed based
on the empirical leakage distribution of the profiling traces.
In our experiments, we used a Gaussian kernel with a band-
width of 1. We refer the reader to Lerman and Markowitch’s
paper for more technical details [45, Sec. II.B.3]. The main
advantage of such estimators is that they do not rely on
strong assumptions regarding the leakage – e.g., it may
be assumed not to be Gaussian, contrary to parametric
methods. Unfortunately, this comes with a major drawback,
since they suffer from the so-called curse of dimensionality.
This phenomenon informally states that the estimation error
of KDE scales withO

(
n− p

p+|X|
)

, where p denotes a smooth-
ness parameter [58], [59]. Accordingly, unless assuming that
the leakage belong to a class of very smooth functions, the
estimation error increases exponentially with the leakage
dimensionality – and thereby the masking order.

2.4.6 Random Forest (RF).
The last type of estimator we consider in this study is
also considered by Lerman and Markowitch in their initial
work. Random Forests (RF) is a particular case of ensemble
method, where a collection of weak estimators – i.e. perform-
ing slightly better than randomness – are combined together,
e.g. with a majority rule, to provide a meta-estimator. In the
case of RF, the weak estimators are some decision trees.
Provided that the latter ones are not fully correlated, the
meta-estimator can reach higher levels of accuracy [60]. In
our experiments, we use the same setting as Lerman and
Markowitch, namely with 100 trees, each of depth equal
to 10. Since the output scores are computed by pro rata of
the outcomes of each decision tree, the number of decision
trees must be set depending on the required resolution in
the output scores. Intuitively, the more trees in the random
forest, the higher the score resolution. A higher resolution
may be needed if the bit size κ or the noise level increases.

3 METHODOLOGY

In this section, we detail the methodology we used in or-
der to compare profiled side-channel distinguishers against
masked implementations. We first describe our simulated
attack framework and follow with a description about how
we use the PI metric to compare distinguishers.

3.1 Simulation framework

Our experimental analyzes are based on simulated leakages.
The rationale behind this choice is similar to the one of
Lerman and Markowitch [45]. Since we aim to compare
distinguishers, it allows us to evaluate them in different
well-controlled scenarii (e.g., low-noise, high-noise), which
considerably simplifies the interpretation of the results. We
note however that all the distinguishers we consider have
been applied to real traces in previous works (e.g., [61] for
GMTA, [53] for MLP, [56] for ESASCA and [34] for EM).

More precisely, we first consider a simulated masked
(flawless) implementation as graphically represented in Fig-
ure 1. To simulate the leakage of a secret κ-bit variable x,
d−1 first shares are drawn at random from the set of all κ-bit
strings {0, 1}κ. The last share is set with xd−1 = x⊕∑d−2

j=0 x
j



5

x0 ← {0, 1}κ x1 ← {0, 1}κ . . . x⊕∑d−2
j=0 x

j

HW (·) HW (·) HW (·)

+ + +η0 η1 ηd−1

lx
0

lx
1

lx
d−1

Figure 1: Simulation of masked a implementation.

in order to ensure that x =
∑d−1

j=0 x
j . The leakage vector

l is then defined as the concatenation of all the leakage
lx

j

= HW (xj) + ηj where HW (·) is the Hamming weight
function and ηj is a Gaussian noise with variance σ2.

Since some of the distinguishers we consider are order-
preserving, we additionally consider the case of a flawed
masked implementation, in order to determine the security
gaps that may appear when targeting the maximum security
order despite physical defaults. We use the setting of [9]
for this purpose, and assume a 2-share implementation
with a first-order flaw. In this case, the simulated leakages
additionally contain a value lx = f ·HW (x) + η. The noise
η is again a Gaussian random variable with variance σ2.
The parameter f captures the amplitude of the flaw (or its
SNR). If f = 0, the independence assumption is met. As f
increases, it is expected that the first-order leakage will be
more and more dominating over the second-order one.

