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Abstract A recent work from Eurocrypt 2023 suggests that prime-field
masking has excellent potential to improve the efficiency vs. security
tradeoff of masked implementations against side-channel attacks, espe-
cially in contexts where physical leakages show low noise. We pick up
on the main open challenge that this seed result leads to, namely the
design of an optimized prime cipher able to take advantage of this po-
tential. Given the interest of tweakable block ciphers with cheap inverses
in many leakage-resistant designs, we start by describing the FPM (Feistel
for Prime Masking) family of tweakable block ciphers based on a gen-
eralized Feistel structure. We then propose a first instantiation of FPM,
which we denote as small-pSquare. It builds on the recent observation
that the square operation (which is non-linear in F,) can lead to masked
gadgets that are more efficient than those for multiplication, and is tai-
lored for efficient masked implementations in hardware. We analyze the
mathematical security of the FPM family of ciphers and the small-pSquare
instance, trying to isolate the parts of our study that can be re-used for
other instances. We additionally evaluate the implementation features of
small-pSquare by comparing the efficiency vs. security tradeoff of masked
FPGA circuits against those of a state-of-the art binary cipher, namely
SKINNY, confirming significant gains in relevant contexts.

1 Introduction

The design of symmetric cryptographic algorithms is generally oriented towards
optimizing their efficiency vs. security tradeoff. For most general applications,
this has led researchers to focus primarily on binary ciphers with efficient bit-
slice implementations, which are generally efficient in software [16] and hard-
ware [57]. This trend has even been amplified when considering side-channel
attacks, in good part due to the emergence of masking as the most popular so-
lution to mitigate such attacks. While various types of masking schemes exist
(e.g., additive [29], multiplicative [43], affine [42], polynomial [74], inner prod-
uct [4], code-based [89]), the efficiency of Boolean masked implementations in
software [44] and hardware [49] make it for now a default solution. As a result,
ciphers optimized towards low AND complexity, enabling efficient bit-oriented
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implementation (e.g., bitslicing), appeared for a while as the best approach [50].
This situation is also reflected by the recent NIST Ligthweight Cryptography
standardization effort, where most ciphers designed with leakage in mind (in-
cluding the winner Ascon [35]) have efficient bitslice representationsﬂ

While it has been shown that Boolean masking can bring high security at
limited cost, it is also known to suffer from practical limitations. Among others,
it is only effective in contexts where leakages are sufficiently noisy [73I37I38],
a condition that was shown to be challenging to reach without dedicated noise
generation circuitry, both in software [BI24] and in hardware [72J69]. Building
on theoretical advances of Dziembowski et al. [41], it has then been observed
that computing in groups of prime order can significantly reduce the noise re-
quirements of masking security proofs while keeping most of the benefits of ad-
ditive encodings, and even providing security gains in the context of noisy leak-
ages (that were not covered by theoretical analysis) [67]. More precisely, Masure
et al. showed at Eurocrypt 2023 that for concretely-relevant leakage functions,
prime-field masking can be quite efficient by re-using simple additions and mul-
tiplication algorithms “4 la ISW” [54], and that the mild performance overheads
due to operating in prime fields can be largely compensated by concrete side-
channel security gains. Informally, these gains can be viewed as the result of a
decreased “algebraic compatibility” between the leakage functions observed in
practice (which are typically close to a linear combination of bits [76]) and the
field in which we mask. For example, it is well-known that observing the least
significant bit of Hamming weight leakages obtained from Boolean shares leads
to information about the secret independent of the number of shares [80]. Mov-
ing to prime encodings, such an attack is not directly possible anymore because
partial uncertainty “diffuses” better when combining the shares.

So far, this potential advantage of prime-field masking for counteracting side-
channel attacks was only demonstrated for a toy AES-like cipher. The main
open challenge that we pick up in this paper is, thus, the design of a dedicated
lightweight cipher optimized for prime masking to enable fair comparisons with
binary ciphers which are tailored for cost-efficiency when masked.

