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Abstract. At CRYPTO’18, Datta et al. proposed nPolyMAC and proved
the security up to 22𝑛/3 authentication queries and 2𝑛 verification queries.
At EUROCRYPT’19, Dutta et al. proposed CWC+ and showed the se-
curity up to 22𝑛/3 queries. At FSE’19, Datta et al. proposed PolyMAC
and its key-reduced variant 2k-PolyMAC, and showed the security up
to 22𝑛/3 queries. This security bound was then improved by Kim et
al. (EUROCRYPT’20) and Datta et al (FSE’23) respectively to 23𝑛/4

and in the multi-user setting. At FSE’20, Chakraborti et al. proposed
PDM*MAC and 1k-PDM*MAC, and showed the security up to 22𝑛/3

queries. Recently, Chen et al. proposed nEHtM+
𝑝 and showed the se-

curity up to 22𝑛/3 queries. In this paper, we show forgery attacks on
nPolyMAC, CWC+, PolyMAC, 2k-PolyMAC, PDM*MAC, 1k-PDM*MAC
and nEHtM+

𝑝 . Our attacks exploit some vulnerability in the underlying
polynomial hash function Poly, and (i) require only one authentication
query and one verification query; (ii) are nonce-respecting; (iii) succeed
with probability 1. Thus, our attacks disprove the provable high security
claims of these schemes. We then revisit their security analyses and iden-
tify what went wrong. Finally, we propose two solutions that can restore
the beyond-birthday-bound security.

Keywords: Message authentication code · Beyond-birthday-bound se-
curity · Polynomial hash function · Forgery attack

1 Introduction

Message authentication codes (MAC) are symmetric cryptographic primitives
that allow senders and receivers who share a common secret key to ensure in-
tegrity and authenticity of a transmitted message. A MAC is typically designed
from block ciphers, from hash functions or from universal hash functions. In this
paper, we focus on the third class. The most widely used schemes are designed
following the Wegman-Carter paradigm [35]: the input message is first mapped
to a fixed-length string using a universal hash function indexed by a secret key,
and then the resulting string is masked with a one-time pad. The one-time pad
is typically achieved by using a block cipher with a unique nonce each time, e.g.,
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the mechanism used in GMAC/GCM [28,1,2,21,30]. This method is simple and
efficient, yet the security vanishes when the nonces are misused since the hash
key can then be recovered. On the other hand, when the nonces are unique as
required, its security caps at the so-called birthday bound 2𝑛/2, i.e., resisting
against at most 2𝑛/2 queries. Indeed, the outputs of a random permutation can
be distinguished from random strings within roughly 2𝑛/2 queries. This bound is
not always satisfying in practical applications. For conventional platforms where
block ciphers like the AES are used with 𝑛 = 128, it implies that we need to
renew the key when the number of authentication queries exceeds 232 if we want
to maintain the forgery advantage of an adversary below 1/232. For resource-
constrained environments, where lightweight block ciphers with 64-bit block or
even shorter [8,9,3,10] are likely to implemented, the bound becomes 232 and is
vulnerable in certain applications [6].

To go beyond the birthday bound and resist against nonce misuse, Cogliati
and Seurin [13] proposed a scheme called Encrypted Wegman-Carter with Davies-
Meyer (EWCDM) that requires one universal hash function and two block cipher
calls with independent keys. They instantiated the one-time pad with the Davies-
Meyer construction and encrypted the output of the Wegman-Carter construc-
tion with another block cipher call. They showed that this scheme is provably
secure up to 22𝑛/3 authentication queries and 2𝑛 verification queries against
nonce-respecting adversaries, and secure up to 2𝑛/2 authentication and verifica-
tion queries against nonce-misusing adversaries3. Later, Mennink and Neves [31]
improved this security bound to the optimal 2𝑛 in the nonce-respecting setting
using the mirror theory. To reduce the number of keys, Datta el al. [16] then
proposed Decrypted Wegman-Carter with Davies-Meyer (DWCDM), which is
similar to EWCDM except that the outer encryption call is replaced by a de-
cryption call. The advantage of DWCDM is that the two block cipher calls can
use the same key. It even becomes a truly single-key MAC if the hash key is de-
rived as 𝐾ℎ = 𝐸𝐾(0𝑛−1 ‖1). They proved that DWCDM can achieve the security
up to 22𝑛/3 authentication queries and 2𝑛 verification queries against nonce-
respecting adversaries, and remains secure up to 2𝑛/2 authentication queries
and 2𝑛 verification queries against nonce-misusing adversaries. They then pro-
posed nPolyMAC, a concrete instance of DWCDM by realizing the universal hash
function with a polynomial hash, and proved that nPolyMAC enjoys the same
beyond-birthday-bound security as DWCDM. Recently, Chakraborti [11] pro-
posed PDM*MAC and 1k-PDM*MAC, a permutation-based variant of DWCDM
and its single-key version, and proved that these two schemes are both secure up
to 22𝑛/3 queries against nonce-respecting adversaries, which is tight as illustrated
with a matching attack.

Another popular approach to achieve the beyond-birthday-bound security
and maintain security against nonce misuse is to use the nonce-based Enhanced
Hash-then-Mask (nEHtM) paradigm. The Enhanced Hash-then-Mask (EHtM)

3 An adversary is said to be nonce-respecting if she does not repeat nonces in authen-
tication queries, and is said to be nonce-misusing if she repeats nonces in authenti-
cation queries.
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method was originally proposed by Minematsu [32] to construct a probabilistic
MAC with beyond-birthday-bound security. It requires an 𝑛-bit salt, two inde-
pendent pseudorandom functions and a universal hash function, and is proved
to achieve a tight 23𝑛/4 security [18]. Dutta et al. [19] turned this method into
a nonce-based MAC named nEHtM where (i) the random salt is replaced by
the nonce; (ii) the two independent pseudorandom functions are replaced by a
single-key block cipher with domain separation. They showed that nEHtM has
beyond-birthday-bound security that gracefully degrades under nonce misuse.
They then proposed a nonce-based AE coined CWC+ by combining nEHtM with
the encryption mode CENC [24]. They proved that CWC+ provides the authen-
ticity up to 22𝑛/3 queries against nonce-respecting adversaries and maintains
gracefully degrading security up to 2𝑛/2 queries against nonce-misusing adver-
saries. Recently, Chen et al. [12] proposed nEHtM+

𝑝 , a permutation-based variant
of nEHtM, and proved that it is secure up to 22𝑛/3 authentication and verification
queries in both single-user and multi-user settings.

There is also another approach called Double-block Hash-then-Sum (Db-
HtS) [14] to provide beyond-birthday-bound security without a nonce. It requires
two 𝑛-bit universal hash functions, and thus is less efficient than the above two
methods that require a single 𝑛-bit universal hash when nonces are available.
Nevertheless, it enjoys high provable security guarantees. A notable example is
PolyMAC that is built from two polynomial hash functions and two block ci-
pher calls. A series of works showed that PolyMAC and its key-reduced variant
2k-PolyMAC are provably highly secure in both single-user and multi-user set-
tings. Datta et al. [14] proved that both PolyMAC and 2k-PolyMAC can achieve
22𝑛/3 security. Kim et al. [27] improved the security bound of PolyMAC to 23𝑛/4.
Recently, Datta et al. [15] further showed that 2k-PolyMAC can achieve 23𝑛/4

security in the multi-user setting.

Our contribution. In this paper, we show forgery attacks on beyond-birthday-
bound secure schemes, including nPolyMAC [16], CWC+ [20], PolyMAC [14,27],
2k-PolyMAC [14,15], PDM*MAC [11], 1k-PDM*MAC [11], and nEHtM+

𝑝 [12]. In-
terestingly, all of these schemes use the same polynomial hash function called
Poly [16,20,14,27,15,11,12] to handle arbitrary length messages. This polynomial
hash function is supposed to hash a message efficiently and securely, and is
backed up with security proofs. Yet, as we discovered, it has some vulnerability.
Although Poly implicitly encodes the length of a message as a parameter in the
polynomial by 𝑀𝑖 ·𝐾ℓ+1−𝑖

ℎ , these terms can be zeroed out if we choose 𝑀𝑖 = 0𝑛.
Hence, it allows length-extension attack by prepending arbitrary number of 0𝑛

blocks while the hashed value remains the same. By exploiting this vulnerabil-
ity, we thus mount forgery attacks against all of these schemes. Notably, our
attacks (i) require only one authentication query and one verification query; (ii)
are nonce-respecting; (iii) succeed with probability 1. Thus, our attacks disprove
their high provable security claims.

