
Towards Leakage-Resistant
Post-Quantum CCA-Secure

Public Key Encryption

C. Hoffmann, B. Libert, C. Momin, T. Peters, F.-X. Standaert

UCLouvain (Belgium), CNRS (France), Shandong U. (China)

4th NIST PQC Standardization Conference
November 29, 2022

Outline

• Introduction/motivation
• Parallel with symmetric crypto
• Challenge for PQ crypto

• POLKA’s main design tweaks
• Rigidity without FO-transform
• Dummy ciphertext (⇒ leveled implementations)
• Hard physical learning problems

• Conclusions & open problems

Outline

• Introduction/motivation
• Parallel with symmetric crypto
• Challenge for PQ crypto

• POLKA’s main design tweaks
• Rigidity without FO-transform
• Dummy ciphertext (⇒ leveled implementations)
• Hard physical learning problems

• Conclusions & open problems

Symmetric crypto (20 years ago)

• CTR mode: uniform protection against DPA
• AES: expensive countermeasures (e.g., masking)

(Vocabulary: DPA = key/state recovery attack with many side-channel traces)

1

• Leakage-resistant mode of operation
• Leveled implementations (mixing expensive DPA

protections for a few blocks a cheaper SPA protections)

• Lightweight (easier to protect) block ciphers

Symmetric crypto (nowadays)

(Vocabulary: SPA = key/state recovery attack with a few side-channel traces)

2

Impact can be massive! 3

Outline

• Introduction/motivation
• Parallel with symmetric crypto
• Challenge for PQ crypto

• POLKA’s main design tweaks
• Rigidity without FO-transform
• Dummy ciphertext (⇒ leveled implementations)
• Hard physical learning problems

• Conclusions & open problems

PQ encryption (FO-calypse)

• Decryption & re-encryption before the test
• Allows “state comparison” attacks

• Just distinguishing L(𝑝) from L(𝑐𝑝) leaks about 𝑠𝑘

• Even more expensive to prevent than DPA
• Factor of overheads: 6, 16, 50 for 2, 4 & 8 shares!

4

Research challenge

Can we design quantum-safe CCA-secure
encryption schemes that are (much)
cheaper to protect against leakage?

(& a bit less efficient if leakage is not a concern)

top-down: from abstract models to implementations

bottom-up: from heuristic tweaks to formal proofs

Needs humility: completely connecting top-down and bottom-up
approaches remains a challenge after 20 years in symmetric crypto

5

Heuristic tweak proposals

1. Remove the state comparison attack path
≈ Avoid the FO-transform and leverage rigidity

2. Enable leveled implementations
≈ Use dummy ciphertexts & ephemeral secrets so that
not all intermediate computations are DPA targets

3. Make the remaining DPA targets easier to mask
≈ leverage key-homomorphic computations and the
(admittedly provocative) hard physical learning problems

• Focusing on key security (leakage-resilience)
and not message security (leakage-resistance)

6

Outline

• Introduction/motivation
• Parallel with symmetric crypto
• Challenge for PQ crypto

• POLKA’s main design tweaks
• Rigidity without FO-transform
• Dummy ciphertext (⇒ leveled implementations)
• Hard physical learning problems

• Conclusions & open problems

POLKA

POst-quantum Leakage-resilient
public Key encryption Algorithm

• CCA-secure in the QROM (w/o leakage)
• Hybrid encryption with an LPR-like KEM

𝑐1 = 𝑎 ⋅ 𝑟 + 𝑒1

𝑐2 = 𝑏 ⋅ 𝑟 + 𝑒2
𝑟, 𝑒1, 𝑒2 ← 𝐷small

Then, 𝐾 = H(𝑟, 𝑒1, 𝑒2) and 𝑐0 = AEnc𝐾 𝑚

• Rigidity w/o FO + explicit rejection
• Partially randomized decapsulation

7

Base scheme + rigidity

• Encrypta,b(m): 𝑐1 = 𝑎 ⋅ 𝑟 + 𝑒1

𝑐2 = 𝑏 ⋅ 𝑟 + 𝑒2
𝑟, 𝑒1, 𝑒2 ← 𝐷small

Then, 𝐾 = H(𝑟, 𝑒1, 𝑒2) and 𝑐0 = AEnc𝐾 𝑚

• KeyGen(pp): 𝑎 ← 𝑅𝑞 = 𝐹𝑞[𝑥]/(𝑥
𝑛 + 1)

