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Abstract. Nowadays, pro�led attacks are the standard penetration tests
for security evaluations. Often the security evaluators have to perform
pro�led attacks on each S-box to quantify the security strength of the
target symmetric cryptographic algorithm implementations more accu-
rately. The required time to conduct such pro�led attacks is very long due
to the number of pro�ling traces (for many certi�cation bodies, at least
1,000,000 are mandated). It is getting even more time-consuming after
introducing deep learning pro�led attacks. Furthermore, some certi�ca-
tion bodies instruct up to 5,000,000 or 10,000,000 pro�ling traces because
modern embedded secure IC products have more and more countermea-
sures against side-channel attacks. It is a challenge to simultaneously
decrease the number of required pro�ling traces and the required pro-
�ling time while retaining the attack performance for pro�led attacks.
In this work, we propose a simple yet remarkably e�ective pooling ap-
proach to address this problem for security evaluations. That is, pooling
over the S-boxes to build a large pro�ling set and perform the pro�ling
on this large set once. Intensive experiments are conducted with this
pooling approach using di�erent pro�ling tools (template attack and its
pooled variant, stochastic model and deep learning) on three di�erent
AES implementations (a sequential S-box software AES implementation
without masking, a sequential S-box software AES implementation with
�rst-order masking and a parallel S-box hardware AES implementation
with �rst-order masking). The experimental results have shown that the
proposed pooling approach can lead to similar attack performance while
decreasing both the required number of pro�ling traces and the required
pro�ling time by a factor of 8 or even 16.

1 Introduction

1.1 The context of this work

In Kocher's seminal work [8], Side-Channel Attacks (SCA) were proposed to
extract secret keys of cryptographic algorithms implementations via the timing
side channel. Since then, SCA have drawn plenties of attention in the commu-
nity. On the one hand, it is extended to di�erent side channels, e.g., power
consumption [9], electromagnetic radiation [13]. On the other hand, di�erent
distinguishers and new approaches are also adapted to SCA. Amongst them,
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pro�led attacks are considered the most powerful SCA after Chari et al. pub-
lished the novel template attacks [2]. Various research works have focused on
improving pro�led attacks from di�erent perspectives, e.g., for e�ciency pur-
poses [14,3], or portability and robustness. It is worth noting that there are two
types of pro�led attacks depending on what we are pro�ling, either pro�ling the
key itself or pro�ling some intermediate data that depends on it (e.g., S-box
output). Generally speaking, pro�ling the key directly is more studied in the
asymmetric cases, pro�ling key-dependent values (e.g., S-box output) is more
studied in the symmetric cases, and key transportation is rarely studied (though
applies in all cases).

Concretely, SCA are a pillar for security evaluations of information secu-
rity products3, and pro�led attacks are a de facto standard penetration test
for cryptographic algorithms. For security evaluations, based on the rating pol-
icy to gain so-called AVA_VAN.5 security assurance4, such a standard pro�led
attacks-based penetration test typically costs 3 to 4 weeks in total for an experi-
enced security evaluator. It is grey-box testing although the security evaluators
often can get access to the detailed design information (hardware and/or soft-
ware) of the implemented symmetric algorithms being evaluated. The outline of
time division (in total 3 to 4 weeks) for such a standard pro�led attacks-based
penetration test starting from scratch is below:

� Stage 1 (1 ∼ 2 weeks): Understand the target implementation and narrow
down the target interval as much as possible through SPA (Simple Power
Analysis)/SEMA (SimpleElectroMagneticAnalysis) and CPA (Correlation
Power Analysis)/CEMA (Correlation ElectroMagnetic Analysis) (or simi-
lar techniques). It also includes the scripting time of the measurement and
measurement/analysis time. It is vital to narrow down the target interval as
much as possible because the sampling rate for measuring EM (ElectroMag-
netic Raditation) traces can be very high (5 GHz to 10 GHz). Hence, the
number of sample points within the interesting interval can be the bottleneck
of the subsequent pro�led attacks. Another critical step in this stage is to
choose the appropriate EM signal after surface scans of the chip. It is easier
when the location of the symmetric algorithm co-processor is known to the
evaluators, but if it is not known, this task can become very time-consuming.

� Stage 2 (0.5 ∼ 1 week): Measure at least 1,000,000 (recently some certi�-
cation bodies demand 5,000,000 or up to 10,000,000 because of more and
more security countermeasures in the modern secure microcontrollers) pro-
�ling traces and at least 150,000 attack traces (50,000 for each of 3 di�erent
attack keys).

� Stage 3 (1∼ 1.5 weeks): Preprocess the measured traces (e.g., align them [17])
and conduct template and deep learning pro�led attacks on all S-boxes (e.g.,
16 in the AES case) in an attempt to recover those three di�erent attack keys
(3 sets of attack traces as mentioned in Stage 2). It also includes the report-

3 https://www.sogis.eu/uk/supporting_doc_en.html
4 https://www.sogis.eu/documents/cc/domains/sc/JIL-Application-of-Attack-
Potential-to-Smartcards-v3-1.pdf
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ing time. More precisely, due to the implemented countermeasures such as
jitters and random delays, often the evaluators have to re-synchronize (align)
the traces step by step to get closer and closer to where the S-box operations
are supposed to take place [17]. It commonly costs 1 or 2 days considering
the number of traces and the number of sample points of every trace. Af-
terwards, the evaluators need to perform both template and deep learning
attacks on each S-box one by one. Currently, the best practice is to execute
pro�ling and attacking on each S-box one by one [4]. It naturally requires
lots of time taking into account the number of sample points (normally a few
thousand sample points for one S-box considering the EM traces) and the
amount of the traces. With deep learning evaluations now being mandated
by certi�cation bodies, this issue further ampli�es. Because usually, com-
pared to the classical template attacks, the training of the neural networks
requires much more time owing to the many hyperparameters to be tuned.