Given the interest of Tweakable Block Ciphers (TBCs) with cheap inverse
for leakage-resistant modes of operation [7JI0], we start by describing the FPM
(Feistel for Prime Masking) family of tweakable block ciphers based on a gener-
alized Feistel structure [71/52]. Among other advantages, TBCs allow reducing
the need of idealized assumptions that are hard to justify in physical security
analyzes and to minimize the side-channel attack surface during tag verification
(which can leak in an unbounded manner thanks to the inverse trick of [I1]).
The FPM family of ciphers allows tweaks of variable size including a version
without tweak (i.e., a block cipher, in order to enable comparisons with generic
constructions [88]). It relies on a variant of the TWEAKEY framework [56], tak-
ing advantage of the fact that for most leakage-resistant modes of operation, the
tweak is public information and requires no countermeasures (so we can actually
use a simple key scheduling algorithm and a more complex, non-linear, tweak

! https://csrc.nist.gov/Projects/lightweight-cryptography
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scheduling algorithm). While moving towards a first instantiation of FPM, we
additionally exploit recent results from CHES 2023 which show how to obtain a
secure implementation of the square operation (non-linear in F,) which is more
efficient than a secure multiplication [27]. This provides natural incentive for
designing a cipher using the square operation as only source of non-linearity,
which further motivates the use of Feistel-like structures for FPM TBCs and
their underlying building blocks, since the square is also non-invertible in F,,.
What then mostly remains is to choose the prime number defining the field in
which we operate. Following [67], we use a Mersenne prime for efficiency rea-
sonsEI We set this modulus to 27 — 1 in order to propose an instance tailored for
secure hardware implementation, which we denote as small-pSquare.

Besides defining the FPM family of ciphers and a first instance, we provide
an initial mathematical security analysis in order to select the number of cipher
rounds of small-pSquare. Doing so, we try to separate the parts of the analysis
that are generic (and could be re-used for other instances) from the ones that
are linked to our choice of square S-box and 7-bit prime. Most importantly,
we then compare masked FPGA implementations of small-pSquare and similar
implementations of a binary cipher protected with Boolean masking. We use
SKINNY for this purpose [6], which is a popular family of ciphers with tweak-
able versions that amongst other applications was used in Romulus, a finalist
to NIST lightweight cryptography competition, and for which a rich literature
on the construction and analysis of state-of-the-art Boolean masked implemen-
tations exist, both automated [58] and hand-made [85]. Our experiments allow
us to confirm the excellent performances and significantly improved efficiency
vs. (side-channel) security tradeoff for small-pSquare. We show in Section |§| that
while unprotected small-pSquare implementations come with overheads (com-
pared to SKINNY), these overheads vanish in the context of masked implementa-
tions where both algorithms perform similarly. As expected, small-pSquare also
has significantly improved performances compared to the toy AES-like cipher
considered in [67]. Furthermore, we show in Section [7] that for similar archi-
tectures, small-pSquare offers side-channel security levels which exceed those of
masked SKINNY implementations by (at least) one order of magnitude.

We conclude the paper by discussing scopes for further research and other in-
stances of FPM ciphers. First, considering different implementation contexts, for
example mid-pSquare variants could be relevant to investigate for FPGAs with
DSP blocks (e.g., with a 17-bit prime) or for ARM Cortex-like devices (e.g.,
with a 31-bit prime). Second, and more prospectively, big-pSquare variants (with
larger primes) could be of interest conceptually due to their similarity with the
different prime ciphers developed for other applications (e.g., fully-homomorphic
encryption, multi-party computation, zero-knowledge proofs), in order to better
understand the differences and similarities between the design goals to optimize
for these various applications [2ITIBI46I36I30], and possibly to offer stronger phys-
ical security guarantees thanks to the larger field computations [40].

2 Both because such prime numbers allow very efficient modular reductions and be-
cause the x — 2z operation is a rotation of the bits that is free in hardware.
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Figure 1: High-level view of FPM (tweakable) ciphers. We use the shortcut no-
tation IV, X R to denote the application of the round R N, times.

2 Feistel for Prime Masking

In this section, we introduce the FPM, family of TBCs. We start by describ-
ing the high-level Feistel structure we use in Section We then detail the
internal components of this structure in Sections and We conclude by
summarizing the design space that this family of ciphers defines in Section

2.1 High-Level Structure
Let p = 3 be a prime number, and let n = 2-n’ > 4 be an integer. The high-level
structure of FPM, TBCs is given in Figure [I| FPM, ciphers take as inputs a
plaintext = € F, a key K € F)) and an optional tweak defined as:
T (T, 7@, TO)eF" ifr>1 _