𝑏 = 𝑝 ⋅ 𝑎 ⋅ 𝑠 + 𝑒 ∈ 𝑅𝑞
∗ medium

• Decrypts(c): 𝑐2 − 𝑝 ⋅ 𝑐1 ⋅ 𝑠 = 𝑝 ⋅ 𝑒𝑟 − 𝑒1𝑠 + 𝑒2

⇒ Extract 𝑒2, then 𝑟, and then 𝑒1
Check if they are small, else abort
𝐾 = H(𝑟, 𝑒1, 𝑒2) and 𝑐0 = ADec𝐾 𝑐0

8

Base scheme + rigidity

• Encrypta,b(m): 𝑐1 = 𝑎 ⋅ 𝑟 + 𝑒1

𝑐2 = 𝑏 ⋅ 𝑟 + 𝑒2
𝑟, 𝑒1, 𝑒2 ← 𝐷small

Then, 𝐾 = H(𝑟, 𝑒1, 𝑒2) and 𝑐0 = AEnc𝐾 𝑚

• KeyGen(pp): 𝑎 ← 𝑅𝑞 = 𝐹𝑞[𝑥]/(𝑥
𝑛 + 1)

𝑏 = 𝑝 ⋅ 𝑎 ⋅ 𝑠 + 𝑒 ∈ 𝑅𝑞
∗ medium

• Decrypts(c): 𝑐2 − 𝑝 ⋅ 𝑐1 ⋅ 𝑠 = 𝑝 ⋅ 𝑒𝑟 − 𝑒1𝑠 + 𝑒2

⇒ Extract 𝑒2, then 𝑟, and then 𝑒1
Check if they are small, else abort
𝐾 = H(𝑟, 𝑒1, 𝑒2) and 𝑐0 = ADec𝐾 𝑐0

If extracted 𝑟, 𝑒1, 𝑒2 are small,

computing 𝑎 ⋅ 𝑟 + 𝑒1 and 𝑏 ⋅ 𝑟 + 𝑒2
would lead to 𝑐1 and 𝑐2

But we do not have to do it!

(≠ FO-transform)

8

Outline

• Introduction/motivation
• Parallel with symmetric crypto
• Challenge for PQ crypto

• POLKA’s main design tweaks
• Rigidity without FO-transform
• Dummy ciphertext (⇒ leveled implementations)
• Hard physical learning problems

• Conclusions & open problems

Decrypt with dummy ciphertext (I)

• Encapsulation is almost homomorphic

𝑐1 = 𝑎 ⋅ 𝑟 + 𝑒1
𝑐2 = 𝑏 ⋅ 𝑟 + 𝑒2

𝑟, 𝑒1, 𝑒2 ← 𝐷small

𝑐1′ = 𝑎 ⋅ 𝑟′ + 𝑒1′
𝑐2′ = 𝑏 ⋅ 𝑟′ + 𝑒2′

𝑟′, 𝑒1′, 𝑒2′ ← 𝐷small

+
ҧ𝑐1 = 𝑎 ⋅ ҧ𝑟 + ҧ𝑒1
ҧ𝑐2 = 𝑏 ⋅ ҧ𝑟 + ҧ𝑒2

ҧ𝑟 = 𝑟 + 𝑟′
ҧ𝑒1 = 𝑒1 + 𝑒1′
ҧ𝑒2 = 𝑒2 + 𝑒2′

• Partial randomized decapsulation
• Compute 𝑐1

′ and 𝑐2′, add-then-decrypt ҧ𝑐1 and ҧ𝑐2

9

Decrypt with dummy ciphertext (II)

• Decrypts(c):