Overall, the proposed simulations take three parameters.
The number of shares d, the noise variance σ2 and the
first order-flaw magnitude f . When relying on simulations,
these parameters are known and so is the true leakage
PDF f (l |x) that is defined by Equation 2. As discussed
in subsection 2.2, knowing this PDF allows us to compute
the MI which is representative of the best-possible attack. In
the next sections, it will enable us to compare the PI of the
proposed distinguishers to this optimal MI value.

3.2 How to compare two distinguishers?
In this work, we make use of information theoretic met-
rics in order to compare profiled distinguishers. For this
purpose, we denote as PÎfn(X, L) the PI of the model for
which n profiling measurements are used to estimate the
PDF f̂ (l |x). We use a similar notation for the PMF p̂ (x | l).
We then consider the following two criteria:

Profiling complexity. The first way to compare distinguish-
ers is to evaluate their performances by fixing their profiling
data complexity (i.e., the number of traces acquired during
the profiling phase) to n. Comparing the PI values in this
case answers the question: “For a given data complexity n,
what is the best model for the adversary?”. That is, since having
a larger PI implies an online attack with lower number of
traces, we can deduce that if:

PIf̂1n ≤ PIf̂2n , (6)

then the best strategy for the adversary is to use f̂2 (· | ·). We
stress that this comparison is conditional to n: a tool may
be better for some a small n and not for a larger one. A

natural way to compare profiling complexity is to extract
the n values needed to reach a positive PI (i.e., a model that
is sufficiently accurate to allow key recoveries).

Online attack complexity. The second way to compare
distinguishers is to analyse the asymptotic PI value that is
reach by a model. For this purpose, we denote as PÎf∞(X,L)
the PI of a model for which n is sufficiently large for per-
fectly estimating all its parameters, which we assume to be
the maximum reachable one. This value then indicates the
complexity of the best online attack that can be performed
with this model. Applied to a pair of models, it typically
leads to inequalities like:

PIf̂1∞ ≤ PIf̂2∞ ≤ MI. (7)

From an evaluator’s viewpoint, it answers the question:
“What is the best attack that can be performed if my profiling
phase is sufficient for my model to converge?”.

4 DISTINGUISHER CLASSIFICATIONS

Before performing quantitative (experimental) comparisons
in the next section, we propose a systematic contextual-
ization of the distinguishers we study. We consider both
the tools studied by Lerman and Markowitch in [45] and
the new ones we list in subsection 2.4. The resulting clas-
sification is sumarized in Table 1. We next develop it by
first highlighting the importance of (masking) randomness
knowledge during profiling and then discussing assump-
tions on the PDF that may reduce the profiling complexity,
possibly at the cost of less efficient online attacks.

Known
masks

Gaussian
distri.

Gaussian
comps.

Order-
preserving

MLP ✗ ✗ ✗ ✗
RF ✗ ✗ ✗ ✗

KDE ✗ ✗ ✗ ✗
EM ✗ ✗ ✓ ✗

GMTA ✓ ✗ ✓ ✗
G-ESASCA ✓ ✗ ✓ ✓

MLP-ESASCA ✓ ✗ ✗ ✓
HO-GTA ✗ ✓ ✗ NA

Table 1: Classification of distinguishers according to the a
priori assumptions made on the leakage distribution.
✓ means that the given algorithm relies on the given as-
sumption to work, whereas ✗ means that the given assump-
tion is not mandatory to run the given algorithm.

4.1 Randomness knowledge

Allowing an adversary / evaluator to know the randomness
used during the profiling stage of a side-channel attack
generally allows estimating a model with a smaller pro-
filing data complexity n. Yet, an important question is to
determine whether such an assumption is only a useful
shortcut for evaluators (as promoted in [62]) or if it also
creates a complexity gap in the online attacks. In other
words, does this randomness knowledge only speed up
evaluations, leading to online attacks that could also be
reached by determined adversaries without this shortcut
(with more profiling), or are there realistic examples where
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profiling without masks knowledge cannot lead to the same
online attacks as profiling with masks knowledge?

