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Abstract Fresh re-keying is a countermeasure against side-channel anal-
ysis where an ephemeral key is derived from a long-term key using a
public random value. Popular instances of such schemes rely on key-
homomorphic primitives, so that the re-keying process is easy to mask
and the rest of the (e.g., block cipher) computations can run with cheaper
countermeasures. The main requirement for these schemes to be secure
is that the leakages of the ephemeral keys do not allow recovering the
long-term key. The Learning with Physical Rounding (LWPR) problem
formalizes this security in a practically-relevant model where the adver-
sary can observe noise-free leakages. It can be viewed as a physical ver-
sion of the Learning With Rounding (LWR) problem, where the round-
ing is performed by a leakage function and therefore does not have to
be computed explicitly. In this paper, we first consolidate the intuition
that LWPR cannot be secure in a serial implementation context with-
out additional countermeasures (like shuffling), due to attacks exploiting
worst-case leakages that can be mounted with practical data complexity.
We then extend the understanding of LWPR in a parallel implemen-
tation setting. On the one hand, we generalize its robustness against
cryptanalysis taking advantage of any (i.e., not only worst-case) leakage.
A previous work claimed security in the specific context of a Hamming
weight leakage function. We clarify necessary conditions to maintain this
guarantee, based on the degree of the leakage function and the accuracy
of its coefficients. On the other hand, we show that parallelism inherently
provides good security against attacks exploiting worst-case leakages. We
finally confirm the practical relevance of these findings by validating our
assumptions experimentally for an exemplary implementation.

1 Introduction

Hard learning problems have been shown to be an important source of cryp-
tographic hardness [Reg10,Pie12]. Popular instances of such problems include
Learning Parity with Noise (LPN), Learning With Errors (LWE), which is a
generalization to larger moduli [Reg05], and Learning With Rounding (LWR),
which is a deterministic version [BPR12]. They have found many applications for
the design of basic cryptographic primitives such as efficient authentication pro-
tocols [HB01,HKL+12] or pseudorandom functions [YS16], and advanced cryp-
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tographic primitives such as identity-based [GPV08,CHKP10] or fully homo-
morphic [Gen09,BV11] encryption. They have also gained particular interest in
the context of post-quantum cryptography, as witnessed by the signature scheme
CRYSTALS-Dilithium [DKL+18] and the encryption scheme CRYSTALS-Kyber
[BDK+18], which have been selected by the NIST to become future standards.1

Furthermore, their algebraic structure makes a (key-homomorphic) part of their
implementation quite amenable to masking against side-channel attacks. Yet,
protecting the error generation part remains a challenge, whether in the case
of probabilistic (e.g., LPN-based) or deterministic (LWR-based) designs. This
is because the noise generation itself can become the target of a side-channel
attack [GLS14], and the rounding functions needed for the deterministic designs
to be secure are non-linear and therefore more difficult to mask [BGL+14].

Hard physical learning problems have been introduced as a possible rem-
edy to these implementation issues. Conceptually, their goal is to leverage the
physical features of an implementation in order to generate errors or to round,
as required to implement primitives based on hard learning problems. A typi-
cal application of such physical problems is fresh re-keying against side-channel
attacks [MSGR10], of which the goal is to generate an ephemeral (e.g., block ci-
pher) key thanks to an easy-to-protect operation. Various pieces of work studied
the cryptanalysis of such schemes instantiated with a binary field multiplica-
tion [BFG14,BCF+15,PM16,GJ19]. Dziembowski et al. proved the security of
binary re-keying based on a Learning Parity with Leakage (LPL) problem that
reduces to the standard LPN problem [DFH+16]. Unfortunately, the concrete
level of noise in the leakages needed for their proof that LPL is secure was shown
to be quite high. More recently, Duval et al. showed that it is possible to de-
sign re-keying schemes based on a Learning With Physical Rounding (LWPR)
problem [DMMS21]. Here, the main observation is that many practical leakage
functions, such as the Hamming weight one [MOP07], are non-injective. It is
therefore tempting to let the leakage function perform the rounding, removing
the hassle of computing this rounding explicitly and protecting it against side-
channel attacks. Non-injectivity alone (i.e., without noise nor further constraints
on the field in which computations take place) is known to be insufficient. For
example, in binary fields the Hamming weight of a secret value provides a linear
equation of its bits. But combining a non-injective leakage function with compu-
tations in a prime field was suggested as a possible source of “crypto-physical”
hardness, emulating Boneh et al.’s cryptographic dark matter [BIP+18].

It is easy to see that practically-relevant secure LWPR instances could be a
game changer for the secure implementations of cryptographic algorithms. First,
masked block ciphers usually incur performance overheads that are quadratic
in the number of shares [ISW03,GR17]. By contrast, the cost of masked key-
homomorphic primitives scales linearly in this number and can benefit from
simple refreshing schemes (with linear randomness requirements) [BDF+17]. Sec-
ond, the analysis of key-homomorphic primitives in the probing model is trivial
and does not raise composability issues since, as for linear functions, their com-

1 https://csrc.nist.gov/Projects/post-quantum-cryptography.

https://csrc.nist.gov/Projects/post-quantum-cryptography
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putation can be implemented share by share and is therefore probe-isolating
non-interferent [CS20]. Third, they intrinsically mitigate the risks of security
flaws caused by physical defaults like glitches [MPG05] or transitions [CGP+12]
that can lead to shares re-combinations, thanks to the independent manipulation
of the shares they allow [CS21]. Eventually, is was recently hinted that they also
have good potential to significantly improve the performance vs. side-channel
security tradeoff of CCA-secure public key encryption schemes [HLM+23]. The
latter is well-motivated given the acknowledged difficulty to protect schemes like
CRYSTALS-Kyber against side-channel attacks [RRCB20,NDGJ21,UXT+22].

All these reasons give a strong incentive for understanding the security of the
LWPR assumption under realistic leakage functions. The CHES 2021 work of
Duval et al. made a first step in this direction by analyzing LWPR in the mean-
ingful though specific case of Hamming weight leakages, and proposed parallel
(FPGA) implementations processing 124 bits per cycle as a first cryptanalysis
target. This investigation therefore suggested as fundamental problem the anal-
ysis of leakage functions that (even slightly) deviate from the Hamming weight
case, while also leaving doubts regarding the possibility to ensure the security
of LWPR in a serial (e.g., 32-bit software) implementation context.

In this paper, we contribute to these problems in three main directions.

As an appetizer, we confirm the intuition that securing LWPR in a serial
implementation context requires additional side-channel countermeasures. This
is because attacks exploiting so-called worst-case leakages can then be mounted
with practical data complexity. By worst-case leakages, we mean the most in-
formative values provided by the leakage function (e.g., the extreme ones in the
Hamming weight case). This observation suggests the use of shuffling as a nat-
ural complement to serial LWPR which, if well implemented, has the effect of
emulating a parallel implementation [HOM06,VMKS12,UBS21]. It also allows
us to focus the rest of our investigations on parallel LWPR instances.

