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Abstract. Masking is an important countermeasure against side-channel
attacks, but its secure implementation is known to be error-prone. The
automated verification and generation of masked designs is therefore an
important theoretical and practical challenge. In a recent work, Knichel
et al. proposed a tool for the automated generation of masked hard-
ware implementations satisfying strong security properties (e.g., glitch-
freeness and composability). In this paper, we study the possibility to
improve their results based on manual performance optimizations for the
AES algorithm. Our main conclusion is that as the target architecture
becomes more serial, such a handcrafted approach gains interest. For ex-
ample, we reach latency reductions by a factor six for 8-bit architectures.
We conclude the paper by discussing the extent to which such optimiza-
tions could be integrated in the tool of Knichel et al. As a bonus, we adapt
a composition-based verification tool to check that our implementations
are robust against glitches & transitions, and confirm the security order
of exemplary implementations with preliminary leakage assessment.
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1 Introduction

Side-channel attacks relying on the exploitation of physical information leakage
such as the power consumption or the electromagnetic radiation of cryptographic
implementations are an important security threat. The masking countermeasure
is a standard answer to this threat [CJRR99]. Its underlying principle is to com-
pute over secret-shared intermediate variables that are individually independent
of the secret data manipulated by a device. For this purpose, the designs to
protect are typically split in small operations (e.g., AND and XOR gates) which
are then replaced by gadgets able to compute securely over shared data.

The evaluation of masked implementations is a tricky task. On the one hand,
the security of small gadgets may not directly extend to their combination, lead-
ing to so-called composition issues [CPRR13,BBD+16]. On the other hand, phys-
ical defaults such as glitches can break the independence assumptions needed
for masking to be secure [MPG05,NRS11]. These issues can also be combined
leading to additional challenges [FGP+18,MMSS19]. This state-of-the-art has



motivated an increased interest for the automated verification of masked im-
plementations [BBD+15,BGI+18,BBC+19,KSM20]. The automated generation
of these implementations therefore appears as the natural next steps, and first
efforts in this direction can be found in [BDM+20,KMMS22].

In this paper, we are in particular interested in the work of Knichel et al.,
which introduced a tool, AGEMA, allowing inexperienced engineers to gener-
ate masked implementations from unprotected ones [KMMS22]. At high-level,
the tool leverages the Hardware Private Circuits (HPC) scheme introduced
in [CGLS21] and variations thereof. The HPC scheme provides strong composi-
tion properties in the presence of hardware defaults such as glitches and comes
with the fullVerif tool which allows checking if the requirements needed for the
composition theorems to hold are respected in practice. By combining AGEMA
and fullVerif, Knichel et al. made a significant step towards improving the us-
ability of masking schemes in hardware. Yet, and as usual when considering
automation, these advances also raise the question whether the implementations
obtained compete with manually optimized ones. In other words, can all the
architecture-level optimizations that an experienced designer would exploit be
automated, and if not, what is the performance gap that they lead to?

We contribute to this question by presenting the results of different masked
hardware implementations of the AES, designed to take advantage of the inher-
ent pipeline of complex blocks based on the HPC2 gadgets. In particular, we first
point out that AGEMA’s generated implementations are suboptimal in terms of
latency. We propose an optimization strategy and demonstrate that using it gives
better result for the implementation of specific blocks such as the AES S-box.
Second, we propose optimized masked AES implementations based on 8-bit, 32-
bit and 128-bit loop architectures. We show that the latency of our handcrafted
designs is significantly improved w.r.t. the ones generated by AGEMA in the 8-
bit case, while the gains tend to vanish for the larger architectures. Concretely,
our results therefore provide improved masked implementation results for the
AES-128 algorithm based on a state-of-the-art masking scheme. More generally,
we also use our investigations to discuss tracks that could be used to improve the
performances of automatically generated masked implementations for tools like
AGEMA. Eventually, and as an additional contribution, we analyze the secu-
rity of our implementations, first in the robust probing model with glitches and
transitions using the fullVerif tool, which we modified to verify the transition-
robustness conditions introduced in [CS21].1 We finally confirm these results by
means of leakage detection tests on exemplary implementations.

Related works. Many hardware masking schemes are proposed in the literature.
For example, the proposals in [CRB+16,GMK17] aim at similar goals as HPC,
with less formal composability guarantees. Our focus is on the HPC scheme
because it has been selected for automation in [KMMS22], but we believe our
main conclusions regarding automation are mostly independent of this choice.