We remark that all of forgery attacks against these schemes follow the same
principle. If we abstract these schemes by a single construction MAC(𝑁, 𝑀) =
F(𝑁, Poly(𝑀)) where F is a function, Poly the polynomial hash function, 𝑀
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the message, and 𝑁 the nonce (there is no nonce in PolyMAC), then this at-
tack principle can be summarized as follows: first query 𝑇 = MAC(𝑁, 𝑀) =
F(𝑁, Poly(𝑀)), and then (𝑁, (0𝑛)𝑖‖𝑀, 𝑇 ) is a valid forgery against these schemes
for any 𝑖 ≥ 1 as Poly(𝑀) = Poly((0𝑛)𝑖 ‖𝑀) always holds, where (0𝑛)𝑖 denotes
the 𝑖-time concatenation of string 0𝑛.

We then revisit their security analyses to see what went wrong. Their beyond-
birthday-bound security analyses require the underlying polynomial hash to be
(i) 𝜖1-regular, namely for any message, the probability that the hashed value
equals to any constant value should be negligible; (ii) 𝜖2-almost-xor-universal,
namely for any two distinct messages, the probability that the difference of these
two hashed values equals to any constant value should be negligible; (iii) 𝜖3-3-
way-regular, namely for any three distinct messages, the probability that the
sum of these three hashed values equals to a non-zero constant value should be
negligible, when the hash key is uniformly chosen from the key space. Note that
the almost-xor-universal property is required in security analyses of all these
constructions, while the regular property is needed in nPolyMAC, PDM*MAC,
1k-PDM*MAC and nEHtM+

𝑝
4, and the 3-way-regular property is needed in nPoly-

MAC, PDM*MAC and 1k-PDM*MAC. Apparently, Poly does not meet the second
property since the difference of two hashed values is always 0𝑛 for any two mes-
sages 𝑀 and 𝑀 ′ where 𝑀 ′ is obtained by prepending arbitrary 0𝑛 blocks to
𝑀 . Thus, the proposition [16,17,15] that showed Poly meets these three prop-
erties is flawed and cannot be fixed. Consequently, the security analyses of the
schemes nPolyMAC, CWC+, PolyMAC, 2k-PolyMAC, PDM*MAC, 1k-PDM*MAC
and nEHtM+

𝑝 that rely on this result to prove the beyond-birthday-bound secu-
rity are flawed.

Finally, we propose two polynomial hash functions called PolyX and GHASHX
that both meet regular, almost-xor-universal and 3-way-regular properties. The
first one, PolyX, is a variant of Poly by reversing the order of a message in the
polynomial. By doing so, the length-dependent term 𝑀ℓ10*·𝐾ℓ

ℎ in the polynomial
will never be zeroed out since 𝑀ℓ10* is always a non-zero value. We then prove
that PolyX is 𝜖1-regular, 𝜖2-almost-xor-universal, and 𝜖3-3-way-regular, where
𝜖1 = 𝜖2 = 𝜖3 = ℓmax/2𝑛 and ℓmax is the maximum number of 𝑛-bits blocks
of a message. The second one, GHASHX, is a variant of GHASH [30,29,28] by
replacing the 0* padding with 10*. Although GHASH is well-known to be a 𝜖2-
almost-xor-universal hash where 𝜖2 = (ℓmax + 1)/2𝑛, it is not regular since for
an empty message 𝑀 = 𝜀, the hashed value always equals to 0𝑛. Even worse,
if we instantiate nPolyMAC with GHASH, then it will result in a forgery attack.
The 10* padding can avoid this issue as it always appends a 1 first. We then
prove that GHASHX is 𝜖1-regular, 𝜖2-almost-xor-universal, and 𝜖3-3-way regular
where 𝜖1 = 𝜖2 = 𝜖3 = (ℓmax + 1)/2𝑛. Hence, by instantiating nPolyMAC, CWC+,
PolyMAC, 2k-PolyMAC, PDM*MAC, 1k-PDM*MAC and nEHtM+

𝑝 with either of
PolyX and GHASHX, we can restore their beyond-birthday-bound security.

4 The regular property is also required in the multi-user security analysis of 2k-
PolyMAC [15] and is not mandatory in its single-user security analysis.
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Organization. We first introduce notations and security notions in section 2.
We then show forgery attacks on nPolyMAC, CWC+, PolyMAC, 2k-PolyMAC,
PDM*MAC, 1k-PDM*MAC and nEHtM+

𝑝 in section 3. Next, we discuss the is-
sues in their security analyses and propose two solutions that can restore their
beyond-birthday-bound security in section 4. Finally, we conclude the paper
in section 5. We also provide an overview of how Poly is used in these schemes
in Appendix A.

2 Preliminaries

Notation. Let 𝜀 denote the empty string. Let {0, 1}* be the set of all finite bit
strings including the empty string 𝜀. For a finite set 𝒳 , we let 𝑋 ←$ 𝒳 denote
the uniform sampling from 𝒳 and assigning the value to 𝑋. Let |𝑋| denote the
length of string 𝑋. Let |𝑋|𝑛 denote the 𝑛-bit encoding of the length of string
𝑥. Concatenation of strings 𝑋 and 𝑌 is written as 𝑋 ‖ 𝑌 or simply 𝑋𝑌 . 𝑋10*

denotes the padding that appended with a single 1 and as few 0 bits so that
the length of string to be a multiple of 𝑛. We let 𝑌 ← 𝒜(𝑋1, . . . ; 𝑟) denote
running algorithm 𝒜 with randomness 𝑟 on inputs 𝑋1, . . . and assigning the
output to 𝑌 . We let 𝑌 ←$𝒜(𝑋1, . . .) be the result of picking 𝑟 at random and
letting 𝑌 ← 𝒜(𝑋1, . . . ; 𝑟). Let Perm(𝑛) denote the set of all permutations over
{0, 1}𝑛, and let Func(*, 𝑛) denote the set of all functions from {0, 1}* to {0, 1}𝑛.
For a string 𝑋 ∈ {0, 1}*, let (𝑋)𝑖 denote concatenating 𝑋 itself by 𝑖 times,
namely (𝑋)𝑖 = 𝑋 ‖ . . . ‖𝑋 where 𝑋 repeats 𝑖 times.
Block ciphers and PRFs. An adversary 𝒜 is a probabilistic algorithm that
has access to one or more oracles. Let 𝒜𝑂1,𝑂2,... denote an adversary 𝒜 interact-
ing with oracles 𝑂1, 𝑂2, . . ., and 𝒜𝑂1,𝑂2,... = 1 denote the event that 𝒜 outputs
1 after interacting with 𝑂1, 𝑂2, . . .. The resources of 𝒜 are measured in terms
of time and query complexities. Let 𝐸 : {0, 1}𝑘 × {0, 1}𝑛 → {0, 1}𝑛 be a block
cipher. Let 𝜋←$ Perm(𝑛) be a random permutation. The advantage of 𝒜 against
the PRP security of 𝐸 is defined as

Advprp
𝐸 (𝒜) =

⃒⃒
Pr

[︀
𝒜𝐸𝐾 = 1

]︀
− Pr [𝒜𝜋 = 1 ]

⃒⃒
where 𝐾 is chosen uniformly at random from {0, 1}𝑘. The block cipher 𝐸 is
said to be a (𝑞, 𝑡, 𝜖)-secure PRP if Advprp

𝐸 (𝑞, 𝑡) = max𝒜 Advprp
𝐸 (𝒜) ≤ 𝜖 where the

maximum is taken over all adversaries 𝒜 that makes at most 𝑞 queries and runs
in time at most 𝑡.

Let 𝐹 : 𝒦× {0, 1}* → {0, 1}𝑛 be a keyed function. Let ℛ←$ Func(*, 𝑛) be a
random function. The advantage of 𝒜 against the PRF security of 𝐹 is defined
as

Advprf
𝐹 (𝒜) =

⃒⃒
Pr

[︀
𝒜𝐹𝐾 = 1

]︀
− Pr

[︀
𝒜ℛ = 1

]︀⃒⃒
where 𝐾 is chosen uniformly at random from 𝒦. The function 𝐹 is said to be a
(𝑞, 𝑡, 𝜖)-secure PRF if Advprf

𝐹 (𝑞, 𝑡) = max𝒜 Advprf
𝐹 (𝒜) ≤ 𝜖 where the maximum is

taken over all adversaries 𝒜 that makes at most 𝑞 queries and runs in time at
most 𝑡.
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Message authentication code. A message authentication code (MAC) scheme
𝛱 is a triplet of algorithms (Gen, Auth, Ver), where Gen is the key-generation
algorithm, Auth is the authentication algorithm, and Ver is the verification al-
gorithm. The key-generation algorithm Gen samples a key 𝐾 uniformly at ran-
dom from the key space 𝒦. The authentication algorithm Auth takes as input
a key 𝐾 ∈ 𝒦 and a message 𝑀 ∈ ℳ, and outputs a tag 𝑇 ∈ {0, 1}𝜏 where
𝑇 ← Auth𝐾(𝑀). The verification algorithm takes as input a key 𝐾 ∈ 𝒦, a
message 𝑀 ∈ ℳ and a tag 𝑇 ∈ {0, 1}𝜏 , and outputs 1 if Auth𝐾(𝑀) = 𝑇 and
otherwise a symbol ⊥ indicating invalidity.

