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Abstract. Securing low-cost microcontrollers against side-channel at-
tacks is an important challenge. One core issue for this purpose is that
such devices may exhibit leakages with very limited noise. As a result,
standard countermeasures like shuffling or masking, which emulate or
amplify noise, have limited effectiveness. In this paper, we investigate
the possibility to run hardware coprocessors in parallel to a masked soft-
ware implementation, in order to generate algorithmic noise. We detail
the conditions for such a noise generation to be effective and show ex-
perimental evidence that it leads to security improvements compared to
masked software implementations running without activated coproces-
sors. While masking remains expensive, the gains we show in number of
traces to recover the key are systematic: an approximate factor two in
our experiments, that is raised to the number of masking shares.

1 Introduction

Side-channel attacks are an important threat against which various counter-
measures exist. Among generic solutions that can be applied independent of
the algorithms, a standard idea is to emulate and amplify the physical noise
inherently present in the measurements. Masking [CJRR99,GP99] and shuf-
fling [HOM06,VMKS12] are typical examples of such countermeasures. In par-
ticular, it is now established that assuming shares’ leakages that are sufficiently
independent, masking can amplify the noise (variance) exponentially in the num-
ber of shares [PR13,DDF14,DFS15,PGMP19,BCG+23].

In general, such countermeasures can of course only work if there is indeed
some noise inherently present in the leakages. This requirement turns out to
be quite easily achieved in hardware implementations contexts (e.g., FPGAs,
ASICs), since designers then have a good level of control on the design. As a
result, the primary constraint in those cases is to ensure the independence of
the leakages, which is reflected by the security order (i.e., the smallest statistical
moment of the leakage distribution that depends on the target secret). This
is still not trivial and requires dealing with physical defaults like glitches or
transitions, but it is now quite well understood and design principles exist to
deal with such defaults. See for example [NRS11,FGP+18,CGLS21] for glitches
and [CGP+12,BGG+14,CS21] for transitions.
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Unfortunately, the situation quite significantly differs in the context of soft-
ware implementations running on Commercially available Off-The-Shelf (COTS)
Micro-Controller Units (MCUs). On the one hand, such (small) devices usually
exhibit limited physical noise. On the other hand, their serial nature lets the
adversary mounting so-called horizontal attacks that combine the leakages of
multiple operations in order to further reduce the noise [BCPZ16]. As a result,
a recent work showed that state-of-the-art masked implementations of the AES
can be broken nearly independently of the security order (i.e., that exploiting
the low noise is the best strategy independent of physical defaults like transitions
that may show up in software implementations) [BS21].

In this paper, we are therefore interested in possibilities to improve the noise
level of COTS devices. Our general idea relies on the presence of peripherals
alongside the main CPU of recent MCUs, which could be run in parallel and
provide additional algorithmic noise. Such an algorithmic noise could in turn
make masking more effective and possibly reduce the number of shares needed
to reach a given security level. Natural candidates for this purpose are crypto-
graphic coprocessors as they have the advantage of producing seemingly random
computations, can be supplied via the same power supply and may rely on large
(parallel) architectures generally leading to large(r) levels of noise.

In order to evaluate the effectiveness of such a possibility, we run state-of-the-
art attacks against a masked bitslice implementation of the AES with different
number of shares. We show that running dummy coprocessor operations in par-
allel to the main (masked) computations indeed improves the noise level by a
factor f ≈ 2 in our experiments, leading to an increase of the best attacks’
complexity by a factor ≈ 2n for n shares. As a side result, we also show that
the MCU we consider, which uses a more advanced technology than the one
of [BS21], leads to slightly less informative leakages even without running co-
processors in parallel. These combined observations lead to improved security
for masked software implementations. Reaching high security levels remains ex-
pensive but overheads are reduced. For example, we were not able to attack a
4-share implementation with additional noise in less than one million traces.

