Towards Leakage-Resistant Post-Quantum CCA-Secure Public Key Encryption

C. Hoffmann, B. Libert, C. Momin, T. Peters, F.-X. Standaert UCLouvain (Belgium), CNRS (France), Shandong U. (China) 4th NIST PQC Standardization Conference November 29, 2022

- Introduction/motivation
 - Parallel with symmetric crypto
 - Challenge for PQ crypto
- POLKA's main design tweaks
 - Rigidity without FO-transform
 - Dummy ciphertext (⇒ leveled implementations)
 - Hard physical learning problems
- Conclusions & open problems

- Introduction/motivation
 - Parallel with symmetric crypto
 - Challenge for PQ crypto
- POLKA's main design tweaks
 - Rigidity without FO-transform
 - Dummy ciphertext (⇒ leveled implementations)
 - Hard physical learning problems
- Conclusions & open problems

Symmetric crypto (20 years ago)

- CTR mode: uniform protection against DPA
- AES: expensive countermeasures (e.g., masking)

(Vocabulary: DPA = key/state recovery attack with many side-channel traces)

Symmetric crypto (nowadays)

- Leakage-resistant mode of operation
 - Leveled implementations (mixing expensive DPA protections for a few blocks a cheaper SPA protections)
- Lightweight (easier to protect) block ciphers

(Vocabulary: SPA = key/state recovery attack with a few side-channel traces)

Impact can be massive!

- Introduction/motivation
 - Parallel with symmetric crypto
 - Challenge for PQ crypto
- POLKA's main design tweaks
 - Rigidity without FO-transform
 - Dummy ciphertext (⇒ leveled implementations)
 - Hard physical learning problems
- Conclusions & open problems

PQ encryption (FO-calypse)

- Decryption & re-encryption before the test
- Allows "state comparison" attacks
 - Just distinguishing L(p) from L(cp) leaks about sk
- Even more expensive to prevent than DPA
 - Factor of overheads: 6, 16, 50 for 2, 4 & 8 shares!

top-down: from abstract models to implementations

Can we design quantum-safe CCA-secure encryption schemes that are (much) cheaper to protect against leakage?

(& a bit less efficient if leakage is not a concern)

bottom-up: from heuristic tweaks to formal proofs

Needs humility: completely connecting top-down and bottom-up approaches remains a challenge after 20 years in symmetric crypto

- Remove the state comparison attack path
 ≈ Avoid the FO-transform and leverage rigidity
- 2. Enable leveled implementations
 ≈ Use dummy ciphertexts & ephemeral secrets so that not all intermediate computations are DPA targets
- 3. Make the remaining DPA targets easier to mask ≈ leverage key-homomorphic computations and the (admittedly provocative) hard physical learning problems
- Focusing on key security (leakage-resilience) and not message security (leakage-resistance)

- Introduction/motivation
 - Parallel with symmetric crypto
 - Challenge for PQ crypto
- POLKA's main design tweaks
 - Rigidity without FO-transform
 - Dummy ciphertext (⇒ leveled implementations)
 - Hard physical learning problems
- Conclusions & open problems

POLKA

POst-quantum Leakage-resilient public Key encryption Algorithm

- CCA-secure in the QROM (w/o leakage)
- Hybrid encryption with an LPR-like KEM

$$c_1 = a \cdot r + e_1$$

$$c_2 = b \cdot r + e_2$$

small $r, e_1, e_2 \leftarrow D$

Then, $K = H(r, e_1, e_2)$ and $c_0 = AEnc_K(m)$

- Rigidity w/o FO + explicit rejection
- Partially randomized decapsulation

Base scheme + rigidity

- KeyGen(pp): $a \leftarrow R_q = F_q[x]/(x^n + 1)$ $b = p \cdot (a \cdot s + e) \in R_q^*$ medium
- Encrypt_{a,b}(m): $c_1 = a \cdot r + e_1$ $c_2 = b \cdot r + e_2$ small $r, e_1, e_2 \leftarrow D$