An adversary 𝒜 has oracle access to Auth𝐾 and Ver𝐾 , and attempts to
forge a pair of message and tag against the MAC scheme 𝛱. We say 𝒜 forges
successfully if she outputs a pair of (𝑀, 𝑇 ) that can pass the verification oracle
Ver𝐾 and 𝑀 has not been queried to Auth𝐾 before. The advantage of 𝒜 against
the unforgeability of 𝛱 is defined as

Advmac
𝛱 (𝒜) = Pr

[︀
𝒜Auth𝐾 ,Ver𝐾 forges

]︀
where 𝐾 is chosen uniformly at random from 𝒦. The scheme 𝛱 is said to be a
(𝑞𝑚, 𝑞𝑣, 𝑡, 𝜖)-secure MAC if Advmac

𝛱 (𝑞𝑚, 𝑞𝑣, 𝑡) = max𝒜 Advmac
𝛱 (𝒜) ≤ 𝜖 where the

maximum is taken over all adversaries 𝒜 that makes at most 𝑞𝑚 authentication
queries, 𝑞𝑣 verification queries, and runs in time at most 𝑡.
Nonce-based MAC. A nonce-based MAC scheme 𝛱 takes an additional pa-
rameter called nonce 𝑁 ∈ 𝒩 . The key-generation algorithm Gen samples a key
𝐾 uniformly at random from the key space 𝒦. The authentication algorithm
Auth takes as input a key 𝐾 ∈ 𝒦, a nonce 𝑁 ∈ 𝒩 and a message 𝑀 ∈ ℳ, and
outputs a tag 𝑇 ∈ {0, 1}𝜏 where 𝑇 ← Auth𝐾(𝑁, 𝑀). The verification algorithm
takes as input a key 𝐾 ∈ 𝒦, a nonce 𝑁 ∈ 𝒩 , a message 𝑀 ∈ ℳ and a tag
𝑇 ∈ {0, 1}𝜏 , and outputs 1 if Auth𝐾(𝑁, 𝑀, 𝑇 ) = 𝑇 and otherwise a symbol ⊥
indicating invalidity.

The adversary is said to be nonce-respecting if she does not repeat nonces in
authentication queries, and is said to be nonce-misusing if she repeats nonces in
authentication queries. However, in both cases, the adversary can always repeat
nonces in verification queries, either using the same nonce in two verification
queries or repeating the nonce between a verification query and a authentication
query. We say 𝒜 forges successfully if she outputs a tuple of (𝑁, 𝑀, 𝑇 ) that can
pass the verification oracle Ver𝐾 and (𝑁, 𝑀) has not been queried to Auth𝐾

before. The advantage of 𝒜 against the unforgeability of 𝛱 is defined as

Advmac
𝛱 (𝒜) = Pr

[︀
𝒜Auth𝐾 ,Ver𝐾 forges

]︀
where 𝐾 is chosen uniformly at random from 𝒦. The scheme 𝛱 is said to be a
(𝑞𝑚, 𝑞𝑣, 𝑡, 𝜖)-secure MAC if Advmac

𝛱 (𝑞𝑚, 𝑞𝑣, 𝑡) = max𝒜 Advmac
𝛱 (𝒜) ≤ 𝜖 where the

maximum is taken over all adversaries 𝒜 that makes at most 𝑞𝑚 authentication
queries, 𝑞𝑣 verification queries, and runs in time at most 𝑡.
Authenticated encryption. An authenticated encryption (AE) scheme 𝛱
is a triplet of algorithms (Gen, Enc, Dec), where Gen is the key-generation al-
gorithm, Enc the encryption algorithm and Dec the decryption algorithm. The
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key-generation algorithm Gen samples a key 𝐾 uniformly at random from the
key space 𝒦. The encryption algorithm Enc takes as input a key 𝐾 ∈ 𝒦, a nonce
𝑁 ∈ 𝒩 , an associated data 𝐴 ∈ {0, 1}* and a message 𝑀 ∈ℳ, and returns a pair
of ciphertext and tag (𝐶, 𝑇 ) ∈ {0, 1}|𝑀 |+𝜏 where (𝐶, 𝑇 )← Enc𝐾(𝑁, 𝐴, 𝑀). The
decryption algorithm takes as input a key 𝐾 ∈ 𝒦, a nonce 𝑁 ∈ 𝒩 , an associated
data 𝐴 ∈ {0, 1}*, a ciphertext 𝐶 ∈ {0, 1}* and a tag 𝑇 ∈ {0, 1}𝜏 , and returns
either a message 𝑀 ∈ {0, 1}* or a symbol ⊥ indicating invalidity. For correct-
ness, we assume that if (𝐶, 𝑇 )← Enc𝐾(𝑁, 𝐴, 𝑀), then 𝑀 ← Dec𝐾(𝑁, 𝐴, 𝐶, 𝑇 ).
Note that the message 𝑀 is encrypted and authenticated simultaneously, while
the associated data 𝐴 is only authenticated.

Similarly, the adversary is said to be nonce-respecting if she does not repeat
nonces in encryption queries, and is said to be nonce-misusing if she repeats
nonces in encryption queries. In both cases, the adversary can always repeat
nonces in decryption queries. An AE scheme 𝛱 should provide both authen-
ticity and confidentiality. In this paper, we only consider the adversary against
the authenticity of 𝛱. We say 𝒜 forges successfully if she outputs a tuple of
(𝑁, 𝐴, 𝐶, 𝑇 ) that can pass the decryption oracle Dec𝐾 and (𝑁, 𝐴, 𝐶, 𝑇 ) has not
been obtained from queries to Enc𝐾 before. The advantage of 𝒜 against the
authenticity of 𝛱 is defined as

AdvAuth
𝛱 (𝒜) = Pr

[︀
𝒜Enc𝐾 ,Dec𝐾 forges

]︀
where 𝐾 is chosen uniformly at random from 𝒦. The scheme 𝛱 is said to be
a (𝑞𝑒, 𝑞𝑑, 𝑡, 𝜖)-secure authenticator if AdvAuth

𝛱 (𝑞𝑒, 𝑞𝑑, 𝑡) = max𝒜 AdvAuth
𝛱 (𝒜) ≤

𝜖 where the maximum is taken over all adversaries 𝒜 that makes at most 𝑞𝑒

encryption queries, 𝑞𝑑 decryption queries, and runs in time at most 𝑡.

3 Forgery Attacks on Polynomial-Based Constructions

In this section, we show forgery attacks on several polynomial-based MACs that
are claimed to achieve beyond-birthday-bound security, including nPolyMAC,
CWC+, PolyMAC, 2k-PolyMAC, PDM*MAC, 1k-PDM*MAC and nEHtM+

𝑝 . Our
attacks (i) require only one authentication query and one verification query; (ii)
are nonce-respecting; (iii) succeed with the probability 1.

All of these attacks are due to the polynomial hash function chosen in those
schemes and follow the attack principle outlined in introduction: assuming a
construction MAC(𝑁, 𝑀) = F(𝑁, Poly(𝑀)) where F is a function, Poly the poly-
nomial hash function, 𝑀 the message and 𝑁 the nonce (there is no nonce in
PolyMAC), the attack works by querying 𝑇 = MAC(𝑁, 𝑀) = F(𝑁, Poly(𝑀))
and observing that (𝑁, (0𝑛)𝑖 ‖𝑀, 𝑇 ) is then a valid forgery for any 𝑖 ≥ 1 as
Poly(𝑀) = Poly((0𝑛)𝑖 ‖𝑀) always holds.

We do an exhaustive description of how this attack principal results in forgery
attacks against these schemes and postpone a more general discussion about the
source of these attacks and how to fix them to the next section. We also provide a
brief summary of how the polynomial hash function Poly is used in these schemes
in Appendix A.
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Fig. 1: The polynomial hash function Poly for a message 𝑀 = 𝑀1 ‖ . . . ‖𝑀ℓ with a
hash key 𝐾ℎ.