1.2 Problem to be addressed

To simplify the task of the evaluators, there is not much we can do consid-
ering Stage 1 and Stage 2. Also, we cannot skip or shorten the necessary re-
synchronization preprocessing for Stage 3 [17]. One may argue that deep learning
pro�led attacks can be e�ective to tackle this, however, re-synchronization pre-
processing makes deep learning attacks more e�cient from security evaluation
perspective according to [17] and the same target implementations are consid-
ered in this work. Hence, the only option left is to �nd a more e�cient way to

decrease both the number of required pro�ling traces and the required pro�ling

time while preserving the attack performance. Somewhat surprisingly, there have
been limited attempts to characterize and improve such practical challenges. In
this work, therefore, we aim to study it for popular pro�led distinguishers and
various target implementations.

1.3 Our contribution

The general idea of our work is S-box pooling. It is to �rst reconstruct a larger
set of pro�ling traces by pooling the pro�ling traces corresponding to each S-box.
The second step is to execute pro�ling only once on this new pro�ling traces set.
Finally, it is to attack all the S-boxes to disclose all the subkeys (e.g., 16 in the
AES case) using the attack traces.

Our contributions in this context are twofold: First, from a data complexity
point of view, the proposed S-box pooling approach can decrease the required
amount of pro�ling traces by a factor of 8 or 16 while preserving the attack
performance as shown in Table 2. In other words, the evaluators can measure
eight or even sixteen times fewer pro�ling traces during Stage 2. The extra bene�t
will be reducing the preprocessing time of Stage 3 because 8 or 16 times fewer
traces need to be re-synchronized. Second, from the time complexity perspective,
the proposed S-box pooling approach can decrease the required pro�ling time
by a factor of 8 or 16 (considering the AES case) while preserving the attack
performance.
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1.4 Related work

We note that a recent and independent work investigated a similar technique
(S-box pooling, which they denote as cross-subkey training) from a di�erent
perspective [6]. Namely, their focus is to improve the attack performances when
the number of pro�ling traces is overly limited. They use the accuracy metric
while we use the guessing entropy metric for attack performance comparison.
In their work, only deep learning pro�led attacks are considered so accuracy
could be a suitable metric. They have observed signi�cant accuracy improve-
ment with cross-subkey training compared to the case where the amount of
pro�ling traces is overly limited. It can be explained by the fact that su�cient
pro�ling traces are available by using cross-subkey training and all 16 S-boxes
are expected to leak in a very similar way because of the unmasked sequential
software AES S-box implementation. Both factors lead to the better generaliza-
tion of the deep learning model they are using. We relatively aim to optimize the
pro�ling complexity when this number is su�cient. We also cover more target
devices (they only target an unprotected AES software implementation: we ad-
ditionally cover a masked AES software implementation and a masked hardware
one) and distinguishers (they only consider one deep learning distinguisher: we
additionally cover other state-of-the-art pro�ling tools). Overall, their conclu-
sions are complementary to ours and show that S-box pooling can also improve
attack performances when the number of pro�ling traces is limited.

1.5 Organization of the paper

The rest of this paper is organized as follows. Section 2 introduces the necessary
background on pro�led attacks used in this work. Then, we describe our pro-
posed S-box pooling approach and methodology in Section 3. Finally, Section 4
demonstrates the e�ectiveness of this pooling approach based on the intensive
experimental results on three di�erent AES implementations, for di�erent pro-
�ling tools.

2 Background

Since Chari et al. have introduced template attacks in their pioneering work [2],
pro�led attacks have gradually become the commonly recognized most powerful
side-channel attacks. Pro�led attacks consist of two phases, i.e., the pro�ling
phase and the attack phase. During the pro�ling phase, an attacker/evaluator
uses a pro�ling device (and has control of the key or at least knows the key) to
model the leakage characteristic of the target key-dependent sensitive data (typ-
ically the S-box output of symmetric algorithms) with the side-channel traces of
the target implementation. The outcome of the pro�ling phase is the built leakage
characteristic models for every possible target sensitive data value, e.g., 256 val-
ues of the AES S-box output 5. During the attack phase, the attacker/evaluator
uses the victim device to measure the side-channel traces of the target implemen-
tation. And then, he/she matches the traces with the previously built leakage

5 That is, the identity model is used for labeling as what we do in this work. The
Hamming Weight model can also be used for labeling.
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characteristic models of the target sensitive data. For each attack trace, the ad-
versary calculates the target sensitive data based on the known input and the
guessed key unit (e.g., one key byte). A score is computed for each possible
guessed key unit value (256 possible values for one byte of AES key) per each
trace. In the end, for each hypothesised key unit value, the scores for all the
attack traces are combined using e.g., the maximum likelihood method to get
a combined score of that speci�c guessed key unit value. The combined score
of each possible hypothesised key unit value is compared to �nd the highest
one. The hypothesised key unit value with the highest score is considered the
recovered key unit. This attack process is repeated for all key units to reveal the
complete key.

In this work, we use four di�erent state-of-the-art pro�led attacks, namely,
template attack (TA) and its pooled variant (TAp), stochastic attack (SA) and
deep learning attack (DL), to experimentally investigate the e�ciency of our
proposed pooling pro�ling traces approach.