1 The verification of the transition-robustness has been integrated in the latest version
of fullVerif at https://github.com/cassiersg/fullverif.

https://github.com/cassiersg/fullverif


Paper structure. The paper is organized in 3 parts. First, we describe the AES-
128 algorithm and recall some specificities about the HPC2 masking scheme.
We also provide brief explanations about the fullVerif and AGEMA tools. Next,
we detail the construction of the protected S-box as well as the three AES
architectures considered in this work. Finally, performance metrics and basic
side-channel analysis results are presented.

2 Background

Advanced Encryption Standard. The Advanced Encryption Standard (AES) is a
symmetric key algorithm standardized by the NIST in 2001. Its variant AES-128
operates on 128-bit state with 128-bit secret key. Both the state and the key can
be represented as 4x4 matrices of 16 bytes each. The algorithm is composed of 10
rounds, each one being composed of 4 different operations. First, the SubByte

operation is a non-linear substitution operating on each byte independently.
Second, the ShiftRows operation is a cyclic shift of 1, 2 or 3 positions of each
byte in the last three rows. Third, the MixColumns operates over each column of
the state independently. The later are considered as polynomials with coefficients
over GF(28) and are multiplied modulo x4 + 1 by the fixed polynomial 03x3 +
01x2 + 01x + 02. Finally, the AddRoundKey operation adds the round key by
performing a bitwise XOR operation. It has to be noted that the MixColumns

operation is not performed in the 10-th (i.e., last) round and an AddRoundKey is
performed before the first round.

Each round key is derived with a key scheduling algorithm applied at each
round on the previous round key. First, the last column is rotated by one byte up.
Next, the SubByte operation is applied on each byte of the resulting column and
the round constant is added using a bitwise XOR operation. The first column of
the new round key is obtained by applying a bitwise XOR between the column
obtained after the round constant addition and the first column of the key.
Finally, the new value of the i-th column is obtained by bitwise XORing the i-th
column of the key and the i− 1-th column of the new round key.

HPC2 masking scheme. The hardware private circuits introduced in [CGLS21]
come in two flavors: we next focus on the HPC2 variant. In addition to being
glitch-robust, its gadgets are proven trivially composable at any order using the
Probe Isolation Non Interference (PINI) framework [CS20]. The HPC2 scheme
operates over GF(2) (i.e., bitwise) and requires state-of-the-art amount of ran-
domness for its non-linear operation (i.e., AND2 gates). Precisely, each AND2-
HPC2 gadget requires d(d − 1)/2 bits of randomness where d is the number of
shares in the design. A specificity of this gadget is its latency asymmetry: if
the first input sharing enters the gadgets at cycle t, the second input sharing
is expected to enter the gadget at cycle t + 1 and the output is produced at
cycle t+2. Other gadgets performing basic operations have been designed (e.g.,



XORs & MUXes).2 The HPC2 masking scheme requires no refresh gadget, and
the affine/linear gadgets do not require randomness and have no latency.

fullVerif. The open source tool fullVerif is an automated composition-based
program that can verify that the assumptions of the HPC2 security proofs are
fulfilled by a Hardware Description Language (HDL) design. In order to be
checked by fullVerif, the modules’ definitions as well as their ports should be
annotated with specific verilog attributes. These attributes indicates signal’s
properties such as their types (i.e., sharing, control or randomness) or their sizes
and time validity to the tool. Different composition strategies can be specified for
each module in the design. The tool works based on a netlist of the architecture
together with a simulation file in order to build a dataflow graph. The latter is
then used to proceed to different security checks as listed in [CGLS21].

AGEMA is an open source tool presented in [KMMS22]. It automatically gener-
ates masked hardware netlists based on unprotected HDL implementations and
relies on specific annotations of the IO ports at the top level of the hierarchy in
order to identify which part of the circuit should be masked. Working on top of a
synthesized netlist of the full architecture, it propagates the signals annotations
across the hierarchy before implementing the masked parts of the circuit. It of-
fers the choice between different masking schemes relying on the PINI property
(among which HPC2), as well as different optimization strategies depending on
the chosen masking scheme. To ensure the proper synchronization of the signals
across the hierarchy, the tool relies on two approaches: pipelining (i.e., introduc-
ing registers to synchronize all the inputs of each masked gadgets) or clock gating
(i.e., modulating the registers’ clock signals). As shown in [KMMS22], pipelining
implies more area cost while achieving better throughput; clock gating allows
reducing the global cost but results in implementations with larger latency.