We note that our work is focused on power measurements (or more gener-
ally, global leakages). This excludes advanced adversaries taking advantage of
high-resolution localized measurements like [UHSS17,UHS+18], which generally
work best in an invasive attack setting (i.e., after depackaging). We leave the
investigation of such advanced attacks as an interesting open problem.

2 Background

In this section, we describe the necessary tools that are used in the paper.
Namely, we first describe out notations, then the Signal-to-Noise Ratio (SNR),
the Regression-based Linear Discriminant Analysis (RLDA) leakage model, Soft
Analytical Side-Channel Attacks (SASCA) and the Perceived Information (PI)
metric. Finally, we describe the masking countermeasure.
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2.1 Notations.

We use capital letters X for random variables, bold letters x for vectors, capital
bold letters X for matrices and calligraphic letters X for sets. We use subscript
to indicate shares, if relevant. We additionally use the following conventions: ns
is the number of samples in a trace, np and na are respectively the number of
profiling and attack traces, b is the number of bits of the profiled variable, and
p is the dimensionality of the subspace used by RLDA.

2.2 Signal-to-Noise Ratio

The SNR is a common univariate metric in side-channel analysis. It was first
defined by Mangard in [Man04]. For an intermediate variable X, it models the
signal as the variance of the mean leakage of each class x ∈ X , and the noise as
the mean of the variance of the leakage of each class:

ˆSNR =
V̂arx

(
Êi (l

x
i )
)

Êx

(
V̂ari (lxi )

) , (1)

where lyi corresponds to the ith leakage sample of variable y. ˆVari and Êi (resp.,
ˆVarx and Êx) are the sample variance and the sample mean over the leak-

ages (resp. the classes). We note here that the modeled noise is a combina-
tion of physical and algorithmic noise. Mangard’s SNR is a good estimator for
the complexity of univariate attacks like Correlation Power Analysis or (uni-
variate) template attacks as their complexity can be directly linked to the
SNR [Man04,MOS11,DFS19]. The SNR can also be used as tool to detect Points-
of-Interest (POIs) as the time samples in a measured leakage trace where the
SNR is high represent samples for which first-order information can be extracted.

2.3 Regression-Based Linear Discriminant Analysis

RLDA has been introduced in [CK14]. Its core idea was to replace the mean of
each class in the equations of Linear Discriminant Analysis (LDA) [SA08] by
a value obtained through linear regression [SLP05]. We use the efficient imple-
mentation of Cassiers et al. [CDSU23], which combines the efficient profiling of
large states enabled by linear regression and the ability to profile models for long
traces enabled by the dimensionality reduction embedded into LDA.

Internally, RLDA first fits a linear regression model with nb basis functions
βi corresponding to the b bits of the target variable and the intercept:

βi(x) =


1 if i = 0,

1 if
⌊
x/2i−1

⌋
mod 2 = 1,

−1 otherwise,

(2)
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with nb = b + 1 = ⌈log2(|X |)⌉ + 1. The regression model to fit for each leakage
sample s is:

ms(x) =

nb−1∑
i=0

ai,sβi(x),

where ai,s corresponds to the ith coefficient of leakage sample s. We define the
mean vector of x asm(x) = Aβ(x) withA ∈ Rns×nb the matrix of all coefficients.
Then, this model is used to calculate the inter and intra-class scatter matrices:

SB =
∑
x∈X

|L(x)| (m(x)− µ̂)(m(x)− µ̂)T , (3)

SW =
∑
x∈X

∑
l∈L(x)

(l−m(x))(l−m(x))T , (4)

where L(x) defines the subset of the trace set L where x = X. By solving the
following problem :

W = argmax
W∈Rns×p

∣∣W TSBW
∣∣

|W TSWW |
,

we find the projection matrix maximizing the SNR in the projected subspace,
where p is a parameter corresponding to the number of dimensions in the sub-
space [DHS01]. Next, the covariance matrix of the Gaussian model in the sub-

space is estimated from the intra-class scatter Σ̂W = |L|−1
W TSWW , and

a second, normalizing projection is applied such that the covariance matrix be-
comes identity. To do so, by computing the eigendecomposition of the symmetric
positive-definite covariance matrix:

Σ̂W = V ΛV T ,

where V and Λ are respectively the matrix of eigenvectors and eigenvalues,
we define the normalizing projection W norm = V Λ−1/2. Eventually, the RLDA
model is obtained by:

f̂[l|X = x] =
1√
(2π)p

exp

(
−1

2

∥∥W RLDAl−ARLDAβ(x)
∥∥2) , (5)

withW RLDA = WW norm the combined projection matrix andARLDA = W RLDAA
the projected coefficients. The likelihood of X conditioned on the leakages are
obtained using Bayes’ law:

f̂[X = x|l] = f̂[l|X = x]Pr[X = x]∑
x′∈X f̂[l|X = x′]Pr[X = x′]

·

In the following sections, we also use Gaussian templates with LDA-based
dimensionality reduction [CRR02,SA08], of which the calculation is essentially
the same except that the means in Equation 3 are calculated exhaustively.
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2.4 Perceived Information

Evaluating the success rate of a multivariate attack cannot be done with the
SNR (which is a univariate metric). The Mutual Information (MI) between the
leakage and target variable is a good candidate for this purpose. However, it
is notoriously hard to estimate. We therefore use the PI as a surrogate, which
provides an easy to estimate lower bound [BHM+19]. It can be computed by

sampling the model f̂ as follows:

P̂I(X,L) = H(X) +
∑
x∈X

Pr[x]
∑

l′∈L′(x)

1

|L′(x)|
log2 f̂[x|l′], (6)

where H(X) is the entropy of X and L′ is the set of traces used to estimate the
PI, which must differ from the set of traces L used to fit the model.

2.5 Boolean Masking

Masking is a common countermeasure against side-channel attacks. It relies on
an encoding of any sensitive variable x into a tuple of n shares:

x = x1 ⊕ x2 ⊕ . . .⊕ xn,

where the n − 1 first shares are selected uniformly at random, so that an ad-
versary needs knowledge of all the shares in order to recover the sensitive in-
formation. This security guarantee is easily expressed in the abstract probing
model [ISW03], which states security if an adversary who can probe up to n− 1
wires in the circuit does not learn anything about x.

From an implementation viewpoint, linear operations are performed share-
by-share and have a linear complexity. Multiplications of two encodings are more
complex: they have quadratic complexity in the number of shares and require
additional randomness to remain d-probing secure. Popular algorithms are the
ISW multiplication [ISW03] and the PINI gadgets introduced in [CS20].

Probing security reduces to noisy leakage security [DDF14], which is closer to
real-world measurements. The noisy leakage model assumes that all the shares
leak noisy observations to the adversary. In this case, the data complexity N of
the attack is inversely proportional to the product of the MI between each share
and the leakage [BCG+23], so that:

N ≥ c∏n
i=1 MI(Xi, L)

, (7)

increases exponentially with the number of shares given that the MI per share is
small enough. As mentioned in introduction, this guarantee only holds as long
as the leakage function ensures some independence between the shares’ leakages
(i.e., as long as it does not recombine the shares). When replacing the MI by
the PI in this equation, we no longer have a lower bound but an estimate that
measures the particular model used to estimate the PI.
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Attacking a masked implementation requires the adversary to model each
share independently to obtain probability densities on the shares f̂[xi|l], and
then to recombine them to obtain probability densities on the target variable:

f̂[x|l] ∝
∑

{x0,...,xn−1|
∑

xi=x}∈Xn

n∏
i=1

f̂[xi|l] (8)

2.6 Soft Analytical Side-Channel Attacks

The previous sections showed how we can profile the leakage of an intermediate
variable X. However, during the computation of a masked encryption algorithm,
several intermediate states exist which can all leak useful information. Directly
profiling many variables in the same template is rapidly impractical as the num-
ber of classes grows exponentially. SASCA has been introduced as an efficient
way to profile several variables independently and exploit them jointly [VGS14].
For this purpose, it models the relations between the variables with a factor
graph and leverages the Belief Propagation (BP) algorithm.