1%} otherwise (1 = 0)
If 7 = 0, then FPMg ciphers receive no tweak input and correspond to block
ciphers. FPM,. ciphers are key alternating ciphers, where a tweakey is added
every r > 1 rounds. We denote a single round as R, and we denote a group

of N, rounds R as a step S. A tweakey addition is performed after every step.
If 7 = 0, the tweakey is always the master key K. If 7 > 1, the tweakeys are
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defined as K + Too, K +Tig, ..., K+ Tr 10, K +To1, K+ T11, ..., K +
T‘r—l,la o, K+ T07i, K+ Tlﬂ‘, o, K+ T‘r—l,i, where the values Tjﬂ‘ € Fz are
produced by a tweak scheduling and are independent of the master key. If 7 = 1,
we usually omit the first index for simplicity (i.e., we use T; instead of Tp ;).

The rounds R : F — F) (and the steps S) are independent of both the
tweak and of the master key. The number of rounds per step N, must at least
guarantee that full diffusion is achieved in the steps. Regarding the number of
steps N, we additionally require that if 7 > 1, then Ny — 1 must be a multiple
of 7 in order to guarantee that the tweak is absorbed in equal measure.

Key and tweak scheduling algorithms. Since we do not claim security
against related-key attacks, we opted for the simplest key scheduling algorithm,
which consists of having all the subkeys equal to the master key. Note that several
tweakable lightweight symmetric primitives in the literature are based on similar
design choices, including SKINNY [6] (which we will use in our comparisons).

By contrast, our designs make use of a tweak scheduling algorithm. As men-
tioned in the introduction, this is because in many leakage-resistant modes of op-
eration, the tweak is public and therefore does not require any protection against
leakage. This context calls for operations that are cheap to implement without
countermeasures (in hardware and software) while providing good cryptographic
properties. Since FPM ciphers operate in prime fields, a natural candidate for
this purpose is to combine a shuffling of the F,-words in each state with an
invertible mapping of the “bits” in each F,-word, for example taking advantage
of the fact that linear mappings in 5 are non-linear in F,. More precisely, for
each ¢ > 0 and for each j € {0,1,...,7 — 1}, we define T} ; as:

Ty =00 (T ) 190 (T3 ) 110 (T ) €T3,
where:

— For each 1 € {0,1,...,n — 1}, Tl(]) € IF,, denotes the [-th F,-word of TG,
— II is a shuffling of {0,1,...,n — 1} € N satisfying the following conditions:
1. IT* (where II® denotes the application of IT i consecutive times) is dif-
ferent from the identity for each i < 4’ and a sufficiently large ¢';
2. IT does not contain fix points and (if possible) two consecutive elements
before the shuffling are not consecutive after it.
— Foreach € {0,1,...,n—1}, ¥; : F, —» [, is an invertible mapping.

As we are going to show in the next section, this tweak scheduling algorithm
allows us to adapt the simple security arguments used in [5I] to our scheme.

2.2 Rounds R of FPM.. via Type-II Generalized Feistel

Let b,c > 2 be positive integers such that n = b-c and b = 2 - ¥'. The rounds
R over (Fg)b = [} of FPM; ciphers are based on a Type-II generalized Feistel
network structure [Q0I7152]. They are defined as:

(o, @1, .., xp—2,xp—1) = (F(zo) + 1,22, F(x2) + 3,...,F(xp_2) + xp_1,70),
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(a) 2x2 (b) 2 x4 (c) 4 x4

Figure 2: FPM rounds. Left: b=2, ¢=2; middle: b=2, ¢=4,right: b=4, c=4.

where F : F) = Fpe — F) = Fpe is discussed in the next subsection. Such
structures are characterized by two parameters: b = 2 -0’ > 2 is the number
of branches in the generalized Feistel network (where each branch can carry
several values in F,), ¢ > 2 is the number of values in F,, of each branch, that
the non-linear F function takes as input. Figure [2] illustrates three examples.

Remark: Achieving faster diffusion. In this paper, we limit ourselves to
instances with small b values (up to 4) and to the classical Type-II generalized
Feistel scheme, in which a shift is applied at the output of the non-linear layer.
However, several studies have been conducted in literature to find better shuffles
of the words that can achieve faster diffusion for larger b values (see for exam-
ple [83128]), which we suggest to use in place of the shift whenever applicable.
Besides the minimum number of rounds necessary for achieving full diffusion,
these references also provide the number of active functions F.