2.1 Template attack

From an information-theoretic viewpoint, TA is believed to be the most powerful
type of SCA [2] when (1) the noise of side-channel traces follows the Gaussian
distribution and (2) an unlimited number of traces are available. It makes use of
a multivariate normal distribution to model the probability density function of
each possible target sensitive data given a leakage observation, so it is parame-
terized as

p(L = l|S = s) =
1√

(2π)d|σs|
e−

1
2 (l−µs)

>σ−1
s (l−µs)· (1)

In this equation, d is the number of sample points. |σs| denotes the determi-
nant of the covariance matrix and > indicates the transpose. In practice, usually,
some points of interest (POIs) are detected �rst for dimension reduction purpose.

In the attack phase, the probability p(L = l|K = g) for each key candidate is
set by p(L = l|S = s) given a known input of each attack trace. The classi�cation
of each key guess is then computed based on Bayes' Theorem as follows:

p(K = g|L = l) =
p(L = l|K = g) · p(K = g)

p(L = l)
· (2)

Based on an assumption that all attack traces are independent, to make use
of all available attack traces for each key guess, a �nal score of each key guess is
calculated as below:

pg = p(g|L) =

M∏
m=1

p(L = lm|K = g) · p(K = g)

M∏
m=1

p(L = lm)

· (3)

In practice, the pg is usually calculated using the sum of the log-posterior to
avoid the potential arithmetic under�ow problem. The highest pg indicates the
correct key candidate g∗. The pooled variant of the TA, next denoted TAp, is
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proposed in [3]. It uses only a single pooled covariance matrix σ to reduce the
pro�ling complexity, which is dominated by the estimation of the covariance.
The rest is the same as normal TA.

2.2 Stochastic model attack

SA [14] relies on linear regression to build the leakage characteristic models of
sensitive data. It assumes that the side-channel leakage observation of the target
sensitive data s at time t consists of two parts lt(s) = ht(s) + Rt, where ht(s)
is the key-dependent part and the latter one is a non-key dependent noise term
with zero mean. Similar to TA, the pro�ling also contains two parts, the linear
approximation ĥt of ht and the estimation of noise-related covariance matrix
σ. The estimation of ĥt for each time instantiation is done in a chosen suitable
u-dimensional vector subspace Fu;t. In this work, we choose the subspace F9 by
utilizing the bitwise coe�cients of the AES S-box output. Afterwards, d1 POIs
are chosen based on the estimated ĥt to compute the covariance matrix σ. The
pro�ling results in a Gaussian multivariate density f̂ : Rd1 → R.

During the attack phase, we only consider the maximum likelihood principle
to recover the key following [4,14]. More speci�cally, the correct key guess g∗ is
the one that maximizes:

pg = p(g|L) =
M∏
m=1

f̂ (lt(sm,k)− ĥt(sm,g)). (4)

In this equation, k indicates the unknown correct subkey to be revealed.

2.3 Deep learning DPA attack

Di�erent from the above-mentioned classical pro�led attacks, DL makes no as-
sumption of the leakage characteristic. It exploits the features (sample points
with regard to side-channel traces) to classify the labels (sensitive data in the
SCA context) using neural networks (details arrive in Subsection 4.1). The train-
ing process of neural networks (corresponds to the pro�ling) aims to construct a
classi�er function F (.) : Rd → R|S|. This function maps the input trace l ∈ Rd to
the output vector p ∈ R|S| of scores. During the training, for each training batch,
the backpropagation method [7] is used to update the trainable parameters of
the neural network model aiming at minimizing the loss, which is calculated to
quantize the classi�cation error over each training batch. In the attack phase, the
built trained model (i.e. F (.) with all the �nal updated trainable parameters) is
used to classify each attack trace to obtain its score vector p[sm,g]. Afterwards,
the �nal score vector of each key candidate p[g] is calculated using all the attack
traces (similar to Equation 3). The key candidate g∗ = argmax p[g] is considered
the right subkey.

3 Methodology

As discussed in Subsection 1.2, the problem to be solved in this work is: to
simultaneously decrease both the required number of pro�ling traces and the
required pro�ling time while the performance of the online attack is essentially
unchanged.
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In the following, we �rst introduce the proposed S-box pooling approach
and how it resolves this challenge for security evaluators. We then describe the
methodology, which we will use to systematically investigate the soundness of
the proposed pooling approach in a pro�led attacks context. It includes the
metric for comparing pro�ling performance, the metrics used for training neural
networks, the knowledge of POIs assumption, the POI selection approach, and
the choice of parameters for di�erent pro�led attacks in our experiments. For
simplicity, we will only discuss the AES case. But the principle can be easily
extended to other symmetric cryptographic algorithms.

3.1 S-box Pooling pro�led attack

The core idea of this pooling approach is: to extract the pro�ling traces of each
S-box and to stack the extracted pro�ling traces for all S-boxes in order to build
a new large set of pro�ling traces. In theory, this approach is based on improving
the signal-to-noise ratio of the pro�ling traces by increasing the amount of the
pro�ling traces. Instead of directly measuring a lot of pro�ling traces, it is to
gather enough pro�ling traces by extracting and stacking all available S-box
calculation segments of each side-channel trace. For instance, we measure 1,600
pro�ling traces of the �rst round of AES encryption. So we have 1,600 traces
for each S-box. By extracting and stacking then we build a new set of 25,600 (=
16×1,600) pro�ling traces since there are 16 S-boxes. In the ideal situation where
the S-boxes are leaking according to the same model, this strategy will lead to
a reduction of the number of pro�ling traces by a factor of 16 (for the AES).
Furthermore, the pro�ling time will be reduced by the same factor (In this work
we only considered that the same deep learning model is used for performance
comparison with and without S-box pooling.) since only a single model will have
to be built. Of course, in practice, the situation may not be ideal and it is the
goal of our following investigations to clarify the extent to which S-box pooling
is a good trade-o� for concretely relevant case studies. For this purpose, we used
the following 4-step method:

1. Step 1: Measure enough pro�ling traces (the number of pro�ling traces
marked as Nori) being able to retrieve the AES key, perform TA, TAp, SA
and DL pro�led attacks on each S-box separately to recover all 16 subkeys.
Make them the baseline attack performance for later use and comparison.