Concretely, the factor graph is a bipartite graph containing the variables
(circles) on one side and the relations (squares) on the other. The edges represent
the relations between the variables. An example is given in Figure 1.

Fig. 1: Exemplary factor graph for X ⊕ Y =W and Y ⊗ Z =W .

Internally, the BP algorithm iterates over 3 steps. At iteration t, we have:

1. The belief of a variable X is computed as the product of its likelihood and
the beliefs coming from its neighbors ∂X.

P t+1
X (x) = p̂(X = x)

∏
R∈∂X

mt
R→X(x),

2. From variable X to a relation R, the belief is the product of the beliefs on
the variable divided by the belief from the destination relation.

mt+1
X→R(x) = P t

X/m
t
R→X(x).
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3. From relation R to variable X, the belief is the sum over all compatible
values for the relation of the products of the beliefs from all neighbors of R
except X, where we denote the compatibility function with ψR, which has a
value of 1 if the values are compatible with the relation and 0 otherwise:

mt+1
R→X(x) =

∑
xi∈Xi s.t. {X1,...,Xk}=∂R\X

ψR(x, x1, . . . , xk)

k∏
i=1

mt
X→R(xi),

This algorithm is proven to converge on a tree-like structure with a number
of iterations corresponding to twice the diameter of the graph. With graphs
containing cycles like Figure 1, the algorithm becomes a heuristic.

3 Noise Generation

In this section, we detail the implementation of our coprocessor-based noise
engine. In order to be characterized as noise, the coprocessor should process
hard-to-predict data, with ideally random states at each cycle. This way, an
adversary is not able to predict the data and its leakage, which would make the
noise deterministic and easy to filter. It should ideally be slow (i.e., take many
cycles of computation) but quick to configure such that interrupts of the main
task are sparse and short. The coprocessor should also rely on a large (parallel)
architecture in order to generate more algorithmic noise and to better hide the
leakage of the CPU that runs a masked implementation.

In practice, we configured a Direct Memory Access (DMA) peripheral which
loads the buffer to process into to coprocessor and unloads it without the CPU
being interrupted. The buffer can contain multiple blocks of data to process.
When the buffer is fully processed, the CPU gets interrupted, the DMA and the
coprocessor are reset and the cycle can restart. The buffer size therefore gives
a trade-off parameter between the memory used and the overhead in execution
time due to the interrupts. We note that the suitable coprocessors of the MCU
we used did not allow circular DMA transfers.1 Hence we needed to reset after
processing the buffer. A representation of this process is shown in Figure 2.

The coprocessor we choose for our experiments was an AES-128 implemen-
tation with a 128-bit architecture, performing the encryption of one block of
data in 16 cycles (i.e., one cycle per round). In order for its states to remain
unpredictable, we put this coprocessor in a leakage-resilient mode of operation
for which it is expected that a large parallel implementation provides sufficient
security. Concretely, we used a construction similar to the one in [BMPS21]
where it is shown that the 128-bit coprocessor maintains 64 bits of security as
long as we re-key it every 100 encryptions. We used the True Random Number
Generator (TRNG) of the MCU to generate the random buffer and initializing

1 Which are DMA transfers where the DMA automatically resets its pointer to the
start address at the end of the buffer, without input from the CPU.
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the coprocessor with a random key. The TRNG generated a 32-bit random word
every 40 cycles. After each completed buffer, we generate a new random key
with the TRNG and encrypt the buffer with the new key. Overall, this strategy
keeps performance overheads due to resets quite small (a few percents).