Next, we generalize the security of the LWPR assumption beyond the Ham-
ming weight function. For this purpose, we first consider attacks taking ad-
vantage of any value of the leakage function, which we denote as “any-case
leakages” in the paper. We show that security against algebraic cryptanalysis
is preserved in the practical context of linear leakage functions (i.e., functions
that can be expressed as a weighted sum of the bits manipulated by an imple-
mentation) [SLP05], under reasonable conditions on the accuracy of the weights.
We also argue that these guarantees can be extended towards higher-order (e.g.,
quadratic) leakage functions. We then show that attacks exloiting worst-case
leakages (used to rule out unprotected serial LWPR instances) can be prevented
in the parallel case, with similar assumptions as to resist any-case leakages.

We combine these investigations with experiments confirming the practical
relevance of our assumptions for realistic hardware implementations. As a result,
we make a crucial step towards making deterministic hard physical learning
problems a credible alternative to secure cryptographic implementations. And
we conclude the paper by identifying interesting scopes for further research.
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We note that the security of LWPR with linear or quadratic leakage functions
relies on different arguments than previously used for similar constructions. For
example in [DMMS21], the high-level idea behind the hardness of LWPR with
Hamming weight leakages is that the composition of linear functions in differ-
ent structures is sufficient to provide security. This holds since the composition
gives functions with good cryptographic parameters in both initial structures.
It corresponds to the main conclusion of Boneh et al.’s cryptographic dark mat-
ter [BIP+18] which proposes PRF constructions by only combining additions
modulus p and modulus q for any pair of different primes p and q. The same
general idea has been reused recently in [DGH+21]. In the case of LWPR with
linear or quadratic leakage functions, additionally to the composition of func-
tions over two different structures, good cryptographic properties are obtained
directly from the non-injectivity of one of the functions. This new insight allows
us to generalize the results to more functions and to strengthen their connection
to practice, since the non-injectivity of a leakage function is typically something
that can be characterized by existing side-channel evaluation setups & tools.

2 Background

2.1 Learning With physical rounding

We first define the LWPR assumption introduced in [DMMS21]. For this purpose,
let us consider a secret matrix K ∈ Fm×n2 and a public vector r ∈ Fn2 . The work
of Boneh et al. on cryptographic dark matter showed that a low-complexity
wPRF FK(r) can be obtained by computing the product K · r, interpreting its
output as a vector of 0/1 values over F3 and rounding it. Precisely:

FK(r) := map(K · r),

where the proposed mapping was the sum of this vector of 0/1 values modulo
3 [BIP+18]. The idea of Duval et al. is to replace this mathematical mapping by
a physical one (the leakage function) that is formalized as follows.

First, it is assumed that the leaking device computes on binary-represented
data: each value in Fp is therefore represented with (at least) dlog pe bits. We
denote as g : Fp → {0, 1}dlog pe the function associating to each element y of
Fp the binary representation of its representative in [0, p − 1]. We also define
gm : Fmp → {0, 1}mdlog pe as: gm(y) := g(y1)||g(y2)|| . . . ||g(ym). This assumption
is quite generic and captures the reality of most embedded computing devices
deployed in current applications. Next, a more specialized assumption is required
to define how the physical (noise-free) leakages depend on the mdlog pe bits
provided by gm. This role will be played by the leakage function. We denote the
leakage function computed on the binary representation of the manipulated data
as Lg(.). The generic LWPR problem is then defined as follows:

Definition 1 (Learning with physical rounding). Let p, n,m ∈ N∗, p prime,

for K ∈ Fm×(n+1)
p . The LWPRn,m

Lg,p
sample distribution is given by: DLWPRn,m

Lg,p
:=
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r, Lg(K � r)

)
for r ∈ Fnp uniformly random, where K � r = K · (r, 1) and Lg :

Fmp → Rnd is the physical rounding function. Given query access to DLWPRn,m
Lg,p

for a uniformly random K, the LWPRn,m
Lg,p

problem is (q, τ, µ, ε)-hard to solve if
after the observation of q LWPR samples, no adversary can recover the key K
with time complexity τ , memory complexity µ and probability higher than ε.

Duval et al. analyzed the case of Hamming weight leakages as a first step.
The Hamming weight function is defined on any vector v of length t ∈ N∗ with
coefficients in {0, 1} as Mh(v) =

∑t
i=1 vi, where the sum is performed in Z.

They additionally considered two implementation contexts. In the serial case,
the adversary is provided with m leakages on dlog pe bits:

Ms
h(y) : y 7→

(
Mh

(
g(y1)

)
,Mh

(
g(y2)

)
, . . . ,Mh

(
g(ym)

))
.

In the parallel case, she receives the sum of these m values, denoted as Mp
h(y).

The LWPR instance proposed by Duval et al. uses a Mersenne prime p =
231 − 1. It aims at the generation of 124-bit fresh keys in the parallel case and
therefore considers m = 4. As for the main security parameter n, their analysis
suggested (n+ 1) log(p) + 3 log(n) ≥ 124 as a lower bound. This led the authors
to select n = 4 as a first target for further cryptanalytic investigations.

2.2 Regression-based side-channel analysis

Linear regression is among the most popular tools for profiling a side-channel
leakage model. Originally introduced by Schindler et al. [SLP05], it has been
rapidly established as an efficient alternative to template attacks [GLP06]. Its
main idea is to approximate the deterministic part of the leakage function as a
weighted sum of nb well-chosen basis function that we denote as βi:

Mr(v) =

nb∑
i=1

ai · βi(v),

with the ai’s ∈ R. For a t-bit value v, a typical choice is to consider nb = t
and to use the bits of v as basis functions.2 We will denote the resulting class
of leakage functions as linear models Mr1(v), which generalizes Hamming weight
leakages where ai = 1 ∀ 1 ≤ i ≤ nb. The model can be refined by adding more
basis functions. Typically, we can add the

(
t
δ

)
basis functions of degree δ, which

we denote as quadratic leakage models Mr2(v) when δ = 2, cubic leakage models
Mr3(v) when δ = 3, . . . , until the bijective model Mrt where δ = t and nb = 2t.

Profiling a leakage model then essentially boils down to estimate the vector of
coefficients a, by applying the least square method. For this purpose, the evalu-
ator first collects a vector of np profiling traces l = [l1, l2, . . . , lnp ], corresponding

2 Or nb = t + 1, with a constant term to capture DC effects in the measurements.
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to values v1,v2, . . . ,vnp . She then builds a np × nb matrix:

B =


β1(v1) β2(v1) · · · βnb

(v1)
β1(v2) β2(v2) · · · βnb

(v2)
...

...
. . .

...
β1(vnp) β2(vnp) · · · βnb

(vnp)

 ·
Eventually, the vector of coefficients minimizing the means square error is:

â = [â1, â2, . . . , ˆanb
] = (BT ·B)−1 ·BT · l.

We note that the analysis in [SLP05] considers noisy leakages and therefore
adds a probabilistic component to the previous deterministic function. We do
not detail this part since LWPR (conservatively) assumes noise-free leakages.

2.3 Correlation-based security evaluations

Given a leakage model, the main question of a side-channel security evaluation
is to determine the number of attack traces needed to recover a key [SMY09].
In the context of univariate leakage functions that we consider in this paper,
Pearson’s correlation is among the most popular evaluation tools [BCO04]. We
next describe the basic approximations we will use in our empirical analyses.

Let us first denote a vector of na attack values v = [v1,v2, . . . ,vna ]. From
those values, an evaluator can compute the modeled leakage vector:

m = [Mr(v
1),Mr(v

2), . . . ,Mr(v
na)].