3.1 Attack on nPolyMAC

nPolyMAC is an instance of DWCDM construction that is proved to achieve
beyond-birthday-bound security [16,17]. It is built from a polynomial hash func-
tion Poly : 𝒦ℎ × {0, 1}* → {0, 1}𝑛 and a block cipher 𝐸 : {0, 1}𝑘 × {0, 1}𝑛 →
{0, 1}𝑛, and can authenticate a message 𝑀 ∈ {0, 1}* of variable length. Given a
message 𝑀 = 𝑀1 ‖𝑀2 ‖ . . . ‖𝑀ℓ where |𝑀𝑖| = 𝑛 and 0 ≤𝑀ℓ ≤ 𝑛− 1, the 10*

padding5 is first applied to make the total string length of 𝑀 a multiple of 𝑛.
The polynomial hash Poly is defined as

Poly𝐾ℎ
(𝑀) = 𝑀1 ·𝐾ℓ

ℎ ⊕𝑀2 ·𝐾ℓ−1
ℎ ⊕ . . .⊕𝑀ℓ10* ·𝐾ℎ , (1)

where 𝐾ℎ ∈ 𝒦ℎ is the hash key. See Figure 1 for a pictorial illustration of Poly
6. Then nPolyMAC is defined as

nPolyMAC[Poly, 𝐸](𝑁, 𝑀) = 𝐸−1
𝐾 (𝐸𝐾(𝑁)⊕𝑁 ⊕ Poly𝐾ℎ

(𝑀))

where 𝑁 ∈ {0, 1}𝑛 is the nonce, 𝑀 ∈ {0, 1}* is the message.
In Theorem 4 of [16,17], it is proved that nPolyMAC is secure up to 22𝑛/3 au-

thentication queries and 2𝑛 verification queries against nonce-respecting adver-
saries, and remains secure up to 2𝑛/2 authentication queries and 2𝑛 verification
queries against nonce-misusing adversaries. In the following, we show a forgery
attack against nPolyMAC in the nonce-respecting setting that requires only one
authentication query and one verification query, and succeeds with probability
1. Thus, the attack disproves the security claim of nPolyMAC.

The adversary can mount an attack against nPolyMAC as follows. She chooses
an arbitrary message 𝑀 ∈ {0, 1}* and a nonce 𝑁 , and queries (𝑁, 𝑀) to obtain
the tag 𝑇 where

𝑇 = 𝐸−1
𝐾 (𝐸𝐾(𝑁)⊕𝑁 ⊕ Poly𝐾ℎ

(𝑀)) ,

5 The 10* padding is explicitly used as an injective padding method for Poly
in [16,17,20,19,14,15,11,12].

6 Part of this figure is inspired by IACR TikZ [26]
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and
Poly𝐾ℎ

(𝑀) = 𝑀1 ·𝐾ℓ
ℎ ⊕𝑀2 ·𝐾ℓ−1

ℎ ⊕ . . .⊕𝑀ℓ10* ·𝐾ℎ .

Then the tuple (𝑁, 𝑀 ′, 𝑇 ) where 𝑀 ′ = (0𝑛)𝑖 ‖𝑀 is a valid forgery for any 𝑖 ≥ 1
since the equation Poly𝐾ℎ

(𝑀 ′) = Poly𝐾ℎ
(𝑀) always holds as

Poly𝐾ℎ
(𝑀 ′) = 0𝑛·𝐾ℓ+𝑖

ℎ ⊕. . .⊕0𝑛·𝐾ℓ+1
ℎ ⊕𝑀1·𝐾ℓ

ℎ⊕. . .⊕𝑀ℓ10*·𝐾ℎ = Poly𝐾ℎ
(𝑀) .

This attack thus invalidates the beyond-birthday-bound security claim of nPoly-
MAC.
Remark 1. The reason why this attack works is that (i) the finite field mul-
tiplication has a fixed point 0𝑛, namely for any 𝐾ℎ, the result of 0𝑛 · 𝐾ℓ+𝑖

ℎ is
always 0𝑛; (ii) although the design of Poly𝐾ℎ

implicitly encodes the length of
the messages as a parameter by 𝑀𝑖 ·𝐾ℓ+1−𝑖

ℎ , these terms will be canceled out if
we choose 𝑀𝑖 to be 0𝑛. Thus, we can prepend arbitrary number of 0𝑛 blocks to
a message while the hash value of this message remains the same. This attack
looks simple but can be harmful, since the adversary can choose any message
𝑀 that may contain some information that is unwilling to repeat again, and
extend the number of 0𝑛 blocks so that the message is always regarded as new
and accepted by the receiver with probability 1.

3.2 Attack on CWC+

CWC+ [20] is a nonce-based authenticated encryption following the Encrypt-
then-MAC paradigm [4]. The encryption of CWC+ is based on a variant of
CENC [25] encryption scheme called CENCmax [7]. Taking as input a block ci-
pher key 𝐾 ∈ {0, 1}𝑘, a nonce 𝑁 ∈ {0, 1}𝑛, and a length parameter ℓ < 2𝑛/4,
CENCmax outputs a sequence of key stream blocks (𝑆1, . . . , 𝑆ℓ), where the 𝑖-th
key stream block is defined as

𝑆𝑖 = 𝐸𝐾(𝑁)⊕ 𝐸𝐾(𝑁 + 𝑖) .

The authentication of CWC+ is built from a beyond-birthday-bound secure MAC
algorithm called nEHtM [20]. Taking as input a block cipher key 𝐾 ∈ {0, 1}𝑘, a
hash key 𝐾ℎ ∈ 𝒦ℎ, a nonce 𝑁 ∈ {0, 1}𝑛−1 and a message 𝑀 ∈ {0, 1}*, nEHtM
is defined as

nEHtM[𝐸, 𝐻](𝑁, 𝑀) = 𝐸𝐾(0 ‖𝑁)⊕ 𝐸𝐾(1 ‖ (𝑁 ⊕𝐻𝐾ℎ
(𝑀))) .

The (𝑛 − 1)-bit hash function 𝐻 is realized by truncating the first bit of poly-
nomial hash Poly defined in Equation 1. The specification of CWC+ is given by
combining CENCmax, nEHtM and Poly that is illustrated in Figure 2.

The Theorem 2 of [20,19] shows that CWC+ provides security up to 22𝑛/3

queries for both authenticity and confidentiality against nonce-respecting adver-
saries, and maintains graceful birthday-bound security against nonce-misusing
adversaries. In the following, we show a forgery attack against the authenticity of
CWC+ in the nonce-respecting setting that requires only one encryption query
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procedure Enc(𝐾, 𝑁, 𝐴, 𝑀)
𝐿← 𝐸𝐾(0𝑛); 𝑁 ′ ← 𝑁 ‖ 0𝑛/4−1

ℓ← ⌈|𝑀 |/𝑛⌉
𝑆 ← CENCmax(𝐾, 0 ‖𝑁 ′, ℓ)
𝐶 ←𝑀 ⊕ first(𝑆, |𝑀 |)̃︀𝑇 ← nEHtM[𝐸, Poly𝐿](𝑁 ′, 𝐶 ‖𝐴)
𝑇 ← chop𝜏⌈̃︀𝑇 ⌉; return (𝐶, 𝑇 )

procedure Dec(𝐾, 𝑁, 𝐴, 𝐶, 𝑇 )
𝐿← 𝐸𝐾(0𝑛); 𝑁 ′ ← 𝑁 ‖ 0𝑛/4−1

ℓ← ⌈|𝐶|/𝑛⌉̃︀𝑇 ′ ← nEHtM[𝐸, Poly𝐿](𝑁 ′, 𝐶 ‖𝐴)
if chop𝜏⌈̃︀𝑇 ′⌉ ≠ 𝑇 then return ⊥
𝑆 ← CENCmax(𝐾, 0 ‖𝑁 ′, ℓ)
𝑀 ← 𝐶 ⊕ first(𝑆, |𝐶|); return 𝑀

Fig. 2: Encryption and decryption procedures of CWC+. Here the nonce 𝑁 is a 3𝑛/4-bit
string. first(𝑆, |𝑀 |) denotes the first |𝑀 | bits of the string 𝑆. chop𝜏⌈·⌉ is a function that
truncates the last 𝑛− 𝜏 bits of its input.

and one decryption query and succeeds with probability 1. Thus, this attack
disproves the security claim of CWC+ regarding the authenticity.