Ti
m

e

MemoryCPU Coprocessor

Fill buffer with random data

Initialize Coprocessor

Encrypt buffer

AES buffer

CPU Read/Write DMA transfers

Masked code
space

Secure software execution

Interrupt: Reinitialize Coprocessor

N
oise generated

Encrypt buffer

N
oise generated

Secure software execution

Initialize Coprocessor

Initialize Coprocessor

Fig. 2: Execution scheme of the noise engine.

We note that reducing the buffer size would increase the computation time
of our masked implementation, but improve the security of the leakage-resilient
mode of operation running in parallel. It could also improve the security of the
masked implementation due to the desynchronization of the traces that it would
imply (since interrupts could then act as somewhat random delays).

4 Evaluation Setup

We now describe the implementation we analyze and our measurement setup.

4.1 Description of the Target

The implementation under test is the bitsliced AES implementation of Goudarzi
and Rivain [GR17] with state-of-the-art PINI gadgets from [CS20]. We precisely
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used the assembly code provided in [BC22]. Bitslicing allows efficient masked
software implementations. It works by splitting each word and placing each bit
into a different register, so that bitwise operations can be applied at the register
level. Given the size of the CPU, we are not limited to one bit per register and
can easily parallelize all the 16 S-boxes of the AES in 32-bit registers. In the case
of masked implementations, each register is shared into n registers such that in
one register, only bits of one share are present. This avoids recombining shares
in the barrel shifter, also known as the shareslicing issue [GMPO20].

4.2 Measurement Setup

Our measurements were performed on a Chipwhisperer CW308 board with the
STM32F415RG daughterboard. This board includes an ARM Cortex-M4 CPU
with the required peripherals. We used a Tektronix CT-1 AC current probe on
the dedicated measuring pins.2 For sampling, we used the Picoscope 5244D 12-
bit oscilloscope at its maximum speed of 500MS/S. The clock of our DUT was
set at 40MHz and derived with internal PLLs from an 8MHz crystal on the
CW308board. We note that we also performed measurements to make sure our
measurement setup produces results close to Bronchain and Standaert’s mea-
surement setup [BS21]. For this, we kept our setup identical with the exception
of the daughterboard being a STM32F051R4 with a Cortex-M0 CPU.

5 Side-Channel Metrics

In this section, we compare two side-channel metrics, namely the SNR and the
PI. Beforehand, we show in Figure 3 the effect of the coprocessor on the measure-
ments by showing mean leakage traces with and without the noise generation.
The mean leakage traces were computed over 100k non-averaged traces and rep-
resent the execution of the first S-box layer of the AES. We clearly see the impact
of the co-processor: without it, groups of operations are distinguishable; when
activated, they are hidden within the generated noise.

5.1 SNR Comparison

First, we compare the SNR with and without the noise engine for each state in
the computation of the first S-box Layer. The target states have a 16-bit width,
corresponding to the 16 S-Boxes computed in parallel. In each word, 16 bits
correspond to the 16 S-boxes and the 16 remaining ones are set to zero. Thus,
each bit of the bus is modeled and no algorithmic noise comes from the bus.
Every state corresponds to a share of an intermediate variable and is processed
independently. We used 500k traces with random inputs to compute the SNR.

In Figure 4, we show the (123×2) SNR curves calculated for each intermediate
state of the AES bitslice S-box for n = 2 shares, with (top) and without (bottom)

2 This effectively shorts the onboard shunt resistor.
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(b) With noise generation.

Fig. 3: Comparison of mean leakage traces.

noise generation. We observe two types of SNR peaks in the upper figure: the
tighter ones are the XOR (and NXOR) gadgets, the more spread out, and slightly
higher ones correspond to the AND gadgets. The impact of the noise generation
appears on the bottom figure, where all time samples exhibit a reduced SNR.
There is no significant alteration of the shape of the SNR curves. We observed
a similar reduction for implementations with more shares.