3 Architectures descriptions

We now describe our optimized constructions. First, we introduce a generic la-
tency optimization methodology for pipeline blocks based on the HPC2 AND
gadget. It is applied to a bit-level AES S-box, reducing its latency by 25%.
Second, our three AES architectures are detailed, differing by their level of par-
allelism, and more particularly the number of S-boxes instantiated in the design.
Precisely, we next consider an architecture using one S-box instance (8-bit serial),
4 S-box instances (32-bit serial) and 20 S-box instances3 (128-bit serial).

3.1 Masked AES S-box Implementation

Because of its significant cost both in logic and randomness, the masked imple-
mentation of the non-linear SubByte layer requires a particular attention. First,

2 All the gadgets are available in a public verilog library at https://github.com/

cassiersg/fullverif/tree/release/lib_v.
3 16 S-boxes for the rounds computation and 4 for the key schedule.

https://github.com/cassiersg/fullverif/tree/release/lib_v
https://github.com/cassiersg/fullverif/tree/release/lib_v


taking into account the constraint that the HPC2 masking scheme instantiates
gadgets operating over GF(2) only, we need a bit-level S-box representation. We
follow the design choice of [KMMS22] for this purpose, and use the S-box design
proposed by Boyar and Peralta [BP12]. It is only composed of basics operation
over GF(2) (i.e., XOR2, AND2 and NOT gates). To the best of our knowledge,
it is the known representation with the lowest number of AND2 gates. Precisely,
it only requires 34 AND2 gates and its naive implementation using the HPC2
gadgets results in an S-box with 8 cycles latency.

Due to the asymmetry at their inputs, naively replacing basic unprotected
operations in complex circuit with HPC2 gadgets may result in a sub-optimal
area and latency. For example, two different implementations (i.e., unprotected
and masked) of an AND3 gate are shown Figure 1. While the area and latency
for the two unprotected implementations are identical, they differ for the pro-
tected ones. On the left, 4 additional registers are required to ensure the circuit
functionality, and the computation is performed in 4 cycles. On the right, only
2 registers are required and the computation is performed in 3 cycles. Such area
and latency overheads are incurred by implementations (such as AGEMA) that
add a register on one of the inputs of the AND2 gadget to achieve symmetric
latency (which simplifies the design process).
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Fig. 1. Example of AND3 gate implementation using HPC2 gadgets.

Based on this observation, it may be tempting to look for optimal symmetric-
latency gadget-based circuits for more complex operations (e.g., AND3 gates).
However, using a composition of such larger gadgets is still not optimal. For
example, two implementations of an AND5 operation are shown in Figure 2.
On the left, the implementation directly instantiates twice the optimized AND3
construction of Figure 1 and requires 10 additional registers to compute the
results in 6 cycles. On the right, a more optimized implementation only requires
3 additional registers and performs the computation in 4 cycles. Instead of the



“larger gadgets” approach, we optimize directly the latency of a full logic block
(the full S-box), which helps reducing the number of registers in our designs.
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Fig. 2. Example of AND5 gate implementation using HPC2 gadgets.

Generic block latency optimization algorithm. The optimization of a block is
efficiently performed as follows. Starting from the input signals of the logic block
to optimize, the information about the exact time of validity of each signal is
propagated across the circuitry, level by level. For some gadgets that have more
than one input, the latency requirements of all the inputs may not be met.
In such cases, a solution is to insert registers on the input path in order to
meet the timing constraints. In the specific case where the latest signal (i.e.,
the signal being valid with the largest latency) is connected to the input port
with the lowest timing requirement (i.e., the input port at which a signal is first
entering the gadget), then the input connections are switched. This optimization
naturally leads to a solution with a reduced amount of additional registers while
keeping the same functionality as the original circuit.

This (easy to automate) procedure has been used in order to generate the
architecture of the implementations (b) on Figure 1 and Figure 2 . It leads
to significant improvements for the AES S-box implementation. Considering a



latency-equalized version of the AND2-HPC2 gadget from [CGLS21] (as in Fig-
ure 1), the implementation of the Boyar-Peralta S-box requires 156d additional
registers and operates in 8 cycles. With our optimization, it only requires 94d
additional registers and operates in 6 cycles.