2. Step 2: Determine the minimum required number of pro�ling traces (de-
noted as Nmin) to achieve similar pro�ling performance as the baseline us-
ing a binary search algorithm. That is, starting from Nori/2 pro�ling traces
to conduct pro�led attacks to compare the pro�ling performance with the
baseline until pro�ling performance similar to the baseline obtained using
Nmin pro�ling traces.

3. Step 3: Build four new sets of pro�ling traces by pooling the pro�ling traces
of each S-box based on the prede�ned S-box pooling ratio (labelled as PR)
of 16, 8, 4 and 2 with the determined Nmin, in which the pooling ratio of 16
means pooling Nmin/16 pro�ling traces of each S-box to build the new set
of pro�ling traces. Meanwhile, construct another four new sets of pro�ling
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traces without pooling the pro�ling traces of each S-box, i.e., directly taking
Nmin/PR pro�ling traces from the original measurement for each S-box.

4. Step 4: For each S-box pooling ratio PR, perform TA, TAp, SA and DL
pro�led attacks on each S-box using the new built set of pro�ling traces
with pooling and using the newly constructed set of pro�ling traces without
pooling. Note that, with pooling, we only need pro�ling once. While without
pooling, we need pro�ling 16 times because we have to execute pro�ling for
each S-box one by one following the current best practice.

Eventually, compare the pro�ling performance with and without pooling to
the baseline.

3.2 Knowledge of POIs assumption

There is an implicit assumption about the knowledge of the POIs to apply this
pooling approach. That is, evaluators can �gure out the rough timing interval
of each S-box of one AES round calculation in the side-channel traces. Through
SPA/CPA and SEMA/CEMA as mentioned in Stage 1 in Subsection 1.1, this
is feasible for most of the evaluated security products in the security evaluation
grey-box testing context. For instance, the evaluators can vary the input length
and/or the key length, perform correlation analyses on the input and output
data, make use of the design information such as the location of the AES co-
processor in the glue logic area or temporarily switch o� some countermeasures
like jitters.

Concerning the POI selection for classical pro�led attacks TA, TAp and SA,
we use the popular SOST (Sum Of Squared pairwise T-di�erences) [4] for POI
selection, since typically the masking countermeasure is implemented in the eval-
uated products. It does not require any secret information about the implemen-
tation, and it can be easily, e�ciently computed. It is also commonly used by
security evaluators for pro�led attacks.

3.3 Metrics and Selection of parameters

In order to compare the pro�ling complexity of di�erent tools, information-
theoretic metrics like mutual information (MI) are natural candidates [15]. Yet,
it requires that all the investigated pro�ling methods give rise to probabilistic
outcomes. In some cases, the tools we consider fairly output scores that do
not directly embed such a probabilistic meaning. Therefore, we will preferably
evaluate our strategy based on the guessing entropy (GE) metric [16]. Note that
both metrics have the same comparative value and are thus equally good for our
purposes (but computing guessing entropy curves is generally more expensive
than estimating information-theoretic metrics).

Regarding the metrics used to train the neural networks, we use the Negative
Log-Likelihood (NLL) loss function [1] for DL pro�led attacks, because it is
proved that minimizing the NLL loss is equivalent to maximizing the Perceived
Information and thus to minimize the online attack complexity, thanks to the
recent work [11].

For SA pro�led attack, since we do not precisely know which model is followed
by the target sensitive intermediate data, we choose a linear 9-element basis (the
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eight S-box output bits together with a constant), which is the standard choice
for this distinguisher [14].

4 Experimental results

To con�rm the soundness of the proposed pooling approach in security eval-
uations, in this section, we apply the pooling approach to three di�erent rep-
resentatives of AES implementations, from easy to hard. That is, we consider
a sequential S-box software AES without masking, a sequential S-box software
AES with �rst-order masking [12] and a parallel S-box hardware AES with �rst-
order masking. The �rst DUT (Device Under Test) in Subsection 4.2 represents
a sort of ideal case: all the S-boxes are supposed to leak in almost the same way,
because all the S-boxes are executed sequentially, and no countermeasures are
involved. The aim is to verify how the proposed S-box pooling approach behaves
in an almost ideal leakage context. In Subsection 4.3, the second DUT is going
further: to investigate how e�cient the proposed S-box pooling approach will
be in a more realistic scenario. In this case, because all the S-boxes are still
executed sequentially, there should be no interference regarding leakage charac-
teristics between them. Finally, the third DUT in Subsection 4.4 is the scenario
closest to the security evaluations, because it is a hardware AES co-processor
implementation with random masking, which is just the case for most modern
evaluated products. In this case, multiple S-boxes are executed in parallel, so
the leakage characteristic of each S-box will be a�ected by the others being ex-
ecuted at the same time. The involved random masking of each S-box will also
introduce more discrepancy in the leakage characteristic given a limited amount
of pro�ling traces. It is therefore essential to know how much pro�ling e�ciency
the evaluators can gain in this realistic scenario. We label those three DUTs as
DUT1, DUT2 and DUT3 in the rest of this paper.

