
A Cryptanalytic Time-Memory Tradeoff:
First FPGA Implementation

Quisquater Jean-Jacques, Standaert Francois-Xavier,
Rouvroy Gael, David Jean-Pierre, Legat Jean-Didier

{quisquater,standaert,rouvroy,david,legat}@dice.ucl.ac.be

UCL Crypto Group
Laboratoire de Microelectronique
Universite Catholique de Louvain

Place du Levant, 3, B-1348 Louvain-La-Neuve, Belgium

Abstract. A cryptanalytic time-memory tradeoff allows the cryptanal-

ysis of any N key symmetric cryptosystem in O(N
2

3 ) operations with

O(N
2

3 ) storage, if a precomputation of O(N) operations has been done
in advance. This procedure is well known but did not lead to any realistic
implementations. In this paper, the experimental results for the crypt-
analysis of DES1 that are presented are based on a time-memory tradeoff
using distinguished points, a method which is referenced to Rivest [2].
For this task, a fast hardware implementation of DES was designed using
FPGA technology. The target is a 40-bit DES which is obtained from
DES by fixing 16 key bits to arbitrary values. The precomputation task
is performed with a purpose-built FPGA design, whereas the search al-
gorithm corresponding to the online attack is reported to be feasible on
any PC within about 10 seconds, with a success rate of 72%. The cost
of an expansion to 56-bit DES is evaluated.

1 Introduction

Generally speaking, a block cipher allows to encrypt a n-bit text using a k-bit
key to produce a n-bit ciphertext. Let q = d k

n
e. If q plaintext/ciphertext pairs

are known, with a high probability, the key can be determined by exhaustive key
search, but it requires a too long processing time. Another possibility is a chosen
plaintext attack using a precomputation table where an attacker precomputes
the encryptions of q chosen plaintexts under all possible keys and stores the
corresponding ciphertext/key pairs, but it requires a too large memory. The
aim of a time-memory tradeoff is to mount an attack which has a lower online
processing complexity than exhaustive key search and lower memory complexity
than a precomputation table.
In this paper, we present a cryptanalytic time-memory tradeoff in the context
of a chosen plaintext attack on DES. In this way, we designed fast hardware
implementations of DES using FPGA technology. Basically, the programmable

1 DES : Data Encryption Standard



hardware device was used as a dedicated computer in order to perform some
precomputation tasks (like cryptographic encryption and chaining) at very high
frequencies. We designed a machine that can break a 40-bit DES block cipher in
about 10 seconds, using one PC2, with a high success rate (72%). An exhaustive
search of the key on the same PC would have taken about 50 days. We also
evaluate the hardware cost of an expansion to a 56-bit DES block cipher. Finally,
this paper underlines the efficiency of FPGA’s in cryptanalytic applications in
terms of brute computational power.

2 Definitions

Let E : {0, 1}n × {0, 1}k → {0, 1}n be a block cipher with block length n and
key length k. The encryption of one block is written as:

C = EK(P ) (1)

Where C ∈ {0,1}n, K ∈ {0,1}k and P ∈ {0,1}n denote the ciphertext, the secret
key and the plaintext.
We define two functions. The first one just mixes its arguments and rejects z

bits to reach the key size k = n − z. g : {0, 1}n → {0, 1}k.

g(C) = g(C1, C2, ..., Cn) = (Cperm(1), Cperm(2), ..., Cperm(n−z)) (2)

Where C ∈ {0, 1}n is the ciphertext and perm denotes a simple permutation. We
call g a mask function. There are many possibilities to define g, namely (n− z)!
We also define a function f : {0, 1}k → {0, 1}k

f(K) = g(EK(P )) (3)

Finally, for a random start point SP ∈ {0, 1}k, we define a chain K0,K1,K2, ...,Kt

of length t as
K0 = SP (4)

Ki = f(Ki−1) = f i(K0) (5)

Definition of a DP -property: Let {0, 1}k be the key space and d ∈ {1,2,3,...,k-1}.
Then DP − d is a DP -property of order d if there is an easily checked property
which holds for 2k−d different elements of {0, 1}k. In our application, having d

bits locked to a fixed value, say 0, is a DP -property of order d.

Definition of a distinguished point: Let K ∈ {0, 1}k and d ∈ {1,2,3,...,k-1}.
Then K is a distinguished point (DP) of order d if the DP -property defined
beforehand holds for K. Note that using this definition of distinguished point,
we do not need to store the fixed bits and reduce the memory requirements of
the tradeoff.