3.2 8-bit serial implementation

As depicted in Figure 3, the 8-bit serial implementation takes as input the shared
value of the key sh key and the (unshared) plaintext pt. The later is first rep-
resented as a valid sharing by concatenating d − 1 zero shares to each bit. The
architecture of this implementation is organized around two mains blocks: the
KeyHolder and the StateHolder which store and order the processing of the
round key and of the state. The blocks feed each byte serially during the SubByte
and AddRoundKey layers. Unless otherwise noted, each bus in the architecture is
8-bit wide. In addition, one S-box is instantiated with the block MSKSbox. The
block MSKmc is a combinatorial logic that implements the MixColumns operation
for a full column (i.e., 4 bytes) and consists in d instances of the unprotected
MixColumns operation logic, where each instance processes one state share.
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Fig. 3. Global Architecture of the 8-bit serial implementation.

The shared state and round key are stored in dedicated shift registers of
shared bytes, as shown in Figure 4 and Figure 5. The rounds are computed
serially by performing the SubByte and AddRoundKey operations byte per byte.
The state is processed row per row (i.e., starting with the bytes 0,4,8,12 and
ending with the bytes 3,7,11,15). The four S-box executions occurring during
the key scheduling are interleaved between the processing of the state. To do so,
the mux toSB in Figure 3 is used to feed the S-box instance with a shared byte
coming either from the key, either from the AddRoundKey result. This interleaving
of key scheduling and round processing necessitates the insertion of a buffer at



the output of the S-box to avoid loosing data in cases where the output of the S-
box is valid and a key byte is provided at its input. Indeed, in such cases, the shift
register holding the state is stalled, making any feedback from the S-box to the
state holder impossible. We rely on the pipeline structure of the S-box instance
to reduce the overall latency of the execution. That is, we do not wait for full
S-box execution to be finished before feeding the S-box with valid data. Instead,
we feed it at each clock cycle when its input data is available. Considering
the latency of our S-box design, the full AddRoundKey, SubByte and the key
scheduling operations of a round are performed in SBlat + 16 + 4 = 26 cycles.

The ShiftRows operation is performed in a single cycle by enabling the data
flowing through the state holder with an appropriate routing defined by the
MUXes sh-i (depicted in green in Figure 4). Finally, the MixColumns operation
is performed in 4 cycles, using the MUXes mc-i to route the signals back from
the MC instance (depicted in red in Figure 4). The last AddRoundKey operation
is performed byte per byte in 16 cycles, using the mux lastR in Figure 3 to
bypass the S-box instance. Overall, the latency of a full execution of our 8-bit
implementation is equal to 9× (26 + 1 + 4) + (26 + 1) + 16 = 322 cycles.4
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Fig. 4. 8-bit implementation: architecture of the state holder.

4 A MUX located at the output of the global core is used to control the proper release
of the valid ciphertext. This is not strictly required in the context of our work,
however practical integrations will likely add a logic block computing the recombined
ciphertext. Without our output gating, this would lead to leaking unmasked internal
states of the AES, defeating the masking countermeasure.
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3.3 32-bit serial implementation

The 32-bit serial architecture is also organized around two main blocks contain-
ing the values of the state and the key. As for the 8-bit serial architecture, the
data is stored in 16 register blocks, each of them holding a shared byte value.
A round is computed serially, 32 bits per 32 bits. To do so, four S-boxes are
instantiated in the architecture. The latter are fed either with the result of the
AddRoundKey layer (represented in Figure 7) or by the KeyHolder (in order to
perform the key schedule), as controlled by the toSBi MUXes (see Figure 6).
Finally, a dedicated combinatorial logic block is used to compute the masked
MixColumns operation on a full column.
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Fig. 6. Global Architecture of the 32-bit serial implementation.

Both the StateHolder and the KeyHolder are organized as four shift registers
(see Figures 7 and 8). The AddRoundKey operation is performed with combina-
torial logic before sending the signals to SBi to the S-boxes. Under this mode of
computation, the MUXes loopi (depicted in green in Figure 7) are routing the
data in a loop manner over the shift registers. In such a way, 4 cycles are suffi-
cient to feed the S-boxes with the full state. The positions of the to SBi signals
(i.e., on byte indexes 0, 5, 10 and 15) have been carefully chosen to perform the
ShiftRows operation at the same time as feeding the S-boxes without using a
dedicated clock cycle. For full round computations (i.e., all except the last), the
output of the S-boxes is directly routed to the MSKmc block before entering back



the StateHolder. In the last round, the MUXes mc-i are used to bypass the
MixColumns layer. The last AddRoundKey operation is performed by enabling the
loopi MUXes as well as the key addition.
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Fig. 7. 32-bit implementation: architecture of the state holder.