4.1 Common settings

For all the three DUTs, we compare the pro�ling performance with and without
S-box pooling using four di�erent state-of-the-art pro�led attacks, namely, TA,
TAp, SA and DL pro�led DPA attacks. For each DUT, the same device is used for
the pro�ling and attacking phase. All these four pro�led attacks are implemented
in Python and PyTorch version 1.7.1 with an NVIDIA GTX 1080Ti GPU. The
following common settings are used for all the experiments in this work,

1. No matter whether the masking countermeasure is present or not, the target
of all pro�led attacks in this work is the �rst round S-box output of AES
encryption. That is, Sbox(p[i]⊕k[i]), in which p denotes a 16-byte AES input
and k corresponds to a 16-byte AES key, with i the index of the S-box. Note
that we focus on the common scenario where the masked randomness is not
given to evaluators. Our conclusions would apply identically in the more
worst-case scenario where this randomness is known for pro�ling. But the
concrete gains would be less signi�cant (because we expect the pro�ling task
to be signi�cantly simpli�ed in that case).

2. The used DL neural network model for DL attacks is a published MLP
(Multi-Layer Perceptron) [10]. The structure of this model is simple and
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Table 1: MLP model details

MLP

nb_epoch = 50
batch_size_training = 32

Dense(50, activation="relu", input_shape=(nb_samples,))
BatchNormalization()
Dense(100, activation="relu")
BatchNormalization()
Dense(256, activation="softmax")
compile(loss='categorical-crossentropy', optimizer='adadelta', metrics=['accuracy'])

learning_rate_policy = ReduceLROnPlateau(optimizer, 'min', factor=0.05, verbose=True)

shallow, while it showed pretty good performance for similar DUTs (similar
to our DUT1 and DUT2) in that paper. It also showed great performance
for all the three DUTs in our work. In addition, we use the Adadelta opti-
mizer and adopt the adaptive learning rate policy ReduceLROnPlateau to
gradually decrease the learning rate (we used the default Adadelta optimizer
initial learning rate of 1.0) with a factor of 0.05 if the training stagnates. We
use a batch size of 32 and 50 as the number of epochs for all the DL experi-
ments. All the pro�ling traces and attack traces used for DL experiments are
normalized using the StandardScalar function from the Scikit-learn library
by removing the mean and scaling to unit variance. For all the DL experi-
ments, we isolate 15% pro�ling traces as a validation set. This is due to the
fact that a validation data set is critical to DL performance as it provides
a way to timely detect over-�tting [5]. We used the trained model with the
highest validation accuracy for the DL attacks. As aforementioned, all the
DL experiments utilize the NLL loss to train the model. The details of the
used DL model and the hyperparameters are described in Table 1.

3. As mentioned in Step 2 of Subsection 3.1, we need to determine the min-
imum number of required pro�ling traces Nmin for each DUT before the
performance comparison for di�erent pro�led attacks. To this end, we use
DL attacks to determine the Nmin for each DUT because only DL attacks
can fully recover all the subkeys for all three DUTs as shown in the eprint
version of the paper.

4.2 Setting #1: an unmasked sequential AES S-boxes

implementation

DUT1 is the ChipWhisperer unmasked software AES with 16 sequential S-boxes.
It is expected that all the 16 S-boxes of this AES implementation leak in the same
way (or with negligible discrepancy) because of the sequential implementation of
the S-box layer without masking. The goal of using this DUT is to verify whether
the proposed pooling approach can achieve similar pro�ling performance using
16 times fewer pro�ling traces in such an almost ideal context, which is the
optimum result we are seeking in terms of decreasing the required number of
pro�ling traces and the required pro�ling time.
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Implementation settings. This software AES implementation is based on an
8-bit ATXmega128D4-AU microcontroller. The 16 S-boxes are executed one by
one. A set of 11,000 power consumption traces of 3,000 sample points each has
been measured via the on-board ADC of the ChipWhisperer Lite board for the
experiments. The CPU is running at 7.37 MHz and the sampling rate is 29.48
MHz. More speci�cally, 10,000 pro�ling traces have been measured with random
key data and random input data, 1,000 attack traces have been measured with
a �xed random key and random input data.

Based on the knowledge of POIs assumption discussed in Subsection 3.2, we
�rst identify the time intervals of each S-box in the power traces utilizing SPA
and CPA. In the end, we cut 50 sample points (e.g. sample points 110∼160 for
S-box 1, 206∼256 for S-box 2, ..., 1550∼1600 for S-box 16) for each S-box from
the originally measured power traces to build 16 new subsets of traces, where
each new subset corresponds to one S-box. These 16 subsets of traces as a whole
are denoted as nPR_1.

Following our designed methodology in Subsection 3.1, we �rst perform TA,
TAp, SA and DL attacks on these 16 new sets of traces as the baseline of attack
performance. This baseline is marked with nPR_1 in the subsequent GE results.
Second, the minimum required number of pro�ling traces Nmin is determined
using a binary search algorithm. In this case, Nmin is 6,700 based on the DL
attack results as explained in Subsection 4.1.

Next, we make use of the proposed pooling approach to build four new sets
of pro�ling traces according to the PR of 16, 8, 4 and 2. They are denoted
as PR_16, PR_8, PR_4 and PR_2 respectively. Also, another four sets of
pro�ling traces without pooling are constructed by directly taking Nmin/PR
pro�ling traces for each S-box from the previously built trace sets nPR_1. They
are denoted as nPR_16, nPR_8, nPR_4 and nPR_2 respectively. Similar to
nPR_1, each of nPR_16, nPR_8, nPR_4 and nPR_2 consists of 16 subsets,
and each subset corresponds to one S-box. We then conduct TA, TAp, SA and
DL attacks on PR_16, PR_8, PR_4, PR_2, nPR_16, nPR_8, nPR_4 and
nPR_2.

