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Symmetric crypto (20 years ago)

• CTR mode: uniform protection against DPA
• AES: expensive countermeasures (e.g., masking)

(Vocabulary: DPA = key/state recovery attack with many side-channel traces)
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• Leakage-resistant mode of operation
• Leveled implementations (mixing expensive DPA 

protections for a few blocks a cheaper SPA protections)

• Lightweight (easier to protect) block ciphers

Symmetric crypto (nowadays)

(Vocabulary: SPA = key/state recovery attack with a few side-channel traces)
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Impact can be massive! 3
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PQ encryption (FO-calypse)

• Decryption & re-encryption before the test
• Allows “state comparison” attacks

• Just distinguishing L(𝑝) from L(𝑐𝑝) leaks about 𝑠𝑘

• Even more expensive to prevent than DPA
• Factor of overheads: 6, 16, 50 for 2, 4 & 8 shares!
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Research challenge

Can we design quantum-safe CCA-secure 
encryption schemes that are (much) 
cheaper to protect against leakage? 

(& a bit less efficient if leakage is not a concern)  

top-down: from abstract models to implementations

bottom-up: from heuristic tweaks to formal proofs

Needs humility: completely connecting top-down and bottom-up 
approaches remains a challenge after 20 years in symmetric crypto
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Heuristic tweak proposals

1. Remove the state comparison attack path
≈ Avoid the FO-transform and leverage rigidity

2. Enable leveled implementations
≈ Use dummy ciphertexts & ephemeral secrets so that 
not all intermediate computations are DPA targets

3. Make the remaining DPA targets easier to mask
≈ leverage key-homomorphic computations and the 
(admittedly provocative) hard physical learning problems

• Focusing on key security (leakage-resilience)     
and not message security (leakage-resistance)
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POLKA

POst-quantum Leakage-resilient
public Key encryption Algorithm

• CCA-secure in the QROM (w/o leakage)
• Hybrid encryption with an LPR-like KEM

𝑐1 = 𝑎 ⋅ 𝑟 + 𝑒1

𝑐2 = 𝑏 ⋅ 𝑟 + 𝑒2
𝑟, 𝑒1, 𝑒2 ← 𝐷small

Then, 𝐾 = H(𝑟, 𝑒1, 𝑒2) and  𝑐0 = AEnc𝐾 𝑚

• Rigidity w/o FO + explicit rejection
• Partially randomized decapsulation
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Base scheme + rigidity

• Encrypta,b(m): 𝑐1 = 𝑎 ⋅ 𝑟 + 𝑒1

𝑐2 = 𝑏 ⋅ 𝑟 + 𝑒2
𝑟, 𝑒1, 𝑒2 ← 𝐷small

Then, 𝐾 = H(𝑟, 𝑒1, 𝑒2) and  𝑐0 = AEnc𝐾 𝑚

• KeyGen(pp): 𝑎 ← 𝑅𝑞 = 𝐹𝑞[𝑥]/(𝑥
𝑛 + 1)

𝑏 = 𝑝 ⋅ 𝑎 ⋅ 𝑠 + 𝑒 ∈ 𝑅𝑞
∗ medium

• Decrypts(c): 𝑐2 − 𝑝 ⋅ 𝑐1 ⋅ 𝑠 = 𝑝 ⋅ 𝑒𝑟 − 𝑒1𝑠 + 𝑒2

⇒ Extract 𝑒2, then 𝑟, and then 𝑒1
Check if they are small, else abort
𝐾 = H(𝑟, 𝑒1, 𝑒2) and 𝑐0 = ADec𝐾 𝑐0
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Check if they are small, else abort
𝐾 = H(𝑟, 𝑒1, 𝑒2) and 𝑐0 = ADec𝐾 𝑐0

If extracted 𝑟, 𝑒1, 𝑒2 are small,

computing 𝑎 ⋅ 𝑟 + 𝑒1 and 𝑏 ⋅ 𝑟 + 𝑒2
would lead to 𝑐1 and 𝑐2

But we do not have to do it!