2 256Mbytes RAM/350MHz



3 Algorithms

The algorithm proposed requires the choice of a DP -property of order d and a
maximum chain length t. We precompute r tables by choosing r different mask
functions. For each mask function m different start points (DP) will be randomly
chosen. For each start point a chain will be computed until a DP is encountered
or until the chain has length t + 1. Only start points that iterate to a DP in less
than t iterations will be stored with the corresponding chain length, the others
will be discarded. Moreover, if the same DP is an end point for different chains,
then only the chain of maximal length will be stored.

Precomputation algorithm: Generate r tables with (SP,EP,l)-triples, sorted on
EP.

1. Choose a DP -property of order d.
2. Choose r different mask functions gi, i = 1, 2, ..., r. It defines r different f

functions: fi = gi(EK(P )), i = 1, 2, ..., r.
3. Choose the maximum chain length t.
4. For i = 1 to r

(a) Choose m random start points SP
(i)
1 , SP

(i)
2 , ..., SP

(i)
m .

(b) For j = 1 to m, l = 1 to t

i. Compute f l
i (SP

(i)
j ).

ii. If f l
i (SP

(i)
j ) is a DP then store the triple (SP

(i)
j , EP

(i)
j = f l

i (SP
(i)
j ), l)

and take next j.

iii. If l > t ”forget” SP
(i)
j and take next j.

(c) Sort triples on end points. If several end points are identical, only store
the triple with the largest l.

(d) Store the maximum l for each table: limax.

For the search algorithm, a table only has to be accessed when a DP is encoun-
tered during an iteration. Moreover, if the encountered DP is not in the table,
then one will not find the target key by iterating further. Hence the current
search can skip the rest of this table.

Search algorithm: Given C = EK(P ) find K.

1. For i = 1 to r
(a) Look up limax.
(b) Y = gi(C).
(c) For j = 1 to limax

i. If Y is a DP then
A. If Y in table i, then

– Take the corresponding SP (i) and length l in the table.
– If j < l

• Compute predecessor K̃ = f
l−1−j
i (SP

(j)
l ).

• If C = EK̃(P ) then K = K̃: STOP.
• If C 6= EK̃(P ), take next i.

B. Else take next i.
ii. Set Y = f(Y ).



4 Hardware description

All our experiments were carried out on a Virtex1000BG560-4 FPGA board,
developed by DICE3. The board is composed of a control FPGA (FLEX 10K)
and a VIRTEX1000 FPGA associated with several processors (ARM and PIC)
and fast access memories. We used a PCI4 to communicate between the PC and
the FPGA.

5 Implementation: a hardware/software co-design

The implementation choices were enforced by both precomputation and search
algorithms. Obviously, the search algorithm corresponds to an online attack that
we want to be efficient on any PC and therefore is being dealt with in the software
part. On the other hand, we performed the precomputation task with an optimal
usage of the FPGA considering its limited size. It led us to carry out some parts
of the precomputation by software like the sort on EP. We also wanted our
hardware circuit to be parametric in order to change the tradeoff parameters
by software. Therefore, some tasks are hardware implemented with a software
control. The next list summarizes the hardware vs software design decisions.

Task HW SW SW controlled
SP generation X - -
DES chaining X - -

Mask functions X - X
Rejection of long chains X - X
Rejection of short chains X - X

DP detection X - -
Length computation X - -

Triples storage - X -
Sort on EP - X -

Merger rejection - X -
Online attack - X -

In a cryptanalytic point of view, the main advantage of FPGA’s is to parallelize
algorithms in order to reach very high encryption rates. Practically, we imple-
mented DES in the following way:
DES is a block cipher with 64-bit block size and 56-bit keys. The algorithm
proceeds in three steps:

1. The given plaintext P0 is divided into two parts of 32 bits according to an
initial permutation IP : IP (P0) = L0R0.

2. 16 iterations of a round function are computed and sixteen keys K1,K2, ...,K16,
each bit strings of length 48 are derived from the initial key K.

3 Microelectronics laboratory, Universite Catholique de Louvain, Belgium
4 Parallel Computer Interface



3. The inverse permutation IPP is applied to the bit string L16R16, obtaining
the ciphertext C0.

A fast implementation can be obtained by inserting registers between each round
of the algorithm as suggested by Figure 1. The following table summarizes the

Fig. 1. Fast DES implementation

practical results of our implementation:

Number of LUT Work Frequency
Pipeline DES 4736 66 MHz

Finally, the start point of our hardware design (Figure2) is a pipeline DES which
runs at 66M encryptions/second. As a plaintext is encrypted in 16 clock edges,
we deal simultaneously with 16 start points: K1,K2, ...,K16. Initially, they do
not need to be different because each start point has its own mask function.
The design of Figure 2 computes triples for 16=24 different mask functions. We
parallelized 4 units on the FPGA which corresponds to 64=26 different mask
functions.
The triples computed by the FPGA are communicated to the PC via a FIFO
memory.