For the sets with pooling the pro�ling traces PR_16, PR_8, PR_4 and
PR_2, we only perform pro�ling once followed by attacking all 16 S-boxes to
retrieve the subkeys. On the contrary, for the sets without pooling the pro�ling
traces nPR_16, nPR_8, nPR_4 and nPR_2, we need to perform pro�ling 16
times, each pro�ling is for one S-box followed by attacking that single S-box.

Finally, we compare all the conducted pro�led attacks results (with and with-
out pooling pro�ling traces) with the baseline results.

Attack results. By comparing the aforementioned pro�led attacks results with
the baseline GE results as shown in Figure 1, it is demonstrated that using S-box
pooling can decrease both the number of pro�ling traces and pro�ling time by
a factor of 16 considering the DL attack results. For readability, here we only
present the results for 3 di�erent sets, i.e., the baseline GE results (nPR_1,
6,700 pro�ling traces), the GE results with pooling with PR of 16 (PR_16,
6,700 = 16×418 pro�ling traces) and the GE results without pooling with PR
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of 16 (nPR_16, 418 pro�ling traces). The full comparison is given in the eprint
version of the paper.

Type DL TA TAp SA

nPR_1 0 2 4 6 81
0
1
2
3
4

0 2 4 6 81
0
1
2
3
4

0 2 4 6 81
0
1
2
3
4

0 2 4 6 81
0
1
2
3
4

PR_16 0 2 4 6 81
0
1
2
3
4

0 2 4 6 81
0
1
2
3
4

0 2 4 6 81
0
1
2
3
4

0 2 4 6 81
0
1
2
3
4

nPR_16 0 2 4 6 81
0
1
2
3
4

N/A N/A N/A

Fig. 1: DUT1 Guessing Entropy results, X-axis: Number of attack traces, Y-axis:
Guessing Entropy.

Considering the GE results of di�erent pro�led attacks on this DUT in the
same setting (the same PR, with pooling or not), it is worth noting that DL
shows the best attack performance. It suggests that the DL attack has a better
generalization for this DUT. TA and its variant TAp show similar but slightly
worse attack performance while SA shows the worst attack performance for this
DUT, which is in line with the observations in [4]6. For the nPR_16 setting, the
GE results of TA, TAp and SA attacks are not available due to very few pro�ling
traces for each class of S-box output, which leads to singular results during the
pro�ling.

More interestingly, this trend is the same when we consider the impact of
pooling pro�ling traces. It can be observed that the DL attack performance of
the PR_16 case using pooling is already comparable to the baseline DL attack
performance, while the DL attack performance of the nPR_16 case without using
pooling is way worse than the baseline DL attack performance. The DL attack
performance of the PR_8 case using pooling already outperforms the baseline
DL attack performance. Hence, these GE results show that pooling can decrease
the required number of pro�ling traces by a factor of 16 without reducing the
attack performance. This is the optimal result one can achieve and it most likely
holds because all 16 S-boxes are leaking in almost the same way. From a time
complexity point of view, using a pooling ratio of 16 means using the same total
amount of pro�ling traces as the baseline case, while only pro�ling once in the

6 It is out of scope because the goal of this work is to verify the e�cacy of the proposed
pooling approach in terms of decreasing both the required number of pro�ling traces
and the required pro�ling time.
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pooling case and pro�ling 16 times in the baseline case. It results in decreasing
the required pro�ling time by a factor of 16 as well. As mentioned before, this is
an almost ideal case: no masking and sequential S-boxes. Next, we will further
investigate the impact of the masking countermeasure on the performance of the
proposed pooling approach.

4.3 Setting #2: a masked sequential AES S-boxes implementation

DUT2 is the public data set ASCADv1, which contains the traces of a �rst-
order masked software AES with 14 sequential S-boxes. Because the �rst two
S-boxes are not masked, only the last 14 masked S-boxes are evaluated in our
experiments. This is still a sequential S-boxes implementation, so it is expected
that those S-boxes will leak in a very similar way.

Implementation settings. The ASCADv1 data set is based on an implemen-
tation in an 8-bit ATMega8515 microcontroller with a �rst-order masking coun-
termeasure. 60,000 EM (Electromagnetic Radiation) traces with a �xed AES key
were acquired using an EM coil at a sampling rate of 2 GHz, in which 50,000 are
the pro�ling traces and the remaining 10,000 traces are the attack traces. Each
trace consists of 100,000 sample points.

Based on the knowledge of POIs assumption, we narrowed down the time in-
tervals of each S-box in the EM traces. In the end, 700 sample points (e.g., sample
points 45400∼46100 for S-box 3, 32910∼33610 for S-box 4, ..., 18330∼19030 for
S-box 16) for each S-box were cut out from the originally acquired EM traces
to build 14 new subsets of traces. These 14 subsets of traces as a whole are de-
noted as nPR_1. TA, TAp, SA and DL attacks are then conducted on nPR_1 as
the baseline of attack performance. The minimum required number of pro�ling
traces Nmin of 37,000 was found based on the DL attack results.

We further constructed four new sets of pro�ling traces according to the PR
of 14, 7, 4 and 2. They are denoted as PR_14, PR_7, PR_4 and PR_2 re-
spectively. In addition, their counterparts without S-box pooling, i.e., nPR_14,
nPR_7, nPR_4 and nPR_2 were constructed as well. TA, TAp, SA and DL at-
tacks were then performed on these 8 sets of traces and the results are compared
with the baseline.