5.2 PI Comparison

In order to evaluate the reduction of the PI due to the coprocessor, we first detail
the steps followed to generate our leakage models. First, for each intermediate
state, we find our Points-Of-Interest (POIs) which we define as the time samples
that are higher than the noise floor of the SNR. It leads to around 2000 samples
for each state share. We then profile these intermediate state shares with 500k
traces using the RLDA leakage model on 16-bits, with 10 dimensions in the
subspace. Finally, 5000 fresh traces are used to evaluate the PI.

To justify these parameters, Figure 5 shows the extracted information for an
exemplary state share as a function of the number of profiling traces used, with
and without the noise generation. It can be seen that all models converge with
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Fig. 4: SNR for each share of the first S-box layer masked with two shares.

≈ 100k traces. Furthermore, increasing the number of dimensions (e.g., beyond
p=4) has limited impact, especially in the noisy case (bottom figure).

We next show the PI per share of the input of the S-box layer in Table 1,
computed from a 2-share implementation. We observe that the 8 words of the
AES state have slightly different levels of information, but the noise produced
by the coprocessor consistently reduces it. This is independent of the share that
is being modeled. We also note that the PI per share of the linear operations is
stable with the number of shares (since these operations are applied share-wise).
Since our following attacks will primarily exploit this information, we do not
detail the evaluation of the PI per share for the non-linear operations that takes
place for larger numbers of shares (due to multiple shares manipulations). On
average, we observed a reduction by an approximate factor 2 for the PI per share
when activating the noise generation. Based on this value, we can extrapolate the
security gains that the noise generation brings thanks to Equation 7: it should
increase the data complexity by an approximate factor 2n with n shares.3

3 This is assuming that the independence condition holds to a sufficient degree. Since
the gadgets we use were tested against such defaults in [BC22] and the possible
reduction of the security order due to transitions is orthogonal to the noise issue we
discuss, we did not reproduce this part of the experiments in the paper.
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Fig. 5: PI per share obtained for an exemplary variable.

For completeness, we also computed the results obtained with two 8-bit LDA-
based models, in order to compare them with the 16-bit RLDA-based model. As
shown in Table 2, this leads to significant reduction of the perceived information.
This last table is interesting since it uses a similar model as [BS21] and shows
significantly lower PI values that this previous work obtained with a Cortex-M0
STM32F0MCUs. We repeated the measurements of [BS21] with our measurement
setup (just plugging/unplugging the devices) and obtained similar results. So we
posit that the changes are due to the higher complexity of the Cortex-M4 and
a change of technology node, from 180nm for the F0 line to 90nm for the more
recent (and lower power) F4 line we evaluate in this paper.4

6 Attack results

In this section, we finally present concrete attacks against implementations with
different masking orders, and discuss the effectiveness of the proposed noise gen-

4 https://blog.st.com/stm32g0-mainstream-90-nm-mcu/
https://www.st.com/en/microcontrollers-microprocessors/stm32f405-415.html



Leveraging Coprocessors as Noise Engines in Off-the-Shelf Microcontrollers. 13

Share # Word 0 Word 1 Word 2 Word 3 Word 4 Word 5 Word 6 Word 7

No noise
0 1.90 1.53 1.21 1.89 0.81 2.00 2.47 3.12
1 1.97 1.64 1.29 1.97 0.67 2.12 2.60 3.91

With noise
0 0.95 0.71 0.42 0.72 0.37 0.92 1.06 1.69
1 1.06 0.67 0.46 0.76 0.30 1.10 1.12 1.78

Table 1: PI per share: input of the S-box layer, 2 shares, 16-bit RLDA model.