The key schedule is performed in parallel to the round computation, by inter-
leaving appropriately the feeding of the S-boxes with key bytes. More precisely,
the fourth column of the key is sent to the S-boxes during the last cycle of the
MixColumns computation of the previous round. We take advantage of the S-
box latency to perform the key schedule algorithm in the time lap required to
compute the MixColumns operation. For this mechanism to work properly, the
encryption execution starts by feeding the S-boxes with key material during the
first cycle. The rotation operation is performed via direct routing and does not
require dedicated clock cycle as shown in Figure 6. The addition of the round
constant is performed in parallel to the rotation. Once the SubByte operation is
performed, the new key value is computed column per column during four cycles.
To this end, the dedicated MUXes addi (depicted in red in Figure 8) are config-
ured in such a way that SB rot rc (the output of the S-box) is added to the first
column of the round key. Configuring the addi MUXes, the other columns of the
new round key are then computed by serially adding them to the new column.
The latency of a full encryption is therefore 1 + 10 · (4 + 6) + 4 = 105 cycles.
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3.4 128-bit serial implementation

Compared to the 8-bit serial and 32-bit serial implementations, the organization
of the architecture of the 128-bit serial implementation is more straightforward.
As depicted in Figure 9, it contains all the logic necessary to operate on a full 128-
bit state, as well as the logic required to perform the key scheduling in parallel to
the round computation. In more details, the state and the key sharing sh key are
stored in a register. After the AddRoundKey layer, the state in directly routed to
the SubByte logic composed of 16 S-box instances. Directly following the latter,
the ShiftRows operation is performed at the routing level before entering the
logic for the MixColumns operation, itself composed of four independent blocks,
each operating on one individual column of the shared state. Depending on the
round counter, MUXes are used to feed back to the state register the results
either after the ShiftRows operation, or after the MixColumns operation.

For the key scheduling, four S-box instances are used order to process the 4
bytes of the fourth column of the key in parallel. As for the ShiftRows layer,
the rotation occurring is performed as the routing level, requiring no additional
logic. Finally, combinatorial XOR gadgets are placed at the output of the S-box
in order to finalize the round key. The resulting round key is fed back to the key
holder register. For this 128-bit architecture, it therefore follows that the latency
of a full encryption is 10 · (6 + 1) = 70 cycles.

4 Implementation results

In this section, we present the post-synthesis ASIC implementation results ob-
tained for the different architectures and compare them with results obtained
with AGEMA generated implementation. All the syntheses have been performed
using Genus Synthesis Solution (Cadence) using the TSMC-N65 design kit. We
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complete these results with a brief discussion of physical security guarantees
based on both formal verification and experimental leakage assessment.

4.1 Masked S-box Implementations

Starting with the S-box implementation results depicted in Table 1, our imple-
mentation performs a computation in 6 cycles, which is 25% faster than the 8
cycles obtained by AGEMA for both pipeline and clock-gating synchronization
strategies. This is a direct effect of the input ports switching for AND2-HPC2
gadgets described in Section 3.1. Compared to the S-box with pipelined synchro-
nization, our implementation is approximately 20% smaller (see Table 2). The
first reason for this is the reduced number of synchronization registers thanks
to the lower latency. A second reason for this difference lies in the the im-
plementation of the AND2-HPC2 gadget used by AGEMA: they require more
registers than what is required, i.e., 4d(d − 1) + 3d per multiplication gadget,
while our implementation (which comes from fullVerif’s library) only instanti-
ates 2d+7/2×d(d−1) registers per multiplication. Since both implementations
are fully pipelined, they reach a throughput of one S-box evaluation per cycle.

The comparison with the S-box generated with the clock-gating synchro-
nization strategy is interesting. On the one hand, it avoids all synchronization
registers, but on the other hand, clock gating logic is added, and the multiplica-
tion gadgets are more expensive, as discussed above. The increased cost of the
the multiplication gadgets dominates for d ≥ 3, while for d = 2 the AGEMA
implementation is a bit smaller than ours. In addition to having a higher latency,
the AGEMA clock-gated S-box has a much lower throughput.