Attack results. Figure 2 displays our results. For the same reason as in the
previous case, only the results of nPR_1 (37,000 pro�ling traces), PR_14 (37,000
= 14×2,642 pro�ling traces) and nPR_14 (2,642 pro�ling traces) are shown here,
our eprint version of the paper provides the full results. Again, the DL attack
results suggest that using pooling can decrease both the number of pro�ling
traces and pro�ling time by a factor of 14.

Our observations regarding the di�erent performances of di�erent pro�les
distinguishers are similar to the ones made for DUT1. Namely, the DL attack
shows slightly better results than TA and its variant TAp, while SA shows the
worst performance.

The same trend is also observed with regard to the impact of pooling pro�l-
ing traces: PR_14 already gives slightly better results than the baseline nPR_1
considering the DL attacks. The results without using pooling are signi�cantly
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Fig. 2: DUT2 Guessing Entropy results, X-axis: Number of attack traces, Y-axis:
Guessing Entropy.

worse than the baseline ones. In short, from both the data complexity and time
complexity viewpoints, using pooling can decrease the required number of pro-
�ling traces and required pro�ling time by a factor of 14, which is the optimal
result. Most likely all those 14 masked S-boxes leak in a very similar way.

In this sequential masked S-boxes case, using pooling also leads to optimal
attack performance. It further con�rms that S-box pooling can be used for pro-
tected implementations in security evaluations. To further assess the impact of
other implementation factors on the performance of the pooling approach, a
very realistic scenario is �nally brought into our scope. Namely, many modern
secure microcontrollers have a dedicated AES co-processor, in which random
masking is adopted and parallel S-boxes are sometimes implemented for per-
formance purpose. Such an implementation will be assessed in our next target
implementation.

4.4 Setting #3: a masked parallel AES S-boxes implementation

DUT3 is a 90 nm secure microcontroller with an AES co-processor, which is
equipped with �rst-order masked parallel S-boxes, i.e., 4 S-boxes are executed at
the same time. It is expected that the leakage characteristic of each S-box within
a group will be a�ected by the other 3 S-boxes in the same group being executed
in parallel. Furthermore, this DUT also has other built-in countermeasures such
as hardware and software time jitters, power balancing and power smoothing.

Implementation settings. A set of 520,000 EM traces of 100,000 sample
points each has been measured via an SGS Brightsight EM coil using a LeCroy
Waverunner 620Zi oscilloscope at a sampling rate of 10 GHz. The coil is located
on top of the AES co-processor from the back side of the chip. The operating
frequency of the AES co-processor is 32 MHz with variable internal clock enables.
480,000 pro�ling traces have been measured with random key data and random
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input data. 40,000 attack traces have been measured with a �xed random key
and random input data.

In accordance with the knowledge of POIs assumption, using SPA/CPA and
SEMA techniques with the knowledge of the AES co-processor location, the
time intervals of each group of 4 parallel S-boxes were �gured out in the EM
traces. For instance, di�erent key lengths and di�erent input lengths were used
to execute the AES encryption to observe the di�erence they caused in the power
and EM traces. Di�erent numbers of AES rounds could be distinguished in the
EM traces and each round contains 4 groups of EM peaks, with each group
corresponding to the execution of 4 parallel S-boxes. It has to be mentioned
that multiple alignments steps had to be done because the measured EM traces
were heavily misaligned. We used the same re-synchronization method as in [17],
which exploits correlation to align each group of EM peaks in the traces. It is a
3-step procedure.

1. Manually select a searching interval S that contains the operation to be
aligned among all the traces.

2. Manually choose a smaller reference interval RTi speci�c to each trace Ti.
3. Within the whole interval S of each trace, search for the segment to be

aligned by computing the Pearson's correlation between each segment (the
same length as RTi

) and the reference feature RTi
. The right segment is the

one showing the highest correlation within the whole interval S. The trace
is abandoned if the highest correlation is lower than a pre-de�ned threshold
chosen by the evaluator.

During the measurement campaign, it was not possible to trigger the oscillo-
scope close to the �rst AES round. Therefore, the EM traces were aligned several
times to get close to the �rst AES round step by step, followed by more local
alignments within the �rst AES round because there are 4 groups of EM peaks
to be aligned one by one. Targeting di�erent time intervals (for both the search-
ing interval and reference interval), we applied this alignment method multiple
times to the EM traces. In general, we chose new intervals when the misalign-
ment was getting larger, and we repeated this process until the target interval
was well aligned. In this way, we can gradually align each group of EM peaks
corresponding to 4 parallel S-boxes being executed.

After all the alignments, 500 sample points for each group of 4 parallel S-
boxes were kept from the original EM traces to build 16 new subsets of traces and
as a whole, they are marked as nPR_1. We used each segment 4 times, targeting
each S-box once. TA, TAp, SA and DL attacks were then conducted on nPR_1 as
the baseline of attack performance. The minimum required number of pro�ling
traces Nmin of 410,000 was further determined based on the DL attack results.

Similar to previous DUTs, we prepared eight new sets of pro�ling traces with
or without pooling the pro�ling traces, i.e., PR_16, PR_8, PR_4 and PR_2
and nPR_16, nPR_8, nPR_4 and nPR_2. We performed TA, TAp, SA and
DL attacks on these 8 sets of traces and compared the results with the baseline.