Since the adversary can arbitrarily choose an message 𝑀 and an associated
data 𝐴, she can simply set the message 𝑀 to be empty string 𝜀 and choose
an arbitrary associated data 𝐴 ∈ {0, 1}*. Then the attack idea is similar to
the one for nPolyMAC. In detail, the adversary can mount an attack against the
authenticity of CWC+ as follows. She sets the message 𝑀 to be the empty string 𝜀
and chooses an arbitrary associated data 𝐴 ∈ {0, 1}* and a nonce 𝑁 ∈ {0, 1}3𝑛/4.
She queries (𝑁, 𝐴, 𝜀) to obtain the tag 𝑇 where

𝑇 = 𝐸𝐾(0 ‖𝑁 ′)⊕ 𝐸𝐾(1 ‖ (𝑁 ′ ⊕ chop𝑛−1⌊Poly𝐿(𝐴)⌋)) ,

and 𝑁 ′ = 𝑁 ‖ 0𝑛/4−1, 𝐿 = 𝐸𝐾(0𝑛), chop𝑛−1⌊·⌋ is a function that truncates
the first bit of its input. Then the tuple (𝑁, 𝐴′, 𝜀, 𝑇 ) where 𝐴′ = (0𝑛)𝑖 ‖ 𝐴 is a
valid forgery against CWC+ for any 𝑖 ≥ 1 since Poly𝐿(𝐴) = Poly𝐿(𝐴′) always
holds. Note that similar forgery attack also applies to nEHtM [20] when the hash
function is instantiated with Poly.

3.3 Attacks on PolyMAC and 2k-PolyMAC

PolyMAC is a MAC algorithm built from the polynomial hash Poly : 𝒦ℎ ×
{0, 1}* → {0, 1}𝑛 defined in Equation 1 and two block ciphers 𝐸 : {0, 1}𝑘 ×
{0, 1}𝑛 → {0, 1}𝑛 as follows

PolyMAC[Poly, 𝐸](𝑀) = 𝐸𝐾1(Poly𝐾ℎ1
(𝑀))⊕ 𝐸𝐾2(Poly𝐾ℎ2

(𝑀)) .

Its key-reduced variant 2k-PolyMAC is defined as

2k-PolyMAC[Poly, 𝐸](𝑀) = 𝐸𝐾(fix0(Poly𝐾ℎ1
(𝑀)))⊕ 𝐸𝐾(fix1(Poly𝐾ℎ2

(𝑀))) ,

where the domain separating functions fix0 and fix1 fix the least significant bit
of a string to be 0 and 1 respectively.

A series of works show that PolyMAC and its key-reduced variant 2k-PolyMAC
enjoy provably high security in both single-user and multi-user settings. Datta et
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al. [14] proved that both PolyMAC and 2k-PolyMAC can achieve 22𝑛/3 security.
Later, Kim et al. [27] improved the security bound of PolyMAC to be 23𝑛/4

by assuming an injective padding method. Recently, Datta et al. [15] further
showed that 2k-PolyMAC can achieve 23𝑛/4 security in the multi-user setting. In
the following, we show a forgery attack against PolyMAC that requires only one
authentication query and one verification query and succeeds with probability
1. Similar attack also applies to 2k-PolyMAC. Thus, our attack disproves the
security claim of both PolyMAC and 2k-PolyMAC.

The adversary can mount an attack against PolyMAC as follows. She first
chooses an arbitrary message 𝑀 ∈ {0, 1}*. She queries 𝑀 to obtain 𝑇 where

𝑇 = 𝐸𝐾1(Poly𝐾ℎ1
(𝑀))⊕ 𝐸𝐾2(Poly𝐾ℎ2

(𝑀)) .

Then the pair of (𝑀 ′, 𝑇 ) is a valid forgery against PolyMAC where 𝑀 ′ = (0𝑛)𝑖‖𝑀
for any 𝑖 ≥ 1, since equations Poly𝐾ℎ1

(𝑀 ′) = Poly𝐾ℎ1
(𝑀) and Poly𝐾ℎ2

(𝑀 ′) =
Poly𝐾ℎ2

(𝑀) always hold.

3.4 Attack on PDM*MAC and 1k-PDM*MAC

PDM*MAC [11] is a permutation-based Davis-Meyer MAC that is proved to
achieve beyond-birthday-bound security. Given a key 𝐾 ∈ {0, 1}𝑛, a hash key
𝐾ℎ ∈ 𝒦ℎ, an 𝑛-bit nonce 𝑁 and a message 𝑀 ∈ {0, 1}*, it computes a tag as
follows

PDM*MAC[𝐻, 𝜋] = 𝜋−1(𝜋(𝐾 ⊕𝑁)⊕ 3𝐾 ⊕𝑁 ⊕𝐻𝐾ℎ
(𝑀))⊕ 2𝐾

where 𝐻 : 𝒦ℎ × {0, 1}* → {0, 1}𝑛 is a hash function and 𝜋 is a public permu-
tation over {0, 1}𝑛. The hash function 𝐻 is instantiated with Poly as defined
in Equation 1.

Theorem 2 of [11] shows that PDM*MAC is secure up to 22𝑛/3 queries against
nonce-respecting adversaries and this security bound is tight illustrated with a
matching attack. In the following, we show a forgery attack against PDM*MAC.
Our attack requires only one authentication query and one verification query
and succeeds with probability 1. Thus, our attack disproves the security claim
of PDM*MAC instantiated with Poly.

The adversary can mount an attack against PDM*MAC as follows. She first
chooses an arbitrary message 𝑀 ∈ {0, 1}*. She asks 𝑀 to PDM*MAC and obtains
the tag 𝑇 that is computed as

𝑇 = 𝜋−1(𝜋(𝐾 ⊕𝑁)⊕ 3𝐾 ⊕𝑁 ⊕ Poly𝐾ℎ
(𝑀))⊕ 2𝐾 .

Then the pair of (𝑀 ′, 𝑇 ) is a valid forgery against PDM*MAC where 𝑀 ′ =
(0𝑛)𝑖 ‖ 𝑀 for any 𝑖 ≥ 1 since Poly𝐾ℎ

(𝑀 ′) = Poly𝐾ℎ
(𝑀) always holds. This

attack also applies to 1k-PDM*MAC instantiated with Poly in [11], which is a
single-key version of PDM*MAC and is proved in Theorem 3 [11] to achieve
beyond-birthday-bound security.
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3.5 Attack on nEHtM+
𝑝

nEHtM+
𝑝 [12] is a concrete instance of a permutation-based MAC called nEHtM*

𝑝

that is proved to achieve beyond-birthday-bound security. It is built from a
(𝑛−1)-bit hash function 𝐻 : 𝒦ℎ×{0, 1}* → {0, 1}𝑛−1 and a public permutation
𝜋 over {0, 1}𝑛 as follows:

nEHtM+
𝑝 [𝐻, 𝜋](𝑁, 𝑀) = 𝜋(0 ‖𝑁 ⊕𝐾)⊕ 𝜋(1 ‖𝑁 ⊕𝐾 ⊕𝐻𝐾ℎ

(𝑀))

where 𝐾 ∈ {0, 1}𝑛 is the key, 𝑁 ∈ {0, 1}𝑛−1 the nonce, 𝑀 ∈ {0, 1}* the message,
and 𝐻𝒦ℎ

(𝑀) is instantiated by truncating the first bit of Poly𝐾ℎ
(𝑀) as defined

in Equation 1.
It is proved in [12] that nEHtM+

𝑝 is secure up to 22𝑛/3 authentication queries
and 22𝑛/3 verification queries in both single-user and multi-user settings. In the
following we show a forgery attack that disproves this security claim.

Similarly to previous attacks, the adversary can mount an attack against
nEHtM+

𝑝 as follows. She first chooses an arbitrary message 𝑀 ∈ {0, 1}* and a
nonce 𝑁 . She queries (𝑁, 𝑀) to obtain the tag 𝑇 where

𝑇 = 𝜋(0 ‖𝑁 ⊕𝐾)⊕ 𝜋(1 ‖𝑁 ⊕𝐾 ⊕ chop𝑛−1⌊Poly𝐾ℎ
(𝑀)⌋)

and chop𝑛−1⌊·⌋ is a function that truncates the first bit of its input. Then the
tuple (𝑁, 𝑀 ′, 𝑇 ) is a valid forgery against nEHtM+

𝑝 where 𝑀 ′ = (0𝑛)𝑖 ‖𝑀 for
any 𝑖 ≥ 1 since Poly𝐾ℎ

(𝑀 ′) = Poly𝐾ℎ
(𝑀) always holds.

Remark 2. Our attacks do not apply to EWCDM [13] or EHtM [32] since they
assumed using an almost-xor-universal hash and didn’t propose concrete instance
of the hash function. Their schemes are secure as claimed when instantiating with
a proper hash function.

4 Issues in Previous Analyses and Possible Fixes

In this section, we first revisit the properties of the underlying hash function
that are required in security analyses of constructions nPolyMAC, CWC+, Poly-
MAC, 2k-PolyMAC, PDM*MAC, 1k-PDM*MAC and nEHtM+

𝑝 , and show that the
polynomial hash Poly fails to meet some of these properties. The failure of Poly
is the source reason that their security analyses are flawed since all of their
beyond-birthday-bound proofs rely on these properties. We then propose two
polynomial hash functions called PolyX and GHASHX, and prove that they sat-
isfy these properties. By instantiating these constructions with either of these
two hash functions, their beyond-birthday-bound security can be restored.