Similarly, she can measure a vector of actual leakage traces l = [l1, l2, . . . , lna ].
Viewing these vectors as na samples of random variables M and L, the data
complexity of a Correlation Power Analysis (CPA) is given by [Man04]:

N =
c

ρ̂(M,L)2
,

where c is a small constant and ρ̂ denotes Pearson’s correlation coefficient.

In our experimental evaluations, we will in particular be interested by the
comparison between different leakage models, with the goal to evaluate whether
simplifying a model (e.g., by limiting its degree or quantizing it) results in a
significant information loss. Pearson’s correlation is convenient for this purpose.
For example, let us assume a model M1 that is a simplification of a model M2,
leading to model errors captured by a random variable E so that M1 = M2 +E.
Then, thanks to the correlation chain rule given in [SPRQ06] we have:

ρ̂(M1, L) = ρ̂(M1,M2) · ρ̂(M2, L).

As a result, the increase of data complexity that is due to simplifying the model
M2 into M1 is reflected by the factor f = 1

ρ̂(M1,M2)2
: if f ≈ 1 the attack using the

simplified model is close to the one using the complex model; if f > 1 the simpler
model misses some leakage features and the attack using this model requires f
times more traces than the attack using the more complex model.
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2.4 Cryptographic criteria & p-ary functions

Since the re-keying scheme we consider in this paper is linear over Fp, we will
study the properties of the leakage function embedded in Fp that a side-channel
adversary can obtain. For this purpose, we adapt tools from the analysis of
cryptographic criteria for Boolean functions from Fn2 to F2 (e.g., [Car21]) and
study the cryptographic properties of functions from Fnp to Fp.

Definition 2 (p-ary function). For p a prime, a p-ary function f in n vari-
ables (an n-variable p-ary function) is a function from Fnp to Fp. The set of all

p-ary functions in n variables is denoted by Fp,n, and |Fp,n| = pp
n

.

Definition 3 (Algebraic normal form and degree (e.g., [Hou18])). We
call Algebraic Normal Form (ANF) of a p-ary function f its n-variable polyno-
mial representation over Fp belonging to Fp[x1, . . . , xn]/(xp1 − x1, . . . , xpn − xn):

f(x) =
∑

S⊂[0,p−1]n
aS

 ∏
i∈[1,n]

xSi
i

 =
∑

S⊂[0,p−1]n
aSx

S ,

where aS ∈ Fp. The ANF of f is unique, and the algebraic degree of f is defined

as deg(f) = max
{S | aS 6=0}

n∑
i=1

Si (with the convention that deg(0) = 0).

Definition 4 (Nonlinearity). The nonlinearity nl(f) of a p-ary function f ∈
Fp,n, is the minimum Hamming distance between f and all the affine functions
in Fp,n:

nl(f) = min
g, deg(g)≤1

{dH(f, g)},

where dH(f, g) is the Hamming distance |{x ∈ Fnp | f(x) 6= g(x)}| between f and g.

3 Appetizer: threat model and serial LWPR

Before describing our technical contributions, we quickly recall the threat model
we consider, which is illustrated in Figure 1. We also come back on the impact of
an attack against serial LWPR instances outlined in the appendix of [DMMS21],
by specializing it to the case of a Hamming weight function for simplicity. We
use this example for two purposes: first, confirming that securing serial LWPR
instances requires additional countermeasures; second: introducing the difference
between attacks using worst-case leakages and any-case leakages.

In brief, the idea of fresh re-keying schemes is that it is possible to efficiently
mask their key-homomorphic part (i.e., the product between the secret matrix K
and the public vector r) and to recombine the output of this product for which
the adversary can only observe the leakage. In other words, the multiplication
we consider in Definition 1 will be performed on the shares K1,K2, . . . ,Kq and
then recombined such that the fresh key is K � r =

∑q
i=1

(
Ki � r

)
.
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re
fre

sh

unshare

Figure 1: Fresh re-keying with LWPR: threat model.

This fresh key will then be used without masking for a single (e.g., block
cipher) encryption, which is expected to be significantly harder to break than
if using the long-term key multiple times with the same cipher. As a result,
there are two natural attack paths against such re-keying schemes. The first one
(depicted in gray on Figure 1) is to target the masked product. Evaluating it
can be done with standard side-channel analysis techniques, enjoying the advan-
tages listed in introduction (linear overheads, no composability issues, resistance
against glitches). The analysis of this attack path given in [DMMS21] remains
identical and we therefore do not repeat it. The second option (depicted in red
on Figure 1) is to target the output of the product after its shares have been
re-combined. Evaluating it requires less standard techniques and can be done
in different models. Binary fresh re-keying schemes like [MSGR10] require noisy
leakages to be secure. We consider a more conservative model where the ad-
versary obtains noise-free leakages. As a result, the analysis of this attack path
becomes conceptually similar to the analysis of a stream cipher, the product
playing the role of an LFSR and the leakage function the one of a filter.

Given this threat model, the attack against serial LWPR implementations
is pretty simple. Say we have an instance of LWPR with p = 231 − 1 where
the adversary can observe the Hamming weight of every 31-bit word of K � r.
Then, she can filter the leakages and retain the ones with (worst-case) value 0,
which has a single preimage. Every such event gives a linear equation in the key
elements of the corresponding line of K, and each such line can be recovered
with (n+ 1) linear equations. Since p is only mid-size, these events happen with
a concretely reachable probability 1

p . As a result, after the generation p (n + 1)
LWPR samples, the full key is compromised with good probability.

Since it is hard to rule out that (close to) Hamming weight leakages can be ob-
served in practice (as Section 6 will confirm experimentally), this attack suggests
that serial instances of LWPR cannot be secure without additional side-channel
countermeasures. Various candidates can be considered for this purpose. As it
is argued in [DMMS21], exploiting extreme Hamming weights becomes difficult
when the level of parallelism increases (since they become exponentially less
likely), and shuffling therefore appears as the most natural one. Indeed, if well
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implemented, shuffling makes the m intermediate computations of a serial im-
plementation hard to distinguish so that the adversary does not gain more infor-
mation than if she was provided with the sum of these leakages, which emulates
a parallel implementation [HOM06,VMKS12,UBS21].3 We show in Section 5
that attacks exploiting worst-case leakages can be generalized, and that a secu-
rity argument can be given based on the degree of the (linear) leakage function
and the accuracy of its coefficients. Beforehand, we consider another important
class of (algebraic) attacks where the adversary exploits any-case leakages (i.e.,
where the leakages are not filtered and all the measurements are used). For this
purpose, we generalize the former security analysis of Duval et al. from the spe-
cialized Hamming weight leakage function towards any linear leakage function.
Interestingly, for those attacks we are even able to give a security argument for
serial implementations, which then easily extends to parallel ones.

4 LWPR for linear leakage functions

While reasonable as a first step, considering security against Hamming weight
leakages is oversimplifying since the different bits of an implementation can con-
sume more or less power, due to different load capacitances. This is precisely
what is modeled by regression-based attacks [SLP05]. In this section, we there-
fore analyze the security of LWPR in this generalized context.