Instance
Share
[count]

Seq. area
[GE]

Area
[GE]

Latency
[cycle]

Throughput
[exec/cycle]

AGEMA c.g.* 2 2009 2972 8 0.125

AGEMA c.g.* 3 4625 6822 8 0.125

AGEMA c.g.* 4 8329 12 290 8 0.125

AGEMA pipe.† 2 3024 3981 8 1

AGEMA pipe.† 3 6168 8360 8 1

AGEMA pipe.† 4 10 400 14 356 8 1

New 2 2273 3213 6 1
New 3 4831 6705 6 1
New 4 8354 11 515 6 1

* Clock-gating synchronization mechanism.
† Pipeline synchronization mechanism.

Table 1. ASIC TSMC-N65 S-box implementation results (post-synthesis).

Instance Shares Area [%]* Latency [%]* Area [%]† Throughput [%]†

New 2 +8 −25 −19 +0
New 3 −2 −25 −20 +0
New 4 −6 −25 −20 +0

* Compared to AGEMA with clock-gating synchronization.
† Compared to AGEMA with pipeline synchronization.

Table 2. ASIC TSMC-N65 S-box implementation results comparison (post-synthesis).

4.2 Masked AES Implementations

The previous differences are amplified when considering a full encryption core,
as shown in Tables 3 and 4. Starting with the 8-bit serial architecture, our
new implementation has a 6.4 times lower latency than the ones generated with
AGEMA for both synchronization mechanisms. This is due to the fact that the
hand-crafted control mechanism takes full advantage of the pipeline architecture
of the S-box without adding superficial pipeline levels, speeding up the compu-
tation of the SubByte operation by processing up to 6 bytes of the same AES
encryption in parallel instead of 1. Regarding the throughput, the 8-bit pipelined
AGEMA implementation is better then ours: it is able to optimally use the S-box
pipeline while our implementation dedicates cycles to other operations.

As for the area, our new implementation is roughly 2.6 times smaller than
the one generated with pipeline synchronization. This difference is mainly due to
the very large number of registers needed to achieve a complete round pipeline
for the full AES state and round keys in the AGEMA pipelined implementation.
Compared to the implementations synchronized with clock-gating, the area of



Instance
Share
[count]

Seq. area
[GE]

Area
[GE]

Latency
[cycle]

Throughput
[exec/cycle]

AGEMA 8-bit c.g.* 2 4068 9356
2043 0.000 49AGEMA 8-bit c.g.* 3 7678 16 319

AGEMA 8-bit c.g.* 4 12 375 24 919

AGEMA 8-bit pipe.† 2 25 055 30 338
2043 0.0044AGEMA 8-bit pipe.† 3 38 667 47 302

AGEMA 8-bit pipe.† 4 53 382 65 921

New 8-bit 2 4790 10 634
322 0.0031New 8-bit 3 8571 17 591

New 8-bit 4 13 315 25 915

New 32-bit 2 11 139 19 598
105 0.0095New 32-bit 3 22 399 36 776

New 32-bit 4 37 511 59 217

AGEMA 128-bit c.g.* 2 40 198 63 613
99 0.010AGEMA 128-bit c.g.* 3 92 909 143 100

AGEMA 128-bit c.g.* 4 167 376 254 948

AGEMA 128-bit pipe.† 2 86 317 109 725
99 0.091AGEMA 128-bit pipe.† 3 161 789 211 969

AGEMA 128-bit pipe.† 4 259 307 346 880

New 128-bit 2 47 597 73 699
70 0.10New 128-bit 3 99 859 148 129

New 128-bit 4 171 274 249 011

* Clock-gating synchronization mechanism.
† Pipeline synchronization mechanism.

Table 3. ASIC TSMC-N65 AES encryption implementation results (post-synthesis).

our new architecture is slightly higher, but are of the same order of magnitude.
In more details, the overheads observed for the 8-bit implementations vary from
14% to 4% (for 2, 3 and 4 shares) and are caused by the synchronization registers
used in our implementations. In particular, besides the registers introduced in the
S-box, 48d registers are used in the global architecture (40d in the key schedule,
as shown in Figure 5, and 8d in the global datapath, as depicted in Figure 3).

For the 128-bit implementations, we also achieve a latency reduction and a
throughput increase compared to the AGEMA implementations, but the gain is
much smaller than in the 8-bit case. Our implementation is slightly larger than
the AGEMA clock-gated one, while the pipelined one is larger than ours.