4.1 Properties of the Hash Function

There are three properties that are required for the underlying hash function,
namely regular, almost xor universal and 3-way regular properties. The almost-
xor-universal property is required in security analyses of all constructions, i.e.,
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nPolyMAC, CWC+, PolyMAC, 2k-PolyMAC, PDM*MAC, 1k-PDM*MAC and nEHtM+
𝑝 ,

while the regular property is needed in nPolyMAC, PDM*MAC, 1k-PDM*MAC,
nEHtM+

𝑝 and multi-user 2k-PolyMAC, and the 3-way-regular property is needed
in nPolyMAC, PDM*MAC and 1k-PDM*MAC. We introduce them as follows.

Definition 1 (regular). Let 𝒦ℎ and 𝒳 be two non-empty finite sets. A keyed
hash function 𝐻 : 𝒦ℎ × 𝒳 → {0, 1}𝑛 is said to be 𝜖1-regular, if for any 𝑋 ∈ 𝒳
and 𝛥 ∈ {0, 1}𝑛,

Pr [ 𝐾ℎ←$𝒦ℎ : 𝐻𝐾ℎ
(𝑋) = 𝛥 ] ≤ 𝜖1 .

Definition 2 (almost xor universal). 7 Let 𝒦ℎ and 𝒳 be two non-empty
finite sets. A keyed hash function 𝐻 : 𝒦ℎ ×𝒳 → {0, 1}𝑛 is said to be 𝜖2-almost-
xor-universal, if for any distinct 𝑋1, 𝑋2 ∈ 𝒳 and for any 𝛥 ∈ {0, 1}𝑛,

Pr [ 𝐾ℎ←$𝒦ℎ : 𝐻𝐾ℎ
(𝑋1)⊕𝐻𝐾ℎ

(𝑋2) = 𝛥 ] ≤ 𝜖2 .

Definition 3 (3-way regular). Let 𝒦ℎ and 𝒳 be two non-empty finite sets. A
keyed hash function 𝐻 : 𝒦ℎ × 𝒳 → {0, 1}𝑛 is said to be 𝜖3-3-way-regular, if for
any distinct 𝑋1, 𝑋2, 𝑋3 ∈ 𝒳 and for any non-zero 𝛥 ∈ {0, 1}𝑛,

Pr [ 𝐾ℎ←$𝒦ℎ : 𝐻𝐾ℎ
(𝑋1)⊕𝐻𝐾ℎ

(𝑋2)⊕𝐻𝐾ℎ
(𝑋3) = 𝛥 ] ≤ 𝜖3 .

We then recall a proposition in [16,17,14,15] that erroneously shows that Poly
meets all of these three properties and discuss what is wrong.

Proposition 1. [16,17]8 Let Poly : {0, 1}𝑛×{0, 1}* → {0, 1}𝑛 be a hash function
defined as follows: For a key 𝐾ℎ ∈ {0, 1}𝑛 and a message 𝑀 ∈ {0, 1}*, we first
apply an injective padding such as 10*, i.e., pad 1 followed by minimum number
of zeros so that the total number of bits in the padded message becomes multiple
of 𝑛. Let the padded message be 𝑀* = 𝑀1 ‖𝑀2 ‖ . . . ‖𝑀ℓ where |𝑀𝑖| = 𝑛 for
each 𝑖. Then we define

Poly𝐾ℎ
(𝑀) = 𝑀1 ·𝐾ℓ

ℎ ⊕𝑀2 ·𝐾ℓ−1
ℎ ⊕ . . .⊕𝑀ℓ ·𝐾ℎ ,

where ℓ is the number of 𝑛-bit blocks. Then, Poly is 𝜖1-regular, 𝜖2-almost-xor-
universal, and 𝜖3-3-way-regular where 𝜖1 = 𝜖2 = 𝜖3 = ℓmax/2𝑛 and ℓmax denotes
the maximum number of 𝑛-bit blocks of a message.

However, Poly is not almost xor universal as shown by the following counterex-
ample. For any two distinct messages 𝑀 and 𝑀 ′ such that 𝑀 ∈ {0, 1}* and
𝑀 ′ = (0𝑛)𝑖 ‖𝑀 for any 𝑖 ≥ 1, the equation Poly𝐾ℎ

(𝑀) ⊕ Poly𝐾ℎ
(𝑀 ′) = 0𝑛

always holds since

Poly𝐾ℎ
(𝑀 ′) = 0𝑛·𝐾ℓ+𝑖

ℎ ⊕. . .⊕0𝑛·𝐾ℓ+1
ℎ ⊕𝑀1·𝐾ℓ

ℎ⊕. . .⊕𝑀ℓ10*·𝐾ℎ = Poly𝐾ℎ
(𝑀) .

7 In [27], it only requires the polynomial hash function to be universal, namely the
probability that 𝐻𝐾ℎ (𝑋1) = 𝐻𝐾ℎ (𝑋2) is negligible for two different messages 𝑋1
and 𝑋2. The almost xor universal implies universal since we can choose 𝛥 = 0𝑛.

8 This proposition appears as Lemma 4 in [15] without the 𝜖3-3-way-regular property.
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Fig. 3: The polynomial hash function PolyX for a message 𝑀 = 𝑀1 ‖ . . . ‖𝑀ℓ with a
hash key 𝐾ℎ.

In the proof of Proposition 1 [16,17,15], the authors argued that the equation
Poly𝐾ℎ

(𝑀) ⊕ Poly𝐾ℎ
(𝑀 ′) ⊕ 𝛥 = 0𝑛 is a non-trivial polynomial of 𝐾ℎ with

degree at most ℓ and thus the maximum number of roots of this polynomial is
ℓ. They then claimed that the almost-xor-universal advantage of Poly is ℓ/2𝑛.
However, they overlooked the fact that the multiplication has a fixed point 0𝑛.
By prepanding arbitrary 0𝑛 blocks to the message 𝑀 to become another message
𝑀 ′, the above equation becomes trivial and always holds for 𝛥 = 0𝑛 regardless
of the value of 𝐾ℎ. All the security analyses of constructions, i.e., nPolyMAC,
CWC+, PolyMAC, 2k-PolyMAC, PDM*MAC, 1k-PDM*MAC and nEHtM+

𝑝 , rely
on this result to prove the beyond-birthday-bound security, and thus are flawed.
Remark 3. There is another polynomial hash function proposed by Minematsu
and Iwata [33] that is different from Poly. Given a message 𝑀 = 𝑀1‖𝑀2‖ . . . ‖𝑀ℓ

where |𝑀𝑖| = 𝑛 for 1 ≤ 𝑖 ≤ ℓ− 1 and 0 ≤ |𝑀ℓ| ≤ 𝑛, it is defined as

Poly′
𝐾ℎ

(𝑀) = 𝑀1 ·𝐾ℓ
ℎ ⊕𝑀2 ·𝐾ℓ−1

ℎ ⊕ . . .⊕𝑀ℓ0* ·𝐾ℎ

where 0* denotes the padding that appends as few 0 bits so that the length of
string to be a multiple of 𝑛. As emphasized by the authors [33], this hash function
is ℓ/2𝑛-almost-xor-universal only for fixed-length inputs. Thus, it cannot be used
for variable-length messages.

4.2 Two Possible Fixes

We now propose two polynomial hash functions and prove that they meet the
above three properties. Thus, by using either of these two hash functions, the
beyond-birthday-bound security of these constructions can be restored.
The first hash function called PolyX is a variant of Poly that reverses the
order of a message in the polynomial. Let the message be 𝑀 = 𝑀1‖𝑀2‖ . . . ‖𝑀ℓ

where |𝑀𝑖| = 𝑛 for 1 ≤ 𝑖 ≤ ℓ − 1 and 0 ≤ |𝑀ℓ| ≤ 𝑛 − 1. Then given a key
𝐾ℎ ∈ {0, 1}𝑛 and using 10* padding, we define

PolyX𝐾ℎ
(𝑀) = 𝑀1 ·𝐾ℎ ⊕𝑀2 ·𝐾2

ℎ ⊕ . . .⊕𝑀ℓ10* ·𝐾ℓ
ℎ . (2)
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A pictorial illustration of PolyX is given in Figure 3. Compared to Poly, a notable
difference is that the length-dependent term 𝑀ℓ10* ·𝐾ℓ

ℎ will never be zeroed out
since 𝑀ℓ10* is always a non-zero value. Hence, it prevents the attacks shown
in section 3 since extending the number of 0𝑛 blocks implicitly changes the
length of a message and thus the value of 𝑀ℓ10* · 𝐾ℓ

ℎ. The following lemma
shows that indeed PolyX meets regular, almost xor universal and 3-way regular
properties.