For this purpose, we first observe that the product K�r is linear over Fp. As
a result, we focus on the (linear invariant) cryptographic criteria of the remaining
function Lg considered as a function over Fp. If the adversary can approximate
well the real function Lg by a p-ary function, she obtains a system of equations
over Fp where the unknowns are (affine combinations of) the key elements.

This gives a modeling of Lg(K � r) as equations over Fp where the only
unknowns are the Fp elements of K. We next carry out such an analysis for a
linear leakage model in the serial case, by considering these models as functions
over Fp, which we define as s-bounded pseudo-linear functions.

Definition 5 (s-bounded pseudo-linear functions). We denote as Fa the
function characterized by a ∈ Ftp, where t = dlog pe and defined as:

Fa : Fp → Fp, y 7→
t−1∑
i=0

ai · g(y)i. (1)

We call Fa s-bounded pseudo-linear if each ai belongs to [0, s], with s ∈ Fp a
security parameter, and we call Cs1 the class of s-bounded pseudo-linear functions.

We recall that the g function associates elements of Fp to their binary represen-
tation. The name pseudo-linear comes from the fact that this function is linear
in the bits of the binary representation of a. However, it corresponds to a much

3 Increasing the size of p could provide similar security benefits at higher cost.
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higher degree p-ary function. This increase of the degree when projecting a bi-
nary representation into a prime field is the root of the LWPR hardness. We next
consider that an s-bounded Fa is the p-ary function used to approximate Lg.

We note that this definition implicitly relies on two assumptions: one on the
degree of the physical leakage function and another one on the number of values
taken by the coefficients ai. The practical relevance of these two assumptions
is discussed in Section 6. We also note that the proposed analysis captures an
important class of (algebraic) attacks against LWPR. We will show that the non-
injectivity of a one-variable p-ary function is sufficient to prove a lower bound on
its degree and its nonlinearity. On the one hand, the high algebraic degree of a p-
ary function allows thwarting the attacks based on solving a linearized algebraic
system. On the other hand, the high nonlinearity prevents the attacks based
on solving noisy linear algebraic systems, which use the best approximation of
a p-ary function by an affine function. But as usual in cryptanalysis, nothing
prevents that other characterizations or attack vectors lead to better results.

Definition 6 (Preimage sets & main preimage). Let f ∈ Fp,m, we call:

– Af (y) = {x ∈ Fmp | f(x) = y} for y ∈ Fp, the set of preimages of y through f .
– uf ∈ Fp a main image of f defined as ∀y ∈ Fp, |Af (uf )| ≥ |Af (y)|.
– vf ∈ [1, pm] the main preimage size of f , defined as vf = |Af (uf )|.
– wf ∈ [0, p− 1] the no preimage set’s size of f , defined as

wf = |{y ∈ Fp | Af (y) = ∅}|

.
We first show a bound on the degree of f based on its main preimage size.

Proposition 1 (Main preimage size and algebraic degree). Let f ∈ Fp,1,
if its main preimage vf < p then its algebraic degree deg(f) ≥ vf .

Proof. Since vf < p, f is not a constant function and f − uf is not the null
function. Accordingly, the function f − uf admits vf different zeros in Fp, and
there exists vf terms (x− zi) dividing f . Therefore its degree is at least vf and,
since the algebraic degree is affine invariant, deg(f) = deg(f − uf ) ≥ vf . ut

Furthermore, when f is not enough non-injective, composing the function can
be used to determine better its degree as shown in the following corollary:

Corollary 1. Let f ∈ Fp,1 and r ∈ N∗, we denote f◦r = f ◦ f ◦ · · · ◦ f the
composition of f r times. If vf◦r < p then deg(f) ≥ (vf◦r )1/r.

We next show a bound on the nonlinearity of f .

Proposition 2 (Main preimage size, no preimage set’s size and non-
linearity). Let f ∈ Fp,1 such that its main preimage size vf < p, then:

nl(f) ≥ min (p− vf ,max (vf − 1,wf )) .
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Proof. We derive the bound on the nonlinearity by first considering the distance
to constant functions, and then to any affine function. Since vf < p, f is not
constant, and it will agree on at most vf values with a constant function c.
Hence dH(f, c) ≥ p − vf . Besides, p-ary affine (not constant) functions in one
variable are bijective. Accordingly, each element of Fp is the image of exactly
one element. Therefore, for any affine (not constant) function in Fp,1, there
exists at least vf − 1 elements of Fp where the image of f is different from the
affine function’s one (all except one of the preimages of uf ). Moreover, since wf
elements are not in the image of f , f disagrees at least wf times with any affine
(not constant) function, which give the final bound. ut

Finally, we bound the main preimage size of s-bounded pseudo-linear functions.

Proposition 3 (Properties of s-bounded pseudo-linear functions). Let
f ∈ Cs1 with ts < p, where t = dlog pe, then the following holds:

– vf ≥ d p
ts+1e,

– wf ≥ p− ts− 1.

And assuming vf 6= p, we further have:

– deg(f) ≥ d p
ts+1e,

– nl(f) ≥ min
(
p− vf ,max

(
d p
ts+1e − 1, p− ts− 1

))
.

Proof. Since ts < p, we obtain that for all x ∈ Fp, 0 ≤ f(x) ≤ ts, hence
wf ≥ p − ts − 1. Thereafter, f(x) can take at most ts + 1 values, hence there
exists at least a preimage set with cardinal d p

ts+1e or more. The last two items
are obtained using Proposition 1, Proposition 2 and two first items. ut

Note that the condition ts < p guarantees that no reduction takes place
independent of the input of the pseudo-linear leakage function in Equation 1.

For a given a ∈ Ftp, the output of Fa gives a system of equations where the
key elements are the unknowns. Therefore, solving the algebraic system given by
images of Fa allows retrieving the key. We next explore two methods for solving
such a system over Fp, and demonstrate that the time and data complexity of
these methods are sufficiently high for our instances in Section 6.5 .

Concretely, an adversary can either solve the system of k variables directly
or use the higher-order correlation approach presented in [Cou02]. Higher-order
correlation attacks consist in approximating Fa by a degree-d function h, and
then solving systems of equations until one is such that Fa and h coincide on
all these equations. An adversary can create additional equations if needed,
for instance through a linear combination of the existing ones. Hence, the time
complexity of solving a noisy degree-d system of equations over Fp can be written
as C(1−ε)−D with C the time complexity to solve a degree-d system of equations
in k′ variables over Fp, (1−ε) the probability of the approximation to be correct
for one equation, k′ the number of variables (i.e., at least the number of key
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variables k, but it can be more if techniques introducing new variables are used),
and D the quantity of data necessary (at least the number of variables k′).