In order to contribute to this question, we evaluate two
types of distinguishers. The first type does not require the
knowledge of the randomness during profiling, and directly
builds an estimate f̂ (· | ·) for the full PDF f (· | ·), or p̂ (· | ·) for
the full PMF p (· | ·). The MLP, EM, Random Forest (RF) and
Kernel Density Estimation (KDE) distinguishers typically
fall in this category.6 The same holds for Higher-Order
Gaussian Template Attacks (HO-GTA) such as [31], [32].
The second type of methods does require the knowledge
of (l, {x}) during profiling, in order to decompose f (· | ·) in
multiple simpler PDFs f ′(·|·). Indeed estimating f ′(·|·) for
each of the modes in the mixture requires to know which
mode is the one corresponding to the profiling trace l. The
GMTA, G-ESASCA and MLP-ESASCA distinguishers are
representatives candidates of this second category.

4.2 A priori PDF assumptions
Another natural way to speed up the profiling of a model
(and possibly to make the online distinguishers more effi-
cient) is to rely on good a priori assumptions on the leakage
PDF f (· | ·). As a counterpart, if these assumptions are not
correct, the estimated distribution may not converge to to
true PDF so that PI∞ < MI, indicating that an online attack
using this model will be suboptimal. We next detail two
assumptions that we will consider in our experiments.

4.2.1 Gaussian components
We first note that assuming a Gaussian distribution is com-
mon when targeting unprotected devices [27]. However,
when the masking countermeasure is implemented, it is ex-
pected that this assumption is not valid anymore, since the
masking randomness turns the distribution into a mixture.
A natural extension is to assume that the distribution of each
component in the mixture is Gaussian so that:

f ′(l|{x}) ≈ N (µ{x},Σ{x}). (8)

As in the unprotected case, the interest of this assumption is
that it reduces the parameters that must be estimated during
profiling to only a mean vector µ and a covariance matrix Σ.
Estimating this covariance has a cost that is quadratic in the
size of L, which is significantly cheaper than non-parametric
estimators based on histograms or Kernels (of which the
cost grows exponentially in this size). The EM, GMTA and
G-ESASCA attacks take advantage of this assumption.

4.2.2 Independent shares’ leakages
Eventually, another hypothesis about the leakage PDF that
speeds up the profiling of a masked implementation is to
assume that all the shares leak independently. As a result,
each component of the PDF f (· | ·) is approximated with:

f ′( l | {x} ) ≈
d−1∏
j=0

f̂ ′( l |xj ), (9)

where one single PDF f̂ ′( l |xj ) must be estimated per share.
The main interest of this assumption is to scale gently

6. For the last two ones, we refer to [45].

with the number of shares. Namely, and as detailed in
subsubsection 2.4.3, the number of templates to estimate
grows linearly with the number of shares, while it grows
exponentially for methods like GMTA (which also makes
its computation during the online attack computationally
intensive as the number of shares increases) [19].

It is important to note that the independent leakage
assumption is usually considered as a design assumption that
engineers implementing masking have to fulfill [9], [13],
[14]. Failing to meet this assumption may lead the worst-
case security level of an implementation to be lower than
expected. By contrast, we here consider it as a distinguisher
assumption. So analyzing an implementation under this as-
sumption when it is not fulfilled may lead to a false sense of
security (i.e., to the PI extracted with a model exploiting this
assumption being lower than the MI). In particular, if the
shares of a masked implementation do not leak (sufficiently)
independently due to a physical default like glitches or
couplings, an adversary using this assumption will not be
able to detect and exploit this flaw. For this reason, we use
the terminology “order-preserving” for the distinguishers
assuming independent shares’ leakages in Table 1. In this
work, only the ESASCA-based attacks (i.e., G-ESASCA and
MLP-ESASCA) are doing such an hypothesis.