Then,
$$K = H(r, e_1, e_2)$$
 and $c_0 = AEnc_K(m)$

- Decrypt_s(c): $c_2 p \cdot c_1 \cdot s = p \cdot (er e_1 s) + e_2$
 - ⇒ Extract e_2 , then r, and then e_1 Check if they are small, else abort $K = H(r, e_1, e_2)$ and $c_0 = ADec_K(c_0)$

Base scheme + rigidity

- KeyGen(pp): $a \leftarrow R_a = F_a[x]/(x^n + 1)$ $b = p \cdot (a \cdot s + e) \in R_a^*$ medium Encr If extracted r, e_1, e_2 are small, $P_1, e_2 \leftarrow D$ computing $a \cdot r + e_1$ and $b \cdot r + e_2$ would lead to c_1 and c_2 Then But we do not have to do it! $e_1 s) + e_2$ $(\neq$ FO-transform) Decr
 - ⇒ Extract e_2 , then r, and then e_1 Check if they are small, else abort $K = H(r, e_1, e_2)$ and $c_0 = ADec_K(c_0)$

- Introduction/motivation
 - Parallel with symmetric crypto
 - Challenge for PQ crypto
- POLKA's main design tweaks
 - Rigidity without FO-transform
 - Dummy ciphertext (⇒ leveled implementations)
 - Hard physical learning problems
- Conclusions & open problems

Decrypt with dummy ciphertext (I)

• Encapsulation is almost homomorphic

$$c_{1} = a \cdot r + e_{1} \\ c_{2} = b \cdot r + e_{2} \\ small \quad r, e_{1}, e_{2} \leftarrow D \\ c_{1}' = a \cdot r' + e_{1}' \\ c_{2}' = b \cdot r' + e_{2}' \\ \hline \bar{c}_{1} = a \cdot \bar{r} + \bar{e}_{1} \\ \bar{c}_{2} = b \cdot \bar{r} + \bar{e}_{2} \\ \hline \hline \bar{c}_{1} = a \cdot \bar{r} + \bar{e}_{1} \\ \bar{c}_{2} = b \cdot \bar{r} + \bar{e}_{2} \\ \hline \hline \bar{c}_{1} = e_{1} + e_{1}' \\ \bar{e}_{1} = e_{1} + e_{1}' \\ \bar{e}_{2} = e_{2} + e_{2}' \\ \hline \end{array}$$

Partial randomized decapsulation

+

• Compute c'_1 and c'_2 , add-then-decrypt \bar{c}_1 and \bar{c}_2

Decrypt with dummy ciphertext (II) 10

- Decrypt_s(c): $c_1' = a \cdot r' + e_1'$ $c_2' = b \cdot r' + e_2'$ $r', e_1', e_2' \leftarrow D$
 - Compute $\bar{c}_1 = c_1 + c'_1$ and $\bar{c}_2 = c_2 + c_2'$

$$\bar{c}_2 - p \cdot \bar{c}_1 \cdot s = p \cdot (e\bar{r} - \bar{e}_1 s) + \bar{e}_2$$

- ⇒ Extract \overline{e}_2 , then \overline{r} , and then \overline{e}_1 abort if not « 2 × small » recover $r = \overline{r} - r'$, $e_1 = \overline{e}_1 - e_1'$ and $e_2 = \overline{e}_2 - e_2'$ abort if not small, $K = H(r, e_1, e_2)$ and $c_0 = ADec_K(c_0)$
 - Decryption failure issue
 - Not an issue as long as sk = s is small

Decrypt with dummy ciphertext (II) 10

- Decryption failure issue
 - Not an issue as long as sk = s is small

Leveling POLKA.dec (I)