(≠ FO-transform)
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Decrypt with dummy ciphertext (I)

• Encapsulation is almost homomorphic

𝑐1 = 𝑎 ⋅ 𝑟 + 𝑒1
𝑐2 = 𝑏 ⋅ 𝑟 + 𝑒2

𝑟, 𝑒1, 𝑒2 ← 𝐷small

𝑐1′ = 𝑎 ⋅ 𝑟′ + 𝑒1′
𝑐2′ = 𝑏 ⋅ 𝑟′ + 𝑒2′

𝑟′, 𝑒1′, 𝑒2′ ← 𝐷small

+
ҧ𝑐1 = 𝑎 ⋅ ҧ𝑟 + ҧ𝑒1
ҧ𝑐2 = 𝑏 ⋅ ҧ𝑟 + ҧ𝑒2

ҧ𝑟 = 𝑟 + 𝑟′
ҧ𝑒1 = 𝑒1 + 𝑒1′
ҧ𝑒2 = 𝑒2 + 𝑒2′

• Partial randomized decapsulation
• Compute 𝑐1

′ and 𝑐2′, add-then-decrypt ҧ𝑐1 and ҧ𝑐2
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Decrypt with dummy ciphertext (II) 

• Decrypts(c):

ҧ𝑐2 − 𝑝 ⋅ ҧ𝑐1 ⋅ 𝑠 = 𝑝 ⋅ 𝑒 ҧ𝑟 − ҧ𝑒1𝑠 + ҧ𝑒2

⇒ Extract ҧ𝑒2, then ҧ𝑟, and then ҧ𝑒1
abort if not « 2 × small »

recover 𝑟 = ҧ𝑟 − 𝑟′, 𝑒1 = ҧ𝑒1 − 𝑒1
′ and 𝑒2 = ҧ𝑒2 − 𝑒2′

abort if not small, 𝐾 = H(𝑟, 𝑒1, 𝑒2) and 𝑐0 = ADec𝐾 𝑐0

𝑟′, 𝑒1′, 𝑒2′ ← 𝐷
𝑐1′ = 𝑎 ⋅ 𝑟′ + 𝑒1′

𝑐2′ = 𝑏 ⋅ 𝑟′ + 𝑒2′

Compute ҧ𝑐1 = 𝑐1 + 𝑐1
′ and  ҧ𝑐2 = 𝑐2 + 𝑐2′

• Decryption failure issue
• Not an issue as long as 𝑠𝑘 = 𝑠 is small
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• Decryption failure issue
• Not an issue as long as 𝑠𝑘 = 𝑠 is small

Most of the sensitive computations 

manipulate ephemeral (sometimes

randomized) secrets

DPA attack paths replaced

by SPA attack paths
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Leveling POLKA.dec (I) 11



Leveling POLKA.Dec (II) 12



What remains (leakage-resilience)

• DPA against   𝑡 = (𝑝 ∙ ഥ𝑐1) ∙ 𝑠

+ Key-homomorphic (masked with linear overheads)

− Norm computations are not key-homomorphic

unknown ephemeral value 𝑟

long-term secret

𝑠 = 𝑠1 + 𝑠2 +⋯+ 𝑠𝑠 ⇒ 𝑡 =

𝑖=1

𝑑

(𝑟 ∙ 𝑠𝑖)
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Leveraging physical assumptions?

• Attack path 1: hard physical learning problem
• Assumed to be hard if L is noisy or algebraically 

incompatible with r.s (formalized as the ring 
Learning With Physical Rounding problem) 

⇒ It may be sound to unmask 𝑡 = (𝑝 ∙ ഥ𝑐1) ∙ 𝑠

Very similar to 
fresh re-keying in 
symmetric crypto
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Conclusion

• Food for thought (there is a lot to gain)
• Decent instances (e.g., 16-bit 𝑞, 𝑛 = 1024)

• Many important open questions 
• Concrete comparison (e.g., masked Kyber)

• Challenge: masked Kyber’s security?
• Formalization & reductions

• Challenge: finer-grain than symmetric crypto
• Assessing hard physical learning problems?
• From leakage-resilience to leakage-resistance

(+ other tweaks in the paper: key-homomorphic 
one-time MAC, implicit vs. explicit rejection) 
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