ҧ𝑐2 − 𝑝 ⋅ ҧ𝑐1 ⋅ 𝑠 = 𝑝 ⋅ 𝑒 ҧ𝑟 − ҧ𝑒1𝑠 + ҧ𝑒2

⇒ Extract ҧ𝑒2, then ҧ𝑟, and then ҧ𝑒1
abort if not « 2 × small »

recover 𝑟 = ҧ𝑟 − 𝑟′, 𝑒1 = ҧ𝑒1 − 𝑒1
′ and 𝑒2 = ҧ𝑒2 − 𝑒2′

abort if not small, 𝐾 = H(𝑟, 𝑒1, 𝑒2) and 𝑐0 = ADec𝐾 𝑐0

𝑟′, 𝑒1′, 𝑒2′ ← 𝐷
𝑐1′ = 𝑎 ⋅ 𝑟′ + 𝑒1′

𝑐2′ = 𝑏 ⋅ 𝑟′ + 𝑒2′

Compute ҧ𝑐1 = 𝑐1 + 𝑐1
′ and ҧ𝑐2 = 𝑐2 + 𝑐2′

• Decryption failure issue
• Not an issue as long as 𝑠𝑘 = 𝑠 is small

10

Decrypt with dummy ciphertext (II)

• Decrypts(c):

ҧ𝑐2 − 𝑝 ⋅ ҧ𝑐1 ⋅ 𝑠 = 𝑝 ⋅ 𝑒 ҧ𝑟 − ҧ𝑒1𝑠 + ҧ𝑒2

⇒ Extract ҧ𝑒2, then ҧ𝑟, and then ҧ𝑒1
abort if not « 2 × small »

recover 𝑟 = ҧ𝑟 − 𝑟′, 𝑒1 = ҧ𝑒1 − 𝑒1
′ and 𝑒2 = ҧ𝑒2 − 𝑒2′

abort if not small, 𝐾 = H(𝑟, 𝑒1, 𝑒2) and 𝑐0 = ADec𝐾 𝑐0

𝑟′, 𝑒1′, 𝑒2′ ← 𝐷
𝑐1′ = 𝑎 ⋅ 𝑟′ + 𝑒1′

𝑐2′ = 𝑏 ⋅ 𝑟′ + 𝑒2′

Compute ҧ𝑐1 = 𝑐1 + 𝑐1
′ and ҧ𝑐2 = 𝑐2 + 𝑐2′

• Decryption failure issue
• Not an issue as long as 𝑠𝑘 = 𝑠 is small

Most of the sensitive computations

manipulate ephemeral (sometimes

randomized) secrets

DPA attack paths replaced

by SPA attack paths

10

Leveling POLKA.dec (I) 11

Leveling POLKA.Dec (II) 12

What remains (leakage-resilience)

• DPA against 𝑡 = (𝑝 ∙ ഥ𝑐1) ∙ 𝑠

+ Key-homomorphic (masked with linear overheads)

− Norm computations are not key-homomorphic

unknown ephemeral value 𝑟

long-term secret

𝑠 = 𝑠1 + 𝑠2 +⋯+ 𝑠𝑠 ⇒ 𝑡 =

𝑖=1

𝑑

(𝑟 ∙ 𝑠𝑖)

13

Outline

• Introduction/motivation
• Parallel with symmetric crypto
• Challenge for PQ crypto

• POLKA’s main design tweaks
• Rigidity without FO-transform
• Dummy ciphertext (⇒ leveled implementations)
• Hard physical learning problems

• Conclusions & open problems

Leveraging physical assumptions?

• Attack path 1: hard physical learning problem
• Assumed to be hard if L is noisy or algebraically

incompatible with r.s (formalized as the ring
Learning With Physical Rounding problem)

⇒ It may be sound to unmask 𝑡 = (𝑝 ∙ ഥ𝑐1) ∙ 𝑠

Very similar to
fresh re-keying in
symmetric crypto

14

Outline

• Introduction/motivation
• Parallel with symmetric crypto
• Challenge for PQ crypto

• POLKA’s main design tweaks
• Rigidity without FO-transform
• Dummy ciphertext (⇒ leveled implementations)
• Hard physical learning problems

• Conclusions & open problems

Conclusion

• Food for thought (there is a lot to gain)
• Decent instances (e.g., 16-bit 𝑞, 𝑛 = 1024)

• Many important open questions
• Concrete comparison (e.g., masked Kyber)

• Challenge: masked Kyber’s security?
• Formalization & reductions

• Challenge: finer-grain than symmetric crypto
• Assessing hard physical learning problems?
• From leakage-resilience to leakage-resistance

(+ other tweaks in the paper: key-homomorphic
one-time MAC, implicit vs. explicit rejection)

15

THANKS