5 EXPERIMENTAL (SIMULATED) RESULTS

We now move to the presentation of our simulated ex-
periments. We structure the section in three main parts.
First, we estimate IT metrics to compare different profiled
distinguishers in a setting corresponding to a “properly
implemented” masked implementation (i.e., without flaw)
with 2 and 3 shares. We use this experiment to discuss the
profiling complexity and online attack complexity of attacks
against the masking countermeasure, in function of the
implementation context and the assumptions used by the
distinguishers. Second, we validate our findings by running
simulated attacks with these distinguishers and report the
corresponding Guessing Entropy (GE) [46]. Eventually, we
evaluate the extent to which the presence of a flaw in the
masking can lead the order-preserving distinguishers to
overstate the security level of an implementation in subsec-
tion 5.3. For all the following results, the sensible variables
are 4-bit wide such that κ = 4. The meta-parameters for the
distinguishers are additionally reported in Appendix ??.

For these purposes, we selected representative distin-
guishers from the categories of Table 1, namely MLP, EM,
GMTA, G-ESASCA and MLP-ESASCA. We excluded the
KDE and RF distinguishers from the IT analysis: the first
one because it consistently led to significantly more com-
putationally intensive attacks than the MLP-based one (see
Appendix B) while not providing better results in terms
of data complexity; the second one because it does not
provide the probabilities needed in order to estimate our
information theoretic metrics. Yet, both tools are considered
in the GE estimations of subsection 5.2. We also did not
consider HO-GTAs in our comparisons since they are based
on the estimation of statistical moments rather than full
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distributions and we see their motivation as the assessment
of a statistical security order rather than efficient attacks.7

5.1 Flawless masked implementation
The convergence of the PI metric estimated for our inves-
tigated distinguishers is given in Figure 2 for a 2-share
implementation, with SNRs of 10, 1 and 0.1 and in Figure 3
for a 3-share implementation with SNRs of 10 and 1.8 It
leads to the following three main observations:

1) The value of the asymptotic PI reaches the value of the
MI for all the investigated distinguishers. This implies
that all these distinguishers can lead to worst-case at-
tacks if profiled with a sufficient amount of traces. This
observation is naturally explained by the fact that the
assumptions exploited by some of these distinguishers
are all fulfilled in this first simulated setting.

2) By contrast, the speed of convergence of the different
distinguishers, and therefore their profiling complexity,
significantly varies. As expected, the distinguishers that
have the lowest profiling (data) complexity are also the
ones that take advantage of more assumptions. Con-
cretely, we observe that the G-ESASCA is the fastest,
followed by MLP-ESASCA, GMTA, MLP and EM.

3) The ordering of the distinguishers in terms of profiling
complexity is independent of the SNR and number of
shares, but the quantitative gap between them increases
as the SNR decreases and the number of shares in-
creases (i.e., for better protected implementations).

The first point is particularly important regarding the ques-
tion raised in subsection 4.1. Namely, it shows that for the
flawless masked implementation simulated in this section,
a determined adversary profiling without masks knowledge
can reach the same attack efficiency as an evaluator leverag-
ing this knowledge. So it confirms the masks knowledge as
a useful shortcut for evaluations which does not affect the
final security claims in terms of online attack complexity.

5.2 Validation with Guessing Entropy
We confirm the previous observations by running simulated
attacks and by reporting the GE, which is the average
position of the correct subkey k in the list of subkey can-
didates provided by an attack [46]. Precisely, in Figure 4
and Figure 5, we report the GE depending on the number
of measurements used by the adversary. As expected, the
GE decreases as the number of measurements Na increases.
These plots include the RF distinguisher, as well as the KDE
one in settings whenever it was tractable (i.e., for attacks
with low profiling complexity), which allows comparison
with the results of Lerman and Markowitch [45].

The attacks of in Figure 4 are performed for two shares
and with SNR = 1, which corresponds to the same sim-
ulated implementation as the PI curves of Figure 2b. The
different plots correspond to different profiling (data) com-
plexities n. As expected from the PI curves, n = 103 is

7. It is for example shown in [24] that they can require significantly
more data to attack than a distribution-based distinguisher in low noise
conditions, while it is shown in [6] that they reach the same data com-
plexity as distribution-based distinguishers in high-noise conditions.