Share # Word 0 Word 1 Word 2 Word 3 Word 4 Word 5 Word 6 Word 7

No noise
0 0.89 0.75 0.76 0.98 0.57 0.87 1.25 1.56
1 0.98 0.96 0.86 1.05 0.50 1.18 1.56 2.39

With noise
0 0.62 0.49 0.35 0.52 0.30 0.59 0.75 1.01
1 0.70 0.49 0.40 0.55 0.26 0.79 0.77 1.21

Table 2: PI per share: input of the S-box layer, 2 shares, two 8-bit LDA models.

eration. First, a baseline template attack is shown against the key addition. Next,
we compare our results to the attack presented in [BS21]: a SASCA exploiting
the leakages of all the intermediate states of the S-box layer.

This baseline attack is a textbook template attack on each of the 8 words
of the key addition. We profile each share of each word as explained in sub-
section 5.2, using the 16-bit RLDA models. Then, we recombine the likelihoods
obtained on our shares to obtain the likelihood of the unmasked variable as
shown in Equation 8. Figure 6 shows the results of attacks against 3 masked
implementations, with 2, 3 and 4 shares. For each number of shares, we mea-
sured a dataset with and without noise generation. As a reference, we also ran
the attack against an implementation without masking. The figure shows the
mean rank (in bits) of the key as a function of the number of traces used in the
attacks [SMY09]. We used the rank estimation algorithm presented in [PSG16].
The horizontal black line represents a rank of 32 bits, set as a limit for the
success of the attack (below that rank, enumeration is almost instantaneous).

First, looking at the dashed lines, the impact of masking is clearly visible. For
each additional share, roughly 10 times more traces are needed. Next, the impact
of the noise generation can be seen in the rightwards shift when moving from the
dashed curves to the plain curves. As expected from our previous extrapolation,
the security gain brought by the additional algorithmic noise is amplified as the
number of shares increases. This is reflected by the gap between curves of the
same color, that grows roughly with 2n. For the 4-share design, we were not able
to reduce the key rank below 232 with one million attack traces.

For completeness, we repeated the SASCA of [BS21], where the adversary
computes probabilities on the intermediate variables using Equation 8 and com-
bines them thanks to BP. We performed this attack using the same datasets as
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Fig. 6: Key rank for ̸= number of shares, with and without noise generation.

the baseline attack. All variables were profiled using the same RLDA models and
parameters. The factor graph of the AES being cyclic, we studied the number
of iterations and observed the best results after 5 or 6 iterations, depending on
the cases. Iterating the BP algorithm further lead to worse ranks on the key.

The results of the SASCA and baseline attacks are compared in Table 3,
which gives the number of traces required to reach the rank of 232 (mostly
because the improvements are hardly distinguishable from Figure 6). The im-
provement of the SASCA over the baseline attack is limited and decreases with
the masking order. We posit that this limited effectiveness is due to the lower
information obtained on the target intermediate variables combined with the
information loss when propagating beliefs through XOR operations.

n = 2 n = 4 n = 4
Noise generation Off On Off On Off On

TA 373 1101 7500 36500 110500 NA.
SASCA 295 1024 7000 36000 109000 NA.
Gain in % 21 7 7 1.3 1.3 NA.

Table 3: Data complexity to obtain a 232 rank with SASCA (vs. template attack).

7 Conclusions

The versatility of low-end MCUs makes them appealing solutions for deployment
in various applications. Yet, their simplicity also makes them good targets for
physical attacks. Previous works showed that their low-noise makes them vul-
nerable to horizontal side-channel analysis. In this work, we show that the move
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to more advanced manufacturing technologies combined with the generation of
algorithmic noise thanks to coprocessors running in parallel to masked software
implementations can improve this situation with limited performance overheads.

Activating co-processors admittedly has a cost in terms of power consump-
tion. However, we expect that this higher power consumption can be compen-
sated by the lower number of shares required to reach a given security level –
the concrete confirmation of this tradeoff being an interesting scope for further
research. It would also be interesting to further improve the side-channel secu-
rity of software implementations by combining the noise engines we propose with
other heuristic means to reduce the leakage (e.g., via time randomizations).
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