6 Cryptanalysis of a 40-bit DES block cipher:
experimental results

The Data Encryption Standard encrypts a 64-bit plaintext using a 56-bit secret
key. We define a 40-bit DES by fixing 16 key-bits to arbitrary values and propose
a chosen plaintext attack to recover the 40 bits of the secret key.



Fig. 2. Precomputation design

6.1 Precomputation task

The objective of the precomputation task is to reach the condition:

r × Nbr.Triples.Stored × Average.chain.length ≥ 240 (6)

We define three quantities to evaluate the precomputation task:

1. Let E = (Number of triples stored after sort and mergers rejection)/(Number
of triples computed) be the effectiveness of the precomputation task.

2. Let ALBS be the average chain length before sort and mergers rejection.
3. Let ALAS be the average chain length after sort and mergers rejection.

The tradeoff parameters should be chosen such as to avoid the following situa-
tions:

– A saturation phenomenon. After the computation of an amount of triples,
mergers of chains become critical and the effectiveness of the computation
decreases.

– A variation of the average length of chains: ALBS � ALAS.

Consequently, we performed a heuristic evaluation of the parameters and defined
a set of adequate values.

1. DP -property: d = 11.



2. Length of chains: 29 < l < 213.

We succeeded in storing 219.5 triples with an average length of 210.97 for every
mask function and therefore decided to fulfil condition (6) by taking 210 different
mask functions. In terms of precomputation time, we ran the FPGA with 16 dif-
ferent configurations because we could only fit 26 mask functions on one FPGA.
It took us about one week. In terms of memory requirements, we stored all triples
on 16 CDROM’s5 corresponding to 16 sets of 26 mask functions. Finally, we give
the precomputation results.

Number of triples stored 219.5

Average length of chains 210.97

Number of mask functions 210

Memory requirements 16 CDROM’s
Key space cover of one CDROM 236.47

6.2 Online attack

In order to evaluate the practical success rate of our attack and the amount of
overlaps between mask functions, we define the following quantities:
Let the theoretical key space cover be defined in terms of memory usage as:

TKSC = Number.of.CDROM ′s × 236.47 (7)

It corresponds to the cover that we would have observed without any overlap
between the chains computed with different mask functions.
If i is the number of CDROM’s used for the online attack, let the practical key
space cover be defined in function of the experimental success rate of the attack:

PKSC(i) =
Number.of.keys.found(i)

Number.of.keys.tried(i)
× 240 (8)

Differences between TKSC and PKSC are due to the overlap problem and we
define an overlap factor such as:

TKSC = PKSC × Overlap.factor (9)

Finally, we define the experimental success rate of the attack as:

SR(i) =
Number.of.keys.found(i)

Number.of.keys.tried(i)
(10)

We summarize the online attack results:

Nbr of CDROM’s Nbr of keys tried Nbr of keys found SR
1 3000 260 8.6%
2 3000 510 17%
4 3000 941 31.4%
8 3000 1490 49.7%
16 3000 2160 72%

5 650Mbytes



Nbr of CDROM’s TKSC PKSC Overlap factor
1 236.47 236.47 1
2 237.47 237.44 1.02
4 238.47 238.33 1.1
8 239.47 238.99 1.39
16 240.47 239.53 1.92

The online attack was performed on a single PC6 and we recovered one key
in about 10 seconds with a success rate of 72%. An exhaustive key search on
the same PC would have taken about 50 days. Remark that the overlap factor
denotes a saturation problem when multiplying the number of mask functions.

Fig. 3. Success rate (%) in terms of memory usage (CDROM’s).

7 Expansion to a 56-bit DES block cipher

In order to evaluate the possibility of a cryptanalytic tradeoff on a complete DES
block cipher (with a 56-bit key), we modified our hardware design and performed
a sample of the precomputation task with the following parameters:

1. DP -property: d = 18.
2. Chain lengths: all.
3. Storage until saturation.
4. Number of mask functions: r = 16.

Figure 4 illustrates the saturation phenomenon encountered in the precompu-
tation task which restricts the number of triples stored to 222. It corresponds
to 5 days of computation. As the average chain length after sort was ' 218, we
concluded that 216 mask functions are necessary to fulfil the condition:

r × Nbr.Triples.Stored × Average.length.of.chains ' 256 (11)

6 18Gbytes memory/256Mbytes RAM/350MHz



Fig. 4. X = Triples computed in log2 scale - Y = Triples stored in log2 scale.