8. The y-axis called IT reports the MI and the PI for each of the
distinguishers. The x-axis n reports the profiling data complexity.
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Figure 2: Flawless 2-share implementation profiling.
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Figure 3: Flawless 3-share implementation profiling.

sufficient for GT-ESASCA to converge. As n increases, all
the distinguishers converge towards the results obtained
with GT-ESASCA. The results of subsection 5.1 are there-
fore confirmed: distinguishers with additional hypotheses
about the leakage distribution require a smaller profiling
complexity when these hypotheses are fulfilled. A similar
trend is observed for larger noise variances (e.g., SNR = 0.1)
as reported in Figure 5. Eventually we report the running
time for each of the distinguishers in Appendix B.

5.3 Flawed masked implementation
We complement the previous analysis with the case of
a flawed masked implementation, in order to determine
the extent to which the order-preserving distinguishers can
overstate security. We focus on the online attack complexity
reflected by the asymptotic PI value in this case, since a
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Figure 4: GE according to the number of attack traces Na,
for d = 2 and SNR = 1 (flawless implementation).
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Figure 5: GE according to the number of attack traces Na,
for d = 2 and SNR = 0.1 (flawless implementation).

flaw in a masked implementation is not expected to affect
our conclusions regarding the profiling complexity of the
distinguishers (as confirmed in Appendix A, Figure 8).

We first illustrate the possibility of a security overstate-
ment in Figure 6. It shows that while the order-preserving G-
ESASCA and the MLP distinguishers both have an asymp-
totic PI equal to the MI independent of the SNR when there
is no flaw in the masked implementation (in the left part
of the figure), the presence of a flaw makes the PI of the
G-ESASCA distinguisher significantly lower than the MI in
the presence of a flaw (in the right part of the figure).
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Figure 6: Flawed 2-share implementation: asymptotic PI.

We then systematize this investigation in Figure 7, which
shows how the security overstatement of the G-ESASCA
distinguisher increases with the amplitude of the flaw (i.e.,
the f parameter), while the MLP distinguisher preserves an
optimal PI value independent of the f parameter. As ex-
pected from Table 1, we observe a similar trend from MLP-
ESASCA which is also a order-preserving distinguisher.

Overall, the results in this section confirm that while
using the masking randomness in an evaluation is sound for
the investigated case studies, the order-preserving assump-
tion can lead to security overstatements. Whenever used in
the evaluation of a leaking implementation, it is therefore
important to confirm in parallel that it is sufficiently fulfilled
(i.e., that the f parameter is low enough), for example
using moment-based detections or attacks [21], [32] or, more
formally, by relying on leakage certification [43].

Eventually, the above experiments were performed for a
fixed set of meta-parameters. We refer to Appendix C for a
discussion about their influence on our conclusions. We also
provide an source code enabling to reproduce our results
and to change these meta-parameters: https://github.com/
uclcrypto/efficient profiled attacks extended.

6 CONCLUSIONS

One of the long-standing open problems in the evaluation of
cryptographic implementations against side-channel attacks

https://github.com/uclcrypto/efficient_profiled_attacks_extended
https://github.com/uclcrypto/efficient_profiled_attacks_extended
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Figure 7: Flawed 2-share implementation: asymptotic PI/MI.

is to determine what are the adversarial capabilities to
consider. In the context of masked implementations, this
question is typically reflected by a dilemma regarding the
knowledge of the shares during profiling. On the one hand,
knowing this randomness can significantly speed up the
evaluations. On the other hand, and to the best of our
knowledge, the question whether it leads to a gap between
online attacks that can be performed in an evaluation con-
text and more concrete attacks profiled without access to this
randomness remains open (see [63] for a recent discussion).
In this paper, we first contribute to this issue and show that
for implementations with large enough noise (so that the
masking countermeasure is effective), determined adver-
saries can reach the same (worst-case) attack complexities
as evaluators, with only a penalty in profiling complexity.