2.3 Function F of the Type-III Generalized Feistel

The F functions over F}, are designed to 1) be bijective (since collisions at their
outputs could make the security analysis harder) and 2) ensure full non-linear
diffusion. This is achieved by combining the following components:

— A first non-linear layer is instantiated via a Type-III generalized Feistel
network [00J71J52] (without the shift) of the form: (zo,z1,2z2,...,2c—1) €
Fp — (%0, Go,0(w0) +x1,Gro(x1) +72,...,Ge2,0(Te—2) +2c—1) € [}, , where
Go,0, G1,0,-..,Ge_2,0 are non-linear operations over F,,.

— The non-linear layer is followed by a multiplication with a ¢ x ¢ Maximum
Distance Separable (MDS) matrix [33134], typically lightweight [66,60,39]E|

— Finally, a non-linear layer instantiated via a Type-III generalized Feistel
network (with the shift) is applied to the state: (2o, z1,72,...,7.—1) € Fj —
(.’Eo, Go’l(l'()) + 21, Gl,l(xl) + x2,..., G672’1(.T(;72) + ZL’C,l) € F; y where G0,0,
G1,05.-.,Ge_2,0 are again non-linear operations over F,,.

Before the application of each Type-III generalized Feistel network, a round
constant is added on the first element xy. We suggest to generate these constants

3 The branch number B of a matrix over F}, is defined as B(M) = minxe%\{o}{hw(a:) +

hw(M (x))}, where hw(-) is denoted as the bundle weight in wide trail terminology.
A matrix M € F,** is an MDS matrix if and only if B(M) =t + 1.
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via bit rotations of a mathematical constant as m = 3.14159... € R rounded to
a bit size that is large enough to avoid cycles for the number of cipher rounds.

We note that using a Type-III generalized Feistel network for the F functions
is motivated by the fact that a potential candidate for the G; ; functions is the
square operation which is non-invertible (or other small power maps which are
non-bijective in the respective field). In case the G; ; functions are themselves
bijective, a simpler alternative is to directly use SPN rounds.

We also note that since we use a bijective F, exploiting a Feistel structure
for the rounds of Section is not mandatory (e.g., an SPN could work there
too). However, it has the advantage that the F function can be chosen with-
out any regard for the implementation efficiency of its inverse (with or without
masking), which would not be the case when used as an S-box in a typical SPN
construction. Furthermore, the Feistel strategy directly enables us to obtain
cheap inverses in the sense that 1) cost of decryption = cost of encryption and
2) implementing a hardware circuit that can both encrypt and decrypt is not
(significantly) more expensive than one which can only encrypt (in contrast to
most standard SPN designs). In general, we believe that the high-level structure
of FPM ciphers is a natural starting point given our goals. SPN-based structures
would also require an additional linear layer (which may be more expensive) and
it is unclear whether it would enable a reduction of the number of rounds by
half (to compensate for the cost of operating on the full state in each round).
Yet, investigating whether such prime SPN ciphers could potentially improve
over the proposed FPM designs remains an interesting open problem.

2.4 Summary of the FPM, Design Space

The size of an FPM,. cipher is determined by the number of tweaks 7, the prime
integer p, the number of branches of the Type-II generalized Feistel network b and
the number of input words of the F functions c. We use the notation FPM(p, b, ¢)
for this purpose, where p = [logy(p)]. The cipher specifications additionally
require to choose the functions G;; : F, — F, and an MDS matrix, and to
define the shuffling/mapping of the tweak scheduling algorithm and the round
constantsﬂ Next, we first provide high-level security arguments that justify the
design choices of FPM ciphers in Section [3] We then propose a first hardware-
oriented instance in Section [] for which we analyze the mathematical security
in Section [5] and the implementation efficiency & security in Sections [6] and [7}

3 High-level Rationale and Security Arguments

We now provide a high-level rationale and security arguments for FPM, TBCs.

3.1 TWEAKEY Framework and LED-like Design

FPM, ciphers follow the TWEAKEY framework proposed by Jean et al. [56] at
Asiacrypt’14. In contrast to the majority of the TBCs following this framework

4 Variants where the F function uses nearly MDS matrices could be considered.
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(including SKINNY), we add the tweakey only every N, > 1 rounds, where N, is
strictly bigger than 1. This approach is not new in the literature, as it has been
already exploited in the block cipher LED [51]. Its main advantage is to allow a
very simple security analysis concerning related-tweak attacks.