*

leakage-resilience

	SPA	avg-SPA	UP-DPA	DPA
step 1	$egin{aligned} r', e_1', e_2' &\leftarrow \mathcal{D} \ c_1' &= a \cdot r' + e_1' \ c_2' &= a \cdot r' + e_2' \ \overline{c_1} &= c_1 + c_1' \ \overline{c_2} &= c_2 + c_2' \end{aligned}$			
step 2			$t = (p \cdot \overline{c_1}) \cdot s$	
step 3	$egin{aligned} \overline{\mu} = \overline{c_2} - t \ \overline{e_2} &= \overline{\mu} ext{ mod } p \ ext{if } \overline{e_2} > 2B, ext{ flag } = 1 \ \overline{r} &= (\overline{c_2} - \overline{e_2}) \cdot b^{-1} \ ext{if } \overline{r} > 2B, ext{ flag } = 1 \ \overline{e_1} &= \overline{c_1} - a \cdot \overline{r} \ ext{if } \overline{e_1} > 2B, ext{ flag } = 1 \end{aligned}$			
p 4		$egin{aligned} m{r} &= ar{m{r}} - m{r}' \ egin{aligned} ext{if} \; m{r} &> B, \; ext{flag} = 1 \ e_1 &= ar{e_1} - e_1' \end{aligned}$		

Leveling POLKA.Dec (II)

step 3	$egin{aligned} \overline{e_2} &= \overline{\mu} egin{aligned} & ext{mod} \ p \ & ext{if} \ \overline{e_2} > 2B, \ & ext{flag} = 1 \ & \overline{r} &= (\overline{c_2} - \overline{e_2}) \cdot b^{-1} \ & ext{if} \ \overline{r} > 2B, \ & ext{flag} = 1 \ & \overline{e_1} = \overline{c_1} - a \cdot \overline{r} \ & ext{if} \ & \overline{e_1} > 2B, \ & ext{flag} = 1 \end{aligned}$		_		leakage-resilien
step 4		$egin{aligned} r &= \overline{r} - r' \ ext{if} \; r > B, \; ext{flag} = 1 \ e_1 &= \overline{e_1} - e_1' \ ext{if} \; e_1 > B, \; ext{flag} = 1 \ e_2 &= \overline{e_2} - e_2' \ ext{if} \; e_2 > B, \; ext{flag} = 1 \end{aligned}$			
step 5			$egin{aligned} r^*, e_1^*, e_2^* &\leftarrow \mathcal{D} \ ext{if flag} &= 0 \ K &= H(r, e_1, e_2) \ ext{else} \ K &= H^*(r^*, e_1^*, e_2^*) \end{aligned}$	${f return} M={\sf D}_K(c_0)$	 ▲ Ieakage-resistance

What remains (leakage-resilience) 13

unknown ephemeral value r

- DPA against $t = (p \cdot \overline{c_1}) \cdot s$ \rightarrow long-term secret
- + Key-homomorphic (masked with linear overheads)

$$s = s_1 + s_2 + \dots + s_s \Rightarrow t = \sum_{i=1}^d (r \cdot s_i)$$

Norm computations are not key-homomorphic

- Introduction/motivation
 - Parallel with symmetric crypto
 - Challenge for PQ crypto
- POLKA's main design tweaks
 - Rigidity without FO-transform
 - Dummy ciphertext (⇒ leveled implementations)
 - Hard physical learning problems
- Conclusions & open problems

Leveraging physical assumptions?

Very similar to fresh re-keying in symmetric crypto

- Attack path 1: hard physical learning problem
 - Assumed to be hard if L is noisy or algebraically incompatible with *r.s* (formalized as the ring Learning With Physical Rounding problem)

 \Rightarrow It may be sound to unmask $t = (p \cdot \overline{c_1}) \cdot s$

- Introduction/motivation
 - Parallel with symmetric crypto
 - Challenge for PQ crypto
- POLKA's main design tweaks
 - Rigidity without FO-transform
 - Dummy ciphertext (\Rightarrow leveled implementations)
 - Hard physical learning problems
- Conclusions & open problems

Conclusion

- Food for thought (there is a lot to gain)
- Decent instances (e.g., 16-bit q, n = 1024)
- Many important open questions
 - Concrete comparison (e.g., masked Kyber)
 - Challenge: masked Kyber's security?
 - Formalization & reductions
 - Challenge: finer-grain than symmetric crypto
 - Assessing hard physical learning problems?
 - From leakage-resilience to leakage-resistance

(+ other tweaks in the paper: key-homomorphic one-time MAC, implicit vs. explicit rejection)

THANKS