Finally, we also report the result of a 32-bit implementation (an architecture
that was not given in [KMMS22]). It performs a full encryption in 105 cycles,
which is similar to what is achieved by the round-based implementation gener-



Instance Shares Area [%]* Latency [%]* Area [%]† Throughput [%]†

New 8-bit 2 +14 −84 −65 −30
New 8-bit 3 +8 −84 −63 −30
New 8-bit 4 +4 −84 −60 −30

New 128-bit 2 +16 −30 −33 +10
New 128-bit 3 +4 −30 −30 +10
New 128-bit 4 −2 −30 −28 +10

* Compared to AGEMA with clock-gating synchronization.
† Compared to AGEMA with pipeline synchronization.

Table 4. ASIC TSMC-N65 AES enc. implem. results comparison (post-synthesis).

ated by AGEMA. On top of that, its area turns out to be significantly lower
than what is achieved for round-based architectures, making it an interesting
alternative when the area vs. latency trade-off is considered.

4.3 Physical Security

We use a two-step methodology to validate the d− 1-th order security.

As a first step, we use the fullVerif tool to validate that the implementation
satisfies the HPC conditions [CGLS21]. Those conditions guarantee glitch-robust
probing security, but give no assurance against transition leakage. To also take
into account the latter, we relied on the “Optimized composition approach”
presented in [CS21], which ensures security against both glitches and transitions.
In our context, this approach requires the insertion of a pipeline bubble in the
S-box between each AES rounds. In such pipeline bubbles, the data processed
by the S-boxes should not depend on any sensitive input.

We extended fullVerif to check this property. Concretely, using the identi-
fication of non-sensitive pipeline bubbles, the new verification algorithm builds
groups of executions that are not separated by such bubbles for each S-box (in
full genericity, for each PINI but non-affine gadget). Then for each execution
in each group, it checks that none of the input sharings is computed using an
output sharing of a gadget in the same group, which is implemented as a path
existence check in the computation graph.

The second step leverages the TVLA testing methodology in order to val-
idate practical security and rule-out issues that cannot be caught by fullVerif
such as those due to (post-)synthesis optimizations. Namely, we used fixed vs.
random T-tests as a preliminary leakage assessment [GGJR+11]. The measure-
ments were performed on a Sakura-G board running at 6MHz. We conducted
the acquisitions with a PicoScope 5244D sampling at 500MS/s with 12-bit res-
olution. As in [KMMS22], each randomness bit was generated on-the-fly by a
randomly seeded independent instance of the 31-bit maximum length LFSR pre-
sented in [Alf98]. As shown in Figure 10 for the 8-bit implementation, leakage



can be observed starting at second order with 2 shares (1M traces for both test
orders) and at the third order with 3 shares (10M traces for all test orders).
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Fig. 10. Fixed vs random T-test results (AES-128, 8-bit serial architecture).

5 Conclusion

While the automated generation of masked hardware performed by AGEMA
is a significant advance towards improving the usability of masking for non-
expert designers, our results show that there remains room for further perfor-
mance optimizations and therefore raise the question whether our handcrafted
improvements could be integrated in AGEMA. For example, when dealing with
asymmetric gadgets like the ones developed in the HPC2 scheme, a first approach
could be to implement the optimization method based on the input switching
described in Section 3.1. We believe that such a feature should be easily imple-
mented in AGEMA by working with high-level netlists containing information
about the timings of signals’ propagation. Such timings may be either provided
in the HDL by the use of annotations (as done for the fullVerif tool) or hard-
coded in the tool. As another easy-to-integrate option, relying on the AND2



gadget implementation proposed in [CGLS21] could also be considered, as the
latter requires less registers and enables asymmetric optimizations.

By contrast, which strategy to follow in order to automatically take advan-
tage of the pipeline nature of the masked architectures is less clear. Indeed, our
architecture optimizations are based on a deep understanding of the operations
to be performed (e.g., how the S-box can be re-ordered). Automating them would
a minima require to analyze the precise control logic of the core.

Finally, we note that besides the aforementioned performance optimizations,
implementing the automated generation of annotations compliant with fullVerif
may be an interesting addition to AGEMA, in order to facilitate the verification
of compositional properties that generated masked implementations exploit.
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BBD+15. Gilles Barthe, Sonia Beläıd, François Dupressoir, Pierre-Alain Fouque,
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