Lemma 1. Let PolyX : {0, 1}𝑛 × {0, 1}* → {0, 1}𝑛 be defined by Equation 2.
Then PolyX is 𝜖1-regular, 𝜖2-almost-xor-universal, and 𝜖3-3-way-regular where
𝜖1 = 𝜖2 = 𝜖3 = ℓmax/2𝑛 and ℓmax is the maximum number of 𝑛-bit blocks of a
message.

Proof. We first consider the regular property. Given a message 𝑀 ∈ {0, 1}* and
a constant value 𝛥 ∈ {0, 1}𝑛, it requires the equation PolyX𝐾ℎ

(𝑀) ⊕ 𝛥 = 0𝑛

holds, namely

𝑀1 ·𝐾ℎ ⊕𝑀2 ·𝐾2
ℎ ⊕ . . .⊕𝑀ℓ10* ·𝐾ℓ

ℎ ⊕𝛥 = 0𝑛 .

This is a non-trivial polynomial of 𝐾ℎ of degree ℓ, since the coefficient 𝑀ℓ10* of
𝐾ℓ

ℎ is always non-zero. Hence the maximum number of roots of this polynomial
is ℓ. Thus, the regular advantage becomes ℓ/2𝑛 ≤ ℓmax/2𝑛 since the hash key
𝐾ℎ is chosen uniformly at random from the set {0, 1}𝑛.

We then analyze the almost xor universal property. Given two distinct mes-
sages 𝑀, 𝑀 ′ ∈ {0, 1}* and a constant value 𝛥 ∈ {0, 1}𝑛, it implies the equation
PolyX𝐾ℎ

(𝑀)⊕ PolyX𝐾ℎ
(𝑀 ′)⊕𝛥 = 0𝑛, i.e.,

𝑀1 ·𝐾ℎ ⊕ . . .⊕𝑀ℓ10* ·𝐾ℓ
ℎ ⊕𝑀 ′

1 ·𝐾ℎ ⊕ . . .⊕𝑀 ′
ℓ′10* ·𝐾ℓ′

ℎ ⊕𝛥 = 0𝑛 .

If ℓ = ℓ′, then either there exists some 1 ≤ 𝑖 ≤ ℓ − 1 such that 𝑀𝑖 ̸= 𝑀 ′
𝑖 or

𝑀ℓ10* ̸= 𝑀 ′
ℓ′10*. Hence this is a non-trivial polynomial of 𝐾ℎ of degree at most ℓ,

since either the coefficient 𝑀𝑖⊕𝑀 ′
𝑖 of 𝐾𝑖

ℎ or the coefficient 𝑀ℓ10*⊕𝑀 ′
ℓ10* of 𝐾ℓ

ℎ

is non-zero. Thus, the almost xor universal advantage is at most ℓ/2𝑛 ≤ ℓmax/2𝑛.
If ℓ ̸= ℓ′, without loss of generality, we assume ℓ > ℓ′. Then the coefficient 𝑀ℓ10*

of 𝐾ℓ
ℎ is non-zero that implies this is a non-trivial polynomial of 𝐾ℎ of degree ℓ.

Hence the almost xor universal advantage is again at most ℓ/2𝑛 ≤ ℓmax/2𝑛.
Finally we consider the 3-way regular property. Given three distinct mes-

sages 𝑀, 𝑀 ′, 𝑀 ′′ ∈ {0, 1}* and a non-zero constant 𝛥 ∈ {0, 1}𝑛, it requires the
equation PolyX𝐾ℎ

(𝑀)⊕PolyX𝐾ℎ
(𝑀 ′)⊕PolyX𝐾ℎ

(𝑀 ′′) = 𝛥 holds. If the left part
reduces to a zero polynomial such that each coefficient is zero, which is possible
by certain choice of messages, e.g., 𝑀 = 𝑀 ′ ⊕𝑀 ′′, then the 3-way regular ad-
vantage is 0 since 𝛥 ̸= 0𝑛. Otherwise, the left part is a non-trivial polynomial
since there is at least one 𝐾𝑖

ℎ whose coefficient is non-zero. Hence, the 3-way
regular advantage is at most max{ℓ, ℓ′, ℓ′′}/2𝑛 ≤ ℓmax/2𝑛.

The second hash function called GHASHX is a variant of GHASH [30,29,28]
by replacing the 0* padding with the 10* padding. Before that, we first recall
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Fig. 4: The polynomial hash function GHASHX for a message 𝑀 = 𝑀1 ‖ . . . ‖𝑀ℓ with
a hash key 𝐾ℎ.

the definition of GHASH and show that it cannot meet the regular property,
and thus cannot be used in nPolyMAC, PDM*MAC, 1k-PDM*MAC, nEHtM+

𝑝 and
multi-user 2k-PolyMAC to restore the beyond-birthday-bound security. Let the
message be 𝑀 = 𝑀1 ‖𝑀2 ‖ . . . ‖𝑀ℓ where |𝑀𝑖| = 𝑛 for 1 ≤ 𝑖 ≤ ℓ − 1 and
0 ≤ |𝑀ℓ| ≤ 𝑛. Given a hash key 𝐾ℎ ∈ {0, 1}𝑛, GHASH is defined as follows:

GHASH𝐾ℎ
(𝑀) = 𝑀1 ·𝐾ℓ+1

ℎ ⊕𝑀2 ·𝐾ℓ
ℎ ⊕ . . .⊕𝑀ℓ0* ·𝐾2

ℎ ⊕ |𝑀 |𝑛 ·𝐾ℎ (3)

where 0* is the padding method that appends as few zeros to make the total
string length a multiple of 𝑛 9, and |𝑀 |𝑛 is the 𝑛-bit encoding of the length
of message 𝑀 . Note that GHASH explicitly multiplies the 𝑛-bit encoding of the
length of a message |𝑀 |𝑛 by 𝐾ℎ. Hence, it can prevent the attack of prepending
arbitrary 0𝑛 blocks in section 3 since then the length will change. McGrew and
Viega [29,28] showed that GHASH is a 𝜖2-almost-xor-universal hash where 𝜖2 =
(ℓmax + 1)/2𝑛 and ℓmax is the maximum number of 𝑛-bit blocks of a message.
Hence, GHASH can be used in nEHtM, CWC+, PolyMAC, and 2k-PolyMAC to
restore their beyond-birthday-bound security since for these constructions, they
only require the underlying hash function to be almost-xor-universal. However,
for nPolyMAC, PDM*MAC, 1k-PDM*MAC, nEHtM+

𝑝 and multi-user 2k-PolyMAC,
their security analyses require that the underlying hash function should be also
regular. Apparently, GHASH is not regular since for an empty string 𝑀 = 𝜀,
GHASH𝐾ℎ

(𝜀) = 0 always holds. Hence, we cannot use GHASH in these three
constructions otherwise it will violate their security analyses. Even worse, if
we use GHASH in nPolyMAC, then there is a forgery attack since the tuple
(𝑁, 𝑀, 𝑇 ) = (0𝑛, 𝜀, 0𝑛) can always pass the decryption oracle without queried
before.

Now we define GHASHX that is a variant of GHASH by replacing the 0*

padding with 10* padding. Given a hash key 𝐾ℎ ∈ {0, 1}𝑛 and a message 𝑀 =
𝑀1 ‖𝑀2 ‖ . . . ‖𝑀ℓ where |𝑀𝑖| = 𝑛 for 1 ≤ 𝑖 ≤ ℓ − 1 and 0 ≤ |𝑀ℓ| ≤ 𝑛 − 1,
GHASHX is defines as follows:

GHASHX𝐾ℎ
(𝑀) = 𝑀1 ·𝐾ℓ+1

ℎ ⊕𝑀2 ·𝐾ℓ
ℎ ⊕ . . .⊕𝑀ℓ10* ·𝐾2

ℎ ⊕ |𝑀 |𝑛 ·𝐾ℎ (4)
9 The number of zeros padded is 0 if the length of original message is already a multiple

of 𝑛.
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where 10* is the padding method that first appends a single 1 followed by as
few zeros to make the total string length a multiple of 𝑛. A pictorial illustration
of GHASHX is given in Figure 4. The following lemma shows that GHASHX
meets regular, almost-xor-universal and 3-way-regular properties, and thus can
be instantiated in all of these constructions to restore their beyond-birthday-
bound security. The proof of this lemma is similar to the one of Lemma 2, but
for the sake of completeness, we provide it here.