Attack results. The comparison of results is shown in Figure 3. Once again, we
only present the results of nPR_1 (410,000 pro�ling traces), PR_16 (410,000
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= 16×25,625 pro�ling traces), PR_8 (820,000 = 16×51,250 pro�ling traces)
and nPR_8 (51,250 pro�ling traces). The full results are provided in the eprint
version of the paper. This time the DL attack results demonstrate that using
pooling can decrease both the number of pro�ling traces and pro�ling time by
a factor of at least 8.

Type DL TA TAp SA

nPR_1 0 2000 4000
0

20
40
60
80

100
120
140

0 2000 4000
0

20
40
60
80

100
120
140

0 2000 4000
0

20
40
60
80

100
120
140

0 2000 4000
0

20
40
60
80

100
120
140

PR_16 0 2000 4000
0

20
40
60
80

100
120
140

0 2000 4000
0

20
40
60
80

100
120
140

0 2000 4000
0

20
40
60
80

100
120
140

0 2000 4000
0

20
40
60
80

100
120
140

PR_8 0 2000 4000
0

20
40
60
80

100
120
140

0 2000 4000
0

20
40
60
80

100
120
140

0 2000 4000
0

20
40
60
80

100
120
140

0 2000 4000
0

20
40
60
80

100
120
140

nPR_8 0 2000 4000
0

20
40
60
80

100
120
140

0 2000 4000
0

20
40
60
80

100
120
140

0 2000 4000
0

20
40
60
80

100
120
140

0 2000 4000
0

20
40
60
80

100
120
140

Fig. 3: DUT3 Guessing Entropy results, X-axis: Number of attack traces, Y-axis:
Guessing Entropy.

Di�erent from the previous two DUTs, the TA and its variant TAp show
better results than DL for all the 5 sets of pro�ling traces without pooling, i.e.
nPR_16, nPR_8, nPR_4, nPR_2 and the baseline nPR_1. The other way
around is observed if the proposed S-box pooling approach is adopted: DL then
slightly outperforms TA and TAp. Focusing on the pooling cases and the DL
results, using PR of 16 achieves slightly worse results compared to the baseline,
while using PR of 8 leads to better results than the baseline. These observations
put forward that even when evaluating a more challenging (and therefore more
practically relevant) hardware implementation with masking, the S-box pooling
approach remains e�ective. It does not lead to an optimal factor gain of 16 for
the data and time complexity but still reduces these complexities to a signi�cant
factor 8. This sub-optimal gain is most likely caused by the parallel execution of
4 S-boxes. The leakage model of a single S-box is interfered by other 3 S-boxes
among the same group.

To summarize, taking all the results for all the 3 DUTs as shown in Table
2 into account, it is concluded that, for unmasked and masked sequential S-
boxes implementations, the gain of using pooling can reach the optimal, i.e.,
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Table 2: Summary of the experiments of 3 DUTs
PR Nori Nmin Samples Implementation Data Complexity Gain Time Complexity Gain

DUT1 16/8/4/2 10,000 6,700 50 SW Sequential 16 (optimal) 16 (optimal)

DUT2 14/7/4/2 50,000 37,000 700 Masked SW Sequential 14 (optimal) 14 (optimal)

DUT3 16/8/4/2 480,000 410,000 500 Masked HW Parallel >8 (sub-optimal) >8 (sub-optimal)

decreasing both the required number of pro�ling traces and required pro�ling
time by a factor of 16 (or 14). For the masked parallel S-boxes implementation
that we analyzed, the gain is slightly sub-optimal but still very noticeable for
security evaluators, i.e., decreasing both the required number of pro�ling traces
and required pro�ling time by a factor of 8. It con�rms S-box pooling can be a
useful new tool for security evaluators.

5 Conclusion

During the security evaluations of symmetric algorithm implementations, usu-
ally, evaluators have to repeat the pro�ling of each S-box to attack them sepa-
rately. The burden is getting heavier when both classical pro�led attacks (such
as template attacks) and deep learning attacks are mandated by the certi�cation
bodies. Additionally, the requested number of pro�ling traces is also increasing
for some certi�cation bodies due to many countermeasures being implemented in
the evaluated products. Whether there exists a way to perform such pro�ling ef-
�ciently is, therefore, an important and practically motivated research question.
To this end, the community so far mostly focused its e�orts on improving the
attack performance targeting one S-box. In this work, we analyze the comple-
mentary approach of trying to decrease the pro�ling (data and time) complexity
thanks to S-box pooling.

Intensive experiments on three di�erent AES implementations were per-
formed with 108 di�erent con�gurations. The results demonstrate that, for repre-
sentative unmasked software sequential S-boxes implementation and the masked
software sequential S-boxes implementation, using this S-box pooling approach
can decrease both the required number of pro�ling traces and required pro�ling
time by a factor of 16 (or 14), which corresponds to the optimal gain. For the
masked hardware parallel S-boxes implementation that we analyzed, the gain is
still sub-optimal in terms of data complexity and time complexity. Nevertheless,
we can decrease both the required number of pro�ling traces and required pro-
�ling time at least by a factor of 8 in this practically relevant setting. We used
only the �rst round S-box computations for simplicity, indeed this S-box pooling
can be extended to all S-box computations of all AES rounds. The goal of the
paper is to show that in some practically-relevant contexts, S-box pooling can
lead to signi�cant gains but there are admittedly implementations for which it
may not be applicable, e.g., if the S-boxes leak di�erently.

We believe these results show that the e�cient exploitation of pro�ling mea-
surements, for example, thanks to S-box pooling, can be a useful addition to
the evaluators' toolbox. On the one hand, it is easy to adopt and integrate into
existing toolchains. On the other hand, there are contexts in which this simple
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optimization can lead to signi�cant gains (remembering that concretely, a factor
16 is highly relevant for evaluation tasks that can take days).
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