Exact algebraic system attack path. Let us for now fix the security param-
eter s to 212 (the practical relevance of this value will be discussed in Section 6).
Trying to solve the system directly given by the output of the function Fa with

this value and a modulus p = 231 − 1, we find vf ≥ d 231−1
31·212+1e ≥ 214 (since

t = dlog(p)e). Therefore, the adversary would have to solve a system of equa-
tions of degree at least 214 in n + 1 variables over F231−1 to recover the first
row of K. There are usually two main families of algorithms considered to solve
polynomial systems of equations: the XL algorithms and Gröbner bases algo-
rithms such as F4 [Fau99] or F5 [Fau02]. The complexities of these families of
algorithms are studied in different works. We refer to [YC04] for the XL family
and to [BFS15] for F4/F5. For clarity, we first discuss the results given by the
simpler approach of linearization. Let Vd denote the number of monomials over
Fp with degree at most d in the k variables of the system. The linearization
attacks consists in considering each of these monomials as a new variable, and
then in inverting the linear system using Gaussian elimination. Thereafter, the
corresponding time complexity to solve a system with this approach is simply
O
(
V 3
d

)
. XL algorithms or Gröbner bases algorithms should improve over this

complexity. However, Gaussian elimination algorithms give a convenient estimate
of the complexity to solve a linear system, that is sufficient for our purposes and
which can be combined with mild security margins if needed. For example, XL
and F4/F5 can be much faster when more polynomials are available, leading
to a time complexity reduced to O (V ωd ), where 2 ≤ ω ≤ 3 is a linear algebra
constant that depends on the algorithm used. We make the conservative choice
to consider the complexity O

(
V 2
d

)
for our concrete security estimations.

Noisy linear system attack path. We also consider the complexity of lin-
earizing the d-degree system, then solving the resulting linear system. For this
purpose, we use a similar argument as the one given in [DMMS21]. Namely,
we first observe that the number of variables after linearization is Vd = |{v ∈
[0, p − 1]k, 0 ≤

∑k
i=1 vi ≤ d}| =

∑d
l=0

(
l+k−1
l

)
=
(
k+d
k

)
(using the stars and

bars theorem) and again assume C = O (V ωd ). The noisy linear system approach
then just implies considering a probability of error ε = nl(Fa)/p for the equation
approximation. In this case, with a degree d = 1, we have V1 = k + 1 and the
time complexity is at least O

(
(k + 1)ω(p/(p− nl(Fa)))k

)
. Using the bound of

Proposition 3 therefore provides the required security estimation.

These theoretical bounds will be made concrete in Section 6.5, where actual
instances of Fa are given, with their associated values vf and wf .

Adaptation to the parallel case. In the serial case above, we studied the
properties of the function an adversary can obtain from the leakage correspond-
ing to one (Fp) element of the ephemeral key, each element of y depending on
a different row of the long term key. In the parallel case, the adversary gets less
information since she obtains the leakage on the whole y and not independently
on each coefficient. In this case, the leakage is the sum of the leakages obtained
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in the serial case. Therefore, in terms of p-ary functions, calling fi the functions
considered in the serial case, the one in the parallel case is f ′ ∈ Fp,m:

f ′(y) =

m∑
i=1

fi(yi).

Since f ′ is a direct sum of functions (sum of functions acting on different vari-
ables) its properties can be derived from the ones of the fi’s. Namely, deg(fi)
and nl(fi) can be obtained from Proposition 3, deg(f ′) = max

i
deg(fi) and the

nonlinearity of f ′ can be derived from the following result:

Property 1 (Adapted from [CHMS22], Proposition 1). Let G be a group, Let
h = f + g be the direct sum of the functions f and g with n and m G-variables
respectively. Then, nlG(h) ≥ max(|G|nnlG(g), |G|mnlG(f)).

Accordingly, we also obtain nl(f ′) ≥ max
i

pm−1nl(fi). The complexity of the

attacks against parallel LWPRG implementations is therefore increased thanks
to this higher nonlinearity and the higher number of variables km.

5 Security against worst-case leakages

We now extend the approach of [DMMS21] for attacks taking advantage of worst-
case leakages (intuitively outlined in Section 3). Precisely, we investigate the
complexity of attacks that benefit from the existence of leakages with small
preimage sets. In the parallel case, the adversary obtains images z such that:

z = f ′(y) =

m∑
i=1

fi(yi) =

m∑
i=1

fi(ki � r),

where ki denotes the i-th row of K. For z = f ′(y), the m-variable p-ary function

f ′ has |Af ′(z)| preimages that we denote (y
(j)
1 , . . . , y

(j)
m ), for j ∈ [1, |Af ′(z)|].

From an image z, the adversary obtains that a linear system of m equations,

namely {ki � r = y
(j)
i , for i ∈ [1,m]}, is correct for one j. She can then collect

n+ 1 samples z1, . . . , zn+1 and solve the
∏n+1
i=1 |Af ′(zi)| possible linear systems

in m (n+ 1) variables (in order to retrieve K). Only one of these systems is the
correct one, and the correct solution can be verified with more samples. Since by
definition |Af ′(zi)| ≤ vf ′ , the time complexity of this attack is upper bounded
by O(vn+1

f ′ · (m(n+ 1))ω) (following the analysis of Section 4).

We extend this attack by considering algebraic systems of higher degree
rather than linear systems. When z gives |Af ′(z)| preimages, instead of con-
sidering m · |Af ′(z)| linear equations, we can build the m equations:

|Af′ (z)|∏
j=1

(ki � r − y(j)i ) = 0, for i ∈ [1,m],
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where the m equations have degree |Af ′(z)|. We first observe that the cases we
previously described, with m·|Af ′(z)| equations of degree 1 and m·1 equations of
degree |Af ′(z)|, are two extreme cases. We can also createm·b equations of degree
c such that bc = |Af ′(z)|, where only one of the b system of equations is correct.
As a result, the attack becomes a tradeoff between the number of polynomial
systems of fixed degree and their algebraic degree, since it corresponds to the
resolution of bn+1 polynomial systems of degree c, with bc = |Af ′(z)|.

The complexity of the attack relies on two main factors: first, the size of the
preimage sets considered |Af ′(z)|, intervening in the number of systems and the
degree of the polynomial systems; second, the probability to get samples zi with
small preimage sets. We argue that this attack is not a threat since either the
time complexity is higher than the security level targeted when Af ′(z) is large,
or the data complexity is too high when Af ′(z) is small. To do so, we first give
the expression of |Af ′(z)| when f ′ is the direct sum of m p-ary functions. Then,
we show how the complexity of the attack can be bounded from the values of
|Af ′(zi)| from the samples zi an adversary obtains. Finally, we give a proposition
to bound the probability of getting zi such that the preimage set is small, and
we conclude by applying these results to a practical example.

Concretely, when f ′ is the direct sum of m p-ary functions fi, the expression
of |Af ′(z)| is given by:

|Af ′(z)| =
∑

y1,...,ym∈Fp
y1+···+ym=z

m∏
i=1

|Afi(yi)|.

Then, since the time complexity of the attack comes from the resolution of
bn+1 polynomial systems of degree c such that bc = |Af ′(z)|, using the analysis
of Section 4 the complexity is O(bn+1 · (mVc)ω). We rewrite bn+1 · (mVc)ω to
express it relatively to |Af ′(z)| as follows:

bn+1 · (mVc)ω =

(
|Af ′(z)|

c

)n+1(
n+ 1 + c

n+ 1

)ω
mω,

≥
(
|Af ′(z)|

c

)n+1
cn+1

(n+ 1)!