More precisely, since the tweaks are public, the attacker can always control
them. Similar to a related-key attack [I5], in a related-tweak attack the attacker
encrypts (resp., decrypts) the same or different plaintext(s) (resp., ciphertexts)
under several related tweaks. (Anticipating the detailed analysis of Section
we emphasize that related-tweak attacks are usually based on statistical prop-
erties and not on algebraic ones.) A possible way to avoid such attacks is to
treat the tweaks exactly as the plaintexts. That is, not to make any distinction
between plaintexts and tweaks. This is what is done in a sponge/duplex con-
struction [I2I13], but it requires a larger state in order to arrange the inner part,
which is not suitable in our case. Another approach to prevent related-tweak at-
tacks is the one proposed in [51] to prevent related-key attacks. That is, adding
the tweak every N, > 1 rounds. The argument for 7 = 1 is relatively simple:

— A statistical attack as the differential one [I8[T9] exploits the probability
distribution of a non-zero input difference leading to an output difference
after a given number of rounds. The security is achieved if the probability
of any differential characteristic is much smaller than the security level;

— Given T' € F}, assume for simplicity that all the T;’s € F)) are equal to T

— If a difference is inserted in the tweak, then every sub-tweak T; will be active;

— Hence, it is impossible to force two consecutive steps S to be non-active
(i.e., with zero input and zero output differences). That is, for every two
consecutive steps S of N,-rounds, at least one of them must be active.

Indeed, let’s assume that the output difference of the i-th step S coincide with
the difference in T;. In this case, the next i + 1-th step S is not active, since its
input difference is equal to zero. But the next tweak T;,; will introduce again
the difference, making the next i + 2-th step S active. Using the number of active
steps N (each one composed of N, rounds), it is therefore possible to provide
simple security arguments for preventing differential and other statistical attacks,
which reduce to the security of the public permutation S (which is independent
of the tweaks and the master key). We refer to the full version of this paper [47]
for an initial analysis (based on published results) regarding the selection of the
number of steps Ny independently of their internal structure.

The previous argument can be generalized for a non-trivial tweak scheduling
T:F," = (Fy)" — (Fp)*, for example if the following properties are satisfied:
1) T is bijective, and 2) T} . € F} is active if and only if TV € [y is active.
Equivalently, this second condition is satisfied if there exist 7 invertible maps
To,T1,..., Tr—1 over F such that T}; = TéH(T(j)) for each 7 > 0, where
T§+1 :=T,;0T,o0...0T; for i times. (We emphasize that this is not a necessary
condition.) In our case, we achieve this property by defining T . via a shuffle of
the F,-words of TG, (The mapping of each F,, does not affect this property.) A
detailed argument will be given for small-pSquare with 7 = 1,2 in Section [5.1
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We leave the question whether adding the tweakey every round could lead to
improved (but harder to analyze) security as a scope for further research.

3.2 Rationale behind the Generalized Type-II Feistel Scheme

The main motivation behind the choice of defining FPM, ciphers based on a
generalized Feistel structure relates to the goal of having TBCs with cheap in-
verses that are useful in some leakage-resistant modes of operation [fJT0]. This
result can be achieved via 1) a Feistel or Lai-Massey scheme [62I8445], 2) an
SPN scheme with the “reflection” property like Prince [22I23I14], or 3) an SPN
scheme in which every round — without the constant additions — is an involution
(that is, R = R™1) like Noekon [32], Khazad [82] or Iceberg [82]. Even if all
options are valid from a security viewpoint, the first one comes with the least
constraints on its internal components, which is desirable in our setting in order
to enable these components to be selected primarily for their properties against
leakage. After discarding Type-I Feistel schemes that require too many rounds
for achieving full diffusion, we opted for Type-II generalized Feistel networks
instead of Type-III ones. As witnessed by designs like Hight [53] or Clefia [79],
they generally offer a good security vs. efficiency compromise.

3.3 Rationale and Construction of the Function F

As mentioned in Section [2.3] the F functions aim to ensure good non-linear
diffusion while remaining bijective (in order to simplify the security analysis).
For functions G;; over IF,, that are themselves bijective, this could be directly
obtained with two SPN rounds. Yet, and as mentioned in the introduction, one
natural candidate G; ; function is