Lemma 2. Let GHASHX : {0, 1}𝑛×{0, 1}* → {0, 1}𝑛 be defined by Equation 4.
Then GHASHX is 𝜖1-regular, 𝜖2-almost-xor-universal, and 𝜖3-3-way-regular where
𝜖1 = 𝜖2 = 𝜖3 = (ℓmax + 1)/2𝑛 and ℓmax is the maximum number of 𝑛-bit blocks
of a message.

Proof. We first consider the regular property. Given a message 𝑀 ∈ {0, 1}* and
a constant value 𝛥 ∈ {0, 1}𝑛, it requires the equation GHASHX𝐾ℎ

(𝑀)⊕𝛥 = 0𝑛

holds, namely

𝑀1 ·𝐾ℓ+1
ℎ ⊕𝑀2 ·𝐾ℓ

ℎ ⊕ . . .⊕𝑀ℓ10* ·𝐾2
ℎ ⊕ |𝑀 | ·𝐾ℎ ⊕𝛥 = 0𝑛 .

This is a non-trivial polynomial of 𝐾ℎ of degree at most ℓ +1 because the coeffi-
cient 𝑀ℓ10* of 𝐾2

ℎ is always non-zero. The number of roots of this polynomial is
at most ℓ + 1. Hence, the regular advantage is (ℓ + 1)/2𝑛 ≤ (ℓmax + 1)/2𝑛 since
the hash key 𝐾ℎ is chosen uniformly at random from the set {0, 1}𝑛.

We then analyze the almost xor universal property. Given two distinct mes-
sages 𝑀, 𝑀 ′ ∈ {0, 1}* and a constant value 𝛥 ∈ {0, 1}𝑛, it implies the equation
GHASHX𝐾ℎ

(𝑀)⊕ GHASHX𝐾ℎ
(𝑀 ′)⊕𝛥 = 0𝑛, i.e.,

𝑀1·𝐾ℓ+1
ℎ ⊕. . .⊕𝑀ℓ10*·𝐾2

ℎ⊕|𝑀 |·𝐾ℎ⊕𝑀 ′
1·𝐾ℓ′+1

ℎ ⊕. . .⊕𝑀 ′
ℓ′10*·𝐾2

ℎ⊕|𝑀 ′|·𝐾ℎ⊕𝛥 = 0𝑛 .

If ℓ = ℓ′, then either there exists some 1 ≤ 𝑖 ≤ ℓ − 1 such that 𝑀𝑖 ̸= 𝑀 ′
𝑖

or 𝑀ℓ10* ̸= 𝑀 ′
ℓ′10*. Hence this is a non-trivial polynomial of 𝐾ℎ of degree at

most ℓ + 1, since either the coefficient 𝑀𝑖 ⊕ 𝑀 ′
𝑖 of 𝐾ℓ+2−𝑖

ℎ or the coefficient
𝑀ℓ10* ⊕𝑀 ′

ℓ′10* of 𝐾2
ℎ is non-zero. Thus, the almost xor universal advantage is

at most (ℓ + 1)/2𝑛 ≤ (ℓmax + 1)/2𝑛. If ℓ ̸= ℓ′, then the coefficient |𝑀 |𝑛 ⊕ |𝑀 ′|𝑛
of 𝐾ℎ is non-zero that implies this is a non-trivial polynomial of 𝐾ℎ of degree at
most ℓ+1. Hence the almost xor universal advantage is again at most (ℓ+1)/2𝑛 ≤
(ℓmax + 1)/2𝑛.

Finally we consider the 3-way regular property. Given three distinct mes-
sages 𝑀, 𝑀 ′, 𝑀 ′′ ∈ {0, 1}* and a non-zero constant 𝛥 ∈ {0, 1}𝑛, it requires the
equation GHASHX𝐾ℎ

(𝑀) ⊕ GHASHX𝐾ℎ
(𝑀 ′) ⊕ GHASHX𝐾ℎ

(𝑀 ′′) = 𝛥 holds. If
the left part reduces to a zero polynomial, then the 3-way regular advantage is 0
since 𝛥 ̸= 0𝑛. Otherwise, the left part is a non-trivial polynomial since there is
at least one 𝐾𝑖

ℎ whose coefficient is non-zero. Hence, the 3-way regular advantage
is at most max{ℓ + 1, ℓ′ + 1, ℓ′′ + 1}/2𝑛 ≤ (ℓmax + 1)/2𝑛.

Remark 4. Compared to GHASHX, PolyX uses the reverse order of a message
to implicitly encode the length of a message as a parameter in the polynomial



18 Yaobin Shen, François-Xavier Standaert, and Lei Wang

that will not be zeroed out. While GHASHX explicitly multiplies the length of
a message by 𝐾ℎ, and thus requires one additional multiplication. On the other
hand, GHASHX can be computed efficiently in the on-the-fly manner by using
Honer’s rule [34]. But if we want to compute PolyX efficiently by using Honer’s
rule, then we need to wait until the last block of a message arrives.

Remark 5. Note that both PolyX and GHASHX are 1-key 𝑛-multiplication poly-
nomial hash functions over GF(2𝑛), the same as Poly. There are other types of
polynomial hash functions requiring multiple keys, using 𝑛/2 multiplications,
or over prime fields. We refer to [5,22] for a detailed discussion of these poly-
nomial hash functions. Since our main focus is to propose some possible fixes
by using 1-key 𝑛-multiplication polynomial hash function over GF(2𝑛) as Poly,
we leave it as the future work to investigate whether these hash functions can
meet all of these three properties that are discussed in this section. Moreover,
as the security and the performance of polynomial hash functions could have a
significant impact on actual deployment, we leave it as another interesting and
important future work to comparing these two newly proposed polynomial hash
functions with existing ones (e.g., [5,22] or the international standard ISO/IEC
9797-3:2011 [23]).

5 Conclusion

In this paper, we demonstrate forgery attacks on several polynomial-hash-based
MACs with provably beyond-birthday-bound security, namely nPolyMAC, CWC+,
PolyMAC, 2k-PolyMAC, PDM*MAC, 1k-PDM*MAC and nEHtM+

𝑝 . Our attacks ex-
ploit vulnerabilities in the underlying polynomial hash function, and require only
one authentication query and one verification query with succeed probability of
1. Thus, our attacks disprove their high security claims. We then propose two
new polynomial hash functions called PolyX and GHASHX, and prove that using
either of two hash functions can fix the issues in these schemes, and thus can
restore their beyond-birthday-bound security.
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A Overview of the Usage of Polynomial Hash Function

In this section, we briefly recall how the polynomial hash function Poly defined
in Equation 1 is used in schemes nPolyMAC [16], CWC+ [20], PolyMAC [14,27], 2k-
PolyMAC [14,15], PDM*MAC [11], 1k-PDM*MAC [11], and nEHtM+

𝑝 [12]. In [16],
the authors first showed the beyond-birthday-bound security of construction
DWCDM. They then proposed nPolyMAC as a concrete instance of DWCDM by
using Poly as the underlying hash function. They proved the beyond-birthday-
bound security of nPolyMAC by combining the result of DWCDM and the prop-
erties of Poly. The required properties of Poly are 𝜖1-regular, 𝜖2-almost-xor-
universal and 𝜖3-3-way-regular, and are proved in [16,17, Proposition 1]. In [20],
the polynomial hash Poly was directly integrated into CWC+. The beyond-
birthday-bound security analysis of CWC+ relies on the 𝜖2-almost-xor-universal
property of Poly. In both PolyMAC and 2k-PolyMAC [14,27,15], the polynomial
hash Poly was the main component of these two schemes. The beyond-birthday-
bound security analyses of PolyMAC and 2k-PolyMAC require Poly to be 𝜖2-
almost-xor-universal, while the multi-user beyond-birthday-bound security anal-
ysis of 2k-PolyMAC additionally requires Poly to be 𝜖1-regular. The authors [15,
Lemma 4] proved that Poly was 𝜖1-regular and 𝜖2-almost-xor-universal. In [11],
the authors first proved the beyond-birthday-bound security of PDM*MAC and
1k-PDM*MAC. They then explicitly used Poly to instantiate these two schemes
to achieve the beyond-birthday-bound security. The required properties of Poly
are 𝜖1-regular, 𝜖2-almost-xor-universal and 𝜖3-3-way-regular. In [12], the authors
first showed the beyond-birthday-bound security of nEHtM*

𝑝. They then proposed
nEHtM+

𝑝 as a concrete instance of nEHtM*
𝑝 by using Poly as the underlying hash

function. They proved the beyond-birthday-bound security of nEHtM+
𝑝 by com-

bining the result of nEHtM*
𝑝 and the 𝜖2-almost-xor-universal property of Poly.
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