(
n+ 1 + c

n+ 1

)ω−1
mω,

≥ |Af
′(z)|n+1

(n+ 1)!
·

Finally, we use the following proposition in order to bound the probability of
getting images coming from small preimage sets:

Proposition 4 (Probability of getting images from small preimage sets).
Let f ′ ∈ Fp,m and B ∈ N such that B < pm/| Im(f ′)| where Im(·) denotes the
image, the probability pf ′,B of choosing at random z ∈ Fmp such that |Af ′(z)| ≤ B
follows:

pf ′,B ≤
(| Im(f ′)| − 1)B

pm
·
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In particular, if f ′ is the direct sum of m p-ary functions with Cs1 and mts < p
(where t = dlog pe), the probability becomes:

pf ′,B ≤
mstB

pm
·

Proof. First, we show the result in the general case. By definition, the preimage
sets Af ′(z) for z ∈ Fp are a partition of Fmp , Therefore:

pm =
∑
z∈Fp

|Af ′(z)| =
∑

z∈Im(f ′)

|Af ′(z)|.

Since B < pm

| Im(f ′)| , at least one of the images is such that |Af ′(z)| > B. Hence,

at most | Im(f ′)| − 1 images are such that |Af ′(z)| ≤ B, and the corresponding
number of corresponding preimages is therefore at most (| Im(f ′)| − 1)B, which
allows us to conclude on pf ′,B . For the particular case where f ′ is a direct sum
of m p-ary functions from Cs1, since mst < p we have that f(y) ∈ [0, st] since
f ∈ Cs1 and f ′(y) ∈ [0,mst], hence | Im(f ′)| ≤ mst+ 1. ut

Using the same parameters as in Section 5, namely p = 231 − 1, s = 212,
n = 4 and m = 4, we obtain that preimage sizes |Af ′(z)| larger than

5
√

5!2124 ≈
226 lead to a time complexity larger than 2124. We can then take the value
B = 226 and apply Proposition 4, leading to a probability to get a sample z

with at most B preimages lower than 4·212·31·226
(231−1)4) ≈ 2−79. Hence, our analysis

shows that attacks exploiting worst-case leakages cannot succeed for adversaries
with a data complexity bounded by 279, whereas side-channel security generally
requires preventing attacks with data complexity in the 250 range. As a result, we
conclude that such attacks are not a concrete threat to the proposed instance.

6 Empirical validation

The previous sections showed that the LWPR assumption can remain secure in
the generalized context of linear leakage functions. Yet, as illustrated in Figure 2,
it is based on an adversarial strategy that interprets the leakages in Fp and
security against adversaries following this strategy relies on two assumptions.
Namely, it requires a bound on the degree of the leakage function and another
bound on the quantization of the coefficients of this leakage function.

In the following, we therefore evaluate the validity of our assumptions based
on a prototype hardware implementation (in Section 6.2 and Section 6.4) and
discuss the applicability and relevance of our attack strategy (in Section 6.3). We
conclude in Section 6.5, by confirming that the concrete leakage models we esti-
mated from real measurements are covered by our security analysis. Beforehand,
we describe the prototype implementation we considered in Section 6.1
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Figure 2: Adversarial strategy & leakage assumptions.

6.1 Prototype hardware implementation

We measured a parallel hardware implementation operating on 31-bit words
running on a FPGA. The architecture of the computational core of our masked
LWPR-based re-keying scheme is depicted in Figure 3. Concretely, the complete
computation is performed by processing each share sequentially and the matrix
multiplication for the share index d is split in (N + 1) ×M = (4 + 1) × 4 = 20
modular multiplications over Fp. More precisely, the core implements 4 mod-
ular multiplications in parallel (i.e., the results of the multiplications between
the j-th column of a key share denoted Kd

∗,0≤j<5 and the j-th element of the
nonce denoted rj , where r4 = 1). We used the efficient modular multiplication
architecture based on DSPs proposed in [KSHS17] for this purpose. The results
obtained for the multiplications are then added in 4 accumulators (i.e., one for
each row) dedicated to the reconstruction of the resulting fresh key.

KEY
MEMORY

NONCE
MEMORY

Figure 3: Masked LWPR-based re-keying: prototype hardware implementation.
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As shown in Figure 4, the architecture of the key memory is designed to limit
the impact of physical defaults on the implementation’s security. In particular,
the key shares are stored in independent physical memory units (i.e., BRAMs in
the context of our FPGA implementation) and a register barrier is used before
selecting the appropriate memory output. The latter is needed to avoid shares’
recombinations that may be caused by glitches. Finally, a dedicated multiplexer
at the input of the register barrier is used to drive the shares’ values that are not
currently processed to zero. Together with the fact that the shares are processed
sequentially, this mechanism ensures the independence of the key shares.

BRAM

raddr

ren

raddr

ren

raddr

ren

==
0

==
1

==
q-1

control delay

BRAM

BRAM

Figure 4: Key material memory architecture.

Overall, our prototype implementation matches the parallelism requirements
of our security analysis since it recombines a full (124-bit) fresh key in a single
clock cycle, the leakage of which we analyze in the rest of this section. Besides,
we note that when analyzing the second (red) attack path described in the threat
model of Figure 1, we are only interested in the value of the recombined fresh
key.4 Concretely, we therefore choose to measure an implementation with a single
share (i.e., q = 1). This gives the most favorable leakages to the evaluator and
therefore puts us as close as possible to the noise-free setting considered in our
analyzes. This is because the implementation with q = 1 is the smallest one and
a limited use of resources in turn reduces the noise in the leakages.

Our measurements were performed on the Sakura-G evaluation board, which
embeds a XC6SLX75-2CSG484C Spartan6 FPGA. The traces were collected

4 The first attack path (leveraging the leakages of the shared multiplications) was
analyzed in [DMMS21] and the arguments of this previous work apply similarly.
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using a Picoscope 5244D with a Tektronix CT-1 current probe, following the
guidelines given in [BUS21]. In order to take into account the effect of conges-
tion that can take place during the place-and-route step of a dense design, we
performed three different syntheses using the ISE14.7 design toolchain. The first
one is unconstrained. The second one is constrained in order to achieve 95%
of resources’ utilization density (using a PBLOCK area constraint). The last
one further constraints the design by (artificially) enforcing that higher-capacity
routing elements are included in the path of some bits. We next refer to these
different syntheses as unconstrained, constrained and amplified. The layout of
the unconstrained and constrained syntheses are illustrated in Figure 5.

6.2 Bounded degree of the leakage function

The first (and main) physical assumption used to rule out algebraic attacks in
our previous analysis is that the leakage function has a bounded degree. More
precisely, we claim security for linear leakage functions in Sections 4 and 5 and
will generalize to higher-order (e.g., quadratic) functions in Section 7.

We next study whether this assumption can be reasonably fulfilled in prac-
tice. As detailed in Section 2.2, regression-based models are a natural tool for
this purpose, since they can be estimated for different, more or less complex,
basis functions. A simple case, considered in the previous sections, is to take
the bits of the target intermediate value as basis functions. But higher-degree
models can be built, culminating with the exhaustive model which corresponds
to a (worst-case) profiling where all the mean leakage values are exhaustively
estimated [CRR02]. Our goal is to therefore show that a simple linear model
does not lead to significant information losses compared to the exhaustive one.