We complement this main conclusion with a systemati-
zation effort and evaluate the impact of other solutions that
may simplify the evaluation problem, by positing sound
assumptions on the leakage distribution. We show that
such assumptions are in general useful from the profiling
complexity viewpoint but (as theoretically known), can lead
to a false “sense of security” in case the actual leakages
significantly deviate from the evaluator’s assumptions. We
therefore propose a classification of profiled distinguishers
in function of the assumptions they make, which we hope
can help evaluators selecting the appropriate statistical tools
in function of the implementations to analyze.
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APPENDIX A
IT CURVES FOR FLAWED IMPLEMENTATIONS
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Figure 8: Flawed 2-share implem.: profiling with SNR = 1.

APPENDIX B
DISTINGUISHER’ RUNTIMES

Figure 9 contains the running times for profiling and attack
(to process a single trace) according to the number of traces
available during profiling. Generally, we observe that ad-
ditional hypotheses and randomness knowledges leads to
more efficient profiling from the computational viewpoint
as well. In particular, GMTA and G-ESASCA are the most
efficient for profiling. During the attack phase, only KDE
has a runtime increasing with the number of profiling traces
making its interest limited for protected targets (i.e., with
large n values) . We stress that the analyses presented in
this paper are primarily focused on the data complexity.
These time complexity values are given for completeness
and could be further optimized. Their main goal is to show
that the one-time profiling effort of practically-relevant dis-
tinguishers is not unrealistic computationally.

APPENDIX C
INFLUENCE OF META-PARAMETERS.
The results presented in this work are done for a given
setting of hyper-parameters (see the description of each
estimator in subsection 2.4). One may wonder whether
the results presented may evolve depending on the choice
of meta-parameters in some models, e.g., MLP or RF. We
argue hereafter that the trends depicted in this work remain
mostly unchanged when modifying the meta-parameters.
Like comparing two different models, comparing two meta-
parameters may be discussed in terms of profiling complex-
ity or online attack complexity (see subsection 3.2).
MLP. For MLP, we chose a light architecture with one
hidden layer of 1, 000 neurons, and a Rectified Linear Unit
(ReLU) activation function. The choice of the activation
function affects the approximation error, as long as it is
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Figure 9: Time complexity of different distinguishers when
profiling and attacking. The profiling values include the full
profiling process and the attacking values are normalized
by the number of exploited traces. The MLP distinguisher
is running on a GPU. Other distinguishers are implemented
with sklearn and numpy running on a single CPU.

not a polynomial [55]. This means that the online attack
complexity is not sensitive to the choice of the activation
function. Likewise, Masure et al. empirically verified that the
approximation error is negligible in a similar experimental
setting with higher-order masking (up to d = 4). This
not only suggests that increasing the number of neurons
shall not increase the online attack complexity, but also that
decreasing the number of neurons in the case where d < 4
should not affect much the online attack complexity.

Regarding the profiling complexity, it is known that the
convergence rate of MLP is roughly proportional to the
number of parameters to fit [64]. Since even when using
our light architecture, we got the slowest convergence in
Figure 2 and Figure 3, repeating the same comparisons,
up to a more complex architecture should not make the
convergence faster. Hence, the trends observed in Figures 2
and 3 should remain essentially unchanged.
RF. For RF, increasing the number of trees may improve
the online attack complexity (up to a computational over-
head) [65]. Nevertheless, as suggested by Figure 5b, the
asymptotic performance of RF relatively to the other esti-
mators suggests that the number of decision trees is high
enough for our experiments. Moreover, the number of deci-
sion trees should not impact much the profiling complexity
– beyond the asymptotic performance –, as the amount of
data used to design each decision tree does not depend on
the number of trees [60]. Accordingly, decreasing the num-
ber of decision trees is not expected to significantly improve
the performance. As explained in subsubsection 2.4.6, more
decision trees in the random forest may however be needed
for a higher noise level, or a higher bit size.
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