However, a key space cover of 246 only needs 26 mask functions and therefore 5
× 5 = 25 days of computation. It should allow us to reach a success rate close
to 1

210 ' 0.1%.
Finally, the next list indicates the possibilities to increase the precomputation
power by using larger and faster FPGA’s.

Family Device System gates Internal clock
VIRTEX 2.5V FPGA XCV1000 1M 200 MHz

VIRTEX-E 1.8V FPGA XCV3200E 4M 300 MHz
VIRTEX-2 1.5V FPGA XC2V8000 8M 400 MHz

For example, a VIRTEX-2 FPGA with 8M gates would certainly allow to gain a
factor 16 in the precomputation time. Consequently, a parallelization of several
VIRTEX-2 FPGA’s would allow us to reach significant success rates (1% to
10%).
Concerning the online attack, the processing complexity roughly depends on the
product: ALAS × r. Then we can compare different attacks:

1. DES-40 with cover = 240 : Complexity ' 210.5 × 210 = 220.5.
2. DES-56 with cover = 246 : Complexity ' 218 × 26 = 224.
3. DES-56 with cover = 256 : Complexity ' 218 × 216 = 234.

We conclude that an attack against DES-56 with 0.1% success rate is only 16
times slower than the attack developed in this paper against DES-40. Therefore,
a software implementation of the attack is thinkable. However, high success
rate attacks against DES-56 involve long processing times and should probably
use a hardware coprocessor (for example a FPGA) for the distinguished points
computation during the attack.

8 Conclusion

We performed a first implementation of a time-memory tradeoff using distin-
guished points and presented experimental results that confirm its effectiveness



in the context of block ciphers cryptanalysis. The resulting chosen plaintext at-
tack significantly improves all existing complete cryptanalytic attacks attempted
against DES or other block ciphers in terms of speed. Note that the attack is
general and could be applied to any block cipher without changing algorithms.
In case of a 40-bit DES and compared to exhaustive key search, we recover a
key in 10 seconds instead of 50 days with a success rate of 72%.
Moreover, we evaluated the cost of a possible expansion to 56-bits DES. With our
current equipment7, a success rate of 0.1% is achievable. With recent FPGA’s,
we could gain a factor from 8 to 16 or more if the parallelization of several de-
vices is considered. Anyway, the time-memory tradeoff attack can be dangerous
even when the size of the key space is too large to be exhaustively searched (say
280). Consider an application where immediate inversion of a single cipher can
be disastrous (e.g. an online bank transfer), then, constructing tables that would
cover ”only” 260 points would allow online inversion with probability 2−20, which
is not negligible.
Finally, this work confirms the effectiveness of FPGA’s in cryptanalytic appli-
cations. Due to hardware constraints, some parts of the precomputation had to
be software-implemented to make it less memory-consuming, but the resulting
design is deployed on reasonably expensive hardware and allows a first imple-
mentation of a cryptanalytic time-memory tradeoff against a practical cipher.
Future devices combined with high speed processors should reduce hardware
constraints and permit the implementation of a variety of cryptanalytic attacks
on FPGA’s. In terms of cost and effectiveness, this could replace distributed
computations in the coming years.

References

1. M.Hellman, A Cryptanalytic Time-Memory Tradeoff, IEEE transactions
on Information Theory, Vol 26, 1980, pp.401-406.

2. D.Denning, Cryptography and Data Security, p.100, Addison-Wesley,
1982, Out of Print.

3. National Bureau of Standards. Data Encryption Standard,
U.S.Department of Commerce, Washington DC, USA, January 1977.

4. J.Borst, B.Preneel and J.Vandewalle, On the Time-Memory Tradeoff Be-

tween exhaustive key search and table precomputation, Proc. of the 19th
Symposium in Information Theory in the Benelux, WIC, 1998,

5. K.Kusuda and T.Matsumoto, Optimization of Time-Memory Tradeoff

Cryptanalysis and its Applications to DES, FEAL-32 and Skipjack, IE-
ICE Transactions on Fundamentals of Electronics, Communications and
Computer Science, EP79-A, 1996, pp.35-48.

6. J.J.Quisquater, F.X.Standaert,G.Rouvroy,J.P.David,J.D.Legat,
A Cryptanalytic Time-Memory Tradeoff: First FPGA

Implementation, UCL Technical Report CG-2002/2,
http://www.dice.ucl.ac.be/crypto/techreports.html

7. A.J.Menezes, P.C.van Oorschot and S.A.Vanstone, Handbook of applied

cryptography, CRC Press, 1997.
8. Xilinx: Virtex 2.5V Field Programmable Gate Arrays Data Sheet,

http://www.xilinx.com.

7 We used only one VIRTEX1000BG560-4


	1: * This work has been funded by the Walloon region (Belgium) through the research project TACTILS.