For this purpose, we analyzed the 4 leakage functions fi of our target im-
plementation. We analyzed them independently to reduce the noise. They all
gave similar results. For the exhaustive model, and since building 231 templates
is computationally intensive, we rather estimated a subset of na average leak-
age traces (with na = 10, 000), and stored them in a vector of average leakage
traces l = [l1, l2, . . . , lna ]. We then computed the vectors corresponding to our
regression-based linear models for the three different syntheses, evaluated on the
same values. In each case, we first estimated the 31-element vector of coefficients
â using np = 10, 000 profiling traces (meaning ≈ 10,000

31 traces per coefficient,
which was sufficient for good estimation given the low noise level of our mea-
surements). As a result, we obtained model predictions:

mu
r1 = [Mu

r1(v1),Mu
r1(v2), . . . ,Mu

r1(vna)],

for the unconstrained synthesis, and similarly mc
r1 & ma

r1 for the constrained and
amplified syntheses. Viewing these vectors as the samples of random variables
L, Mu

r1, M c
r1 and Ma

r1, we finally computed the correlation between the true
(averaged) leakages and the models: ρ̂(Mu

r1, L), ρ̂(M c
r1, L) and ρ̂(Ma

r1, L).

These correlation coefficients are reported in Figure 6 in function of the
number of traces used to obtain the average traces li. We additionally report the
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Figure 5: Layout of unconstrained (left) and constrained (right) syntheses.
Unused resources are in white. Used resources are in blue. Routing is in red.

estimates obtained when correlating the real leakage vectors with a Hamming
weight leakage model, and each curve in the figure is accompanied by a 95% boot-
strap confidence interval. These results confirm that unconstrained syntheses (at
the top of the figure) lead to high correlations already with the Hamming weight
leakage model. By contrast, for constrained and amplified syntheses reflecting
congestioned designs (at the middle and bottom of the figure) the correlation
with the Hamming weight leakage model decreases while it remains close to one
for the linear models. These experiments show that the generalization we pro-
pose indeed captures practically-relevant implementations. Admittedly, reaching
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such high correlation values does not preclude that higher-degree terms can be
characterized and exploited. But it shows that most of the information leaked
by our target implementation can be extracted with a simple linear model. So
combined with (i) the generalization of Section 7 showing that security does
not collapse as long as the leakage function remains sufficiently non-injective,
and (ii) the fact that our modeling is conservative (since it assumes noise-free
leakages), we conjecture that the bounded-degree assumption we require can be
matched sufficiently well to provide practically secure LWPR instances.

6.3 Practical application of the attack

The attacks we study in this paper work by interpreting physical leakages as
functions in Fp. So far, we showed that such attacks are hard if the leakage
function has a bounded degree and its coefficients have limited accuracy. We
also assessed empirically that the bounded degree assumption can be reasonably
matched in practice. We now describe how to mount these attacks thanks to

100 101 102 103

averaging level

0.6

0.7

0.8

0.9

1.0

Pe
ar

so
n 

co
rre

la
tio

n

unconstrained synthesis

HW
LR

100 101 102 103

averaging level

0.75

0.80

0.85

0.90

0.95

1.00

Pe
ar

so
n 

co
rre

la
tio

n

constrained synthesis

HW
LR

100 101 102 103

averaging level

0.8

0.9

1.0

Pe
ar

so
n 

co
rre

la
tio

n

amplified synthesis

HW
LR

Figure 6: Correlation between real traces with different levels of averaging (on
the X axis) and Hamming weight vs. regression-based linear models.
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Figure 7: Discretization of the linear regression models (unconstrained synth.).

standard side-channel analysis tools, which will incidentally lead us to provide
good indications that limiting the coefficient’s accuracy is also reasonable.

Precisely, and as illustrated in Figure 2, we show how to move from measured
leakages to s-bounded leakages thanks to the linear regression-based model of
Section 2.2. For this purpose, we re-use the 31-element vectors of coefficients â
estimated using np = 10, 000 profiling traces, for each of our three syntheses.
We next observe that the value of Pearson’s correlation is not affected if one of
its variables is multiplied by a constant value. As a result, the following simple
discretization process for the coefficients â can be used:

âd =

⌈
â · s

max(â)

⌉
.

We finally illustrate the coefficients of the linear models estimated from the
unconstrained synthesis measurements together with the coefficients of the cor-
responding s-bounded functions in Figure 7. We can observe that already for
s = 28 the matching between both is quite accurate. We further estimated the
correlation ρ̂(Ms

r1,Mr1) which was worth 1 − φ with φ < 10−6 for s = 28.5 We
conclude that a quantization corresponding to s = 212 offers a sufficient gran-
ularity to discretize our linear leakage models nearly perfectly. In other words,
while we cannot rule out that other strategies than interpreting the leakages in
Fp as we consider can lead to better results, this section shows that if this is the
best strategy, then the move from measured leakages to s-bounded ones does
not imply a significant information loss for the values of s (e.g., 212) that our
theoretical investigations tolerate. The results for the quantization of the mod-
els for moderately constrained and amplified syntheses are similar. We illustrate
their respective coefficients in Figures 8 and 9 for completeness.

6.4 Bounded measurement accuracy

The previous sections suggested that using linear regression-based models is
sufficient to accurately capture concretely-relevant leakage functions and that

5 With a relative error of below 1%, which is easy to reach since the estimation is
performed from modeled samples (rather than measured ones in Section 6.2).
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Figure 8: Discretization of the linear regression models (constrained synthesis).
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Figure 9: Discretization of the linear regression models (amplified synthesis).

increasing the coefficient accuracy of the s-bounded pseudo-linear functions be-
yond 212 does not lead to significant improvements of their informativeness in
our case study. Quite naturally, such assessments remain limited by their heuris-
tic nature. For the analysis of the degree, this is unavoidable (since absence of
evidence is not evidence of absence) and the only option to make it more robust
is to consider higher-degree functions that could theoretically show up, which
we will do in Section 7. But for the bounded coefficient accuracy, there is a
complementary argument that could be given. For this purpose, the starting ob-
servation is that physical leakages are measured by converting an analog signal
into a digital one. Concretely, the “vertical resolution” s′ of modern oscilloscopes
typically ranges from 8 to 12 bits, meaning that the measured leakage can take
between 28 and 212 values (possibly a bit more thanks to oversampling, at the
cost of a reduced “horizontal” resolution). So if the increase of the s parameter
from Definition 5 leads to a pseudo-linear function having a codomain with more
than s′ elements, it implies that the s-bounded leakage function is more infor-
mative than the measured one, which contradicts the data processing inequality.
So for such leakage functions, the bounded coefficient accuracy can be directly
connected to an assumption on the adversary’s measurement apparatus.

However, increasing the s parameter does not always increase the cardinality
of the leakage functions (e.g., think about the case where t = 1 for an increasing
s). So one cannot directly bound the coefficient accuracy s based on the res-
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olution of the oscilloscope s′. Yet, we note that most of the security claims in
Sections 4 (resp., 5) depend on the product ts (resp., mts) which bounds the
cardinality of the functions’ co-domain and where t corresponds to the

(
t
1

)
basis

functions of a linear leakage model. So if the security analysis could be improved
in order to rely only on this cardinality of the leakage functions, independent of
the value of s (i.e., getting rid of the ts < p and mts < p conditions), we could
replace the assumption on the bounded coefficient accuracy by an assumption
on the resolution of the oscilloscope used to mount the attack. We leave the
investigation of such an improved analysis as an interesting open problem.

6.5 Concrete security level

The three aforementioned implementations gave us three sets of real parameters,
namely âu, âc and âa. Each of them can be discretized using the method of
Section 6.3, resulting in three sets of Fp coefficients aud ,a

c
d and aad , themselves

associated to an s-bounded pseudo-linear function Fau
d
,Fac

d
and Faa

d
.

vFa∗
d

wFa∗
d

deg(Fa∗
d
) nl(Fa∗

d
)

Unconstrained 101748 1073657388 ≥ 101748 ≥ 2147381899

Constrained 213852 1073692455 ≥ 213852 ≥ 2147269795

Amplified 160593 1073709374 ≥ 160593 ≥ 2147323054

Table 1: deg(Fa∗d
) and nl(Fa∗d

) bounds of s-bounded pseudo-linear functions for
the different implementations (computed using Proposition 3).

The results of Table 1 show the very high values of the degree and nonlinear-
ity reached by these s-bounded pseudo-linear functions. As a result, algebraic
attacks appear to be impracticable against the corresponding LWPR instances.
The time complexities being several order of magnitude larger than the 124
bits of security we target, even more advanced approach (e.g., solving algebraic
systems with Gröbner bases, using code-based techniques to approximate by
smaller-degree functions) should not lead to successful attacks.

7 Further generalizations

The previous section confirmed the security that can be offered by concrete
LWPR instances. It also showed that linear models are good abstractions to
capture the features of actual leakage measurements. In this section, we show
that the positive results obtained for s-bounded pseudo-linear functions extend
naturally to higher-order leakage models, taking the quadratic case as an exam-
ple. Despite not directly motivated by practice (as linear leakage models offered
high level of correlation with real leakages in the previous section), we deem
this result important to confirm that even in the hypothetical presence of such
higher-order dependencies, the security of LWPR would not collapse.
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Definition 7 (s-bounded pseudo-quadratic functions). We denote Qa,b

the function defined by a vector a ∈ Ftp and a stricly upper triangular matrix
b ∈ Ft×tp , where t = dlog pe, as:

Qa,b :Fp → Fp

y 7→
t−1∑
i=0

aig(y)i +
∑

0≤i<j<t

bi(t+1)+jg(y)ig(y)j .

We call Qa,b s-bounded pseudo-quadratic when each ai, bi,j belongs to [0, s], with
security parameter s ∈ Fp Cs2 the class of s-bounded pseudo-quadratic functions.

We give the following result for attacks exploiting any-case leakages.

Proposition 5 (Properties of s-bounded pseudo-quadratic functions).

Let f ∈ Cs2 with t(t+1)
2 s < p and t = dlog pe, then the following holds:

– vf ≥
⌈

p
st(t+1)/2+1

⌉
,

– wf ≥ p− st(t+ 1)/2− 1.

And assuming vf 6= p, we further have:

– deg(f) ≥
⌈

p
st(t+1)/2+1

⌉
,

– nl(f) ≥ min
(
p− vf ,max

(⌈
p

st(t+1)/2+1

⌉
− 1, p− st(t+ 1)/2− 1

))
.

Proof. Since t(t+1)
2 s < p, we obtain that for all x ∈ Fp, 0 ≤ f(x) ≤ t(t+1)

2 s,

hence wf ≥ p− t(t+1)
2 s− 1. Thereafter, f(x) can take at most t(t+1)

2 s+ 1 values,

hence there exists at least a preimage set with cardinal
⌈

p
st(t+1)/2+1

⌉
or more.

Finally, the last items are obtained by using Proposition 1 and Proposition 2
respectively, combined with the two first items. ut

Note that the condition ts < p which avoids the reduction when computing the
leakage function in the analysis of the linear case is replaced by a condition
t(t+1)

2 s < p, where t(t+1)
2 =

(
t
1

)
+
(
t
2

)
is the number of basis functions in the

quadratic model. This last result shows that s-bounded pseudo-quadratic func-
tions behave similarly to s-bounded pseudo-linear functions. The only difference

is that the security parameter s is a bit more constrained, so that t(t+1)
2 s < p.

Yet, with p = 231 − 1 and t = dlog pe, security remains guaranteed for s = 212

(with a large security margin). In a similar manner, it could be shown that the
estimated cost of algebraic attacks against LWPR is maintained for larger de-
grees, if the leakage function it relies on remains sufficiently non-injective, with
a constraint on s evolving with the number of basis functions in the model.

As for attacks using worst-case leakages as studied in Section 5, the con-

dition is slightly more restricted since we need m t(t+1)
2 s < p in order to apply

Proposition 4. It nevertheless remains sufficient in the quadratic case. Besides, it
could again be that an improved analysis leads to relexed conditions (or tighter
bounds), which we leave as an interesting scope for further research.
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8 Conclusions and open problems

By showing that the LWPR assumption remains secure for a wide class of
practically-relevant leakage functions, this work makes an important step in im-
proving its usability. As a result, it strengthens the motivation for using re-keying
schemes operating in prime fields, since they provide significant security improve-
ments over their binary counterparts. Concretely, our investigations suggest that
parallel instances of LWPR have good potential to be secure. The generalization
of Section 7 further shows that increasing the degree of the leakage function is
not a direct threat, so that the main assumption for LWPR to be hard is the
quite natural requirement that the leakages are sufficiently non-injective.

Our results open several interesting avenues for further research. First, Sec-
tion 3 recalled the challenge of securing serial LWPR implementations against
leakage and suggested shuffling as a possible option for this purpose. Its con-
crete investigation is therefore a natural next step. Second, our analyzes could
be improved in order to rely only on the degree of the leakage functions and the
cardinality of their co-domain. As discussed in Section 6.4, this could lead to
formally connect the bouned coefficient accuracy hypothesis with the resolution
of the adversary’s measurement apparatus. Third, we for now consider univari-
ate leakages. They reasonably match the hardware implementation context we
evaluated, where it is possible to implement the un-masking of the ephemeral
key in a single cycle. But multivariate generalizations are an important scope
for further investigations and will be especially relevant in a software implemen-
tation context where (for example) the reduction that has to take place after
the un-masking may take several cycles. Dealing with more leaky software im-
plementations (even with shuffling) may also motivate stepping back to a less
conservative model, where security is argued based on the difficulty for the ad-
versary to infer leakage values without errors, possibly formalized by a Learning
With Physical Rounding and Errors problem. LWPR being an aggressive and
new physical assumption, improving the understanding of the best cryptanalysis
techniques to break it naturally remains needed as well. For example, our cur-
rent attacks do not exploit key guessing strategies (which should at least imply a
slight increase of the security parameters). Eventually, it would be worth study-
ing the conditions upon which hard physical learning problems can be connected
and reduced to standard (mathematical) hard learning problems.
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bases without reduction to zero (f5). In Proceedings of the 2002 Interna-
tional Symposium on Symbolic and Algebraic Computation, ISSAC 2002,
page 75–83, 2002.

Gen09. Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC,
pages 169–178. ACM, 2009.

GJ19. Qian Guo and Thomas Johansson. A new birthday-type algorithm for
attacking the fresh re-keying countermeasure. Inf. Process. Lett., 146:30–
34, 2019.

GLP06. Benedikt Gierlichs, Kerstin Lemke-Rust, and Christof Paar. Templates vs.
stochastic methods. In CHES, volume 4249 of Lecture Notes in Computer
Science, pages 15–29. Springer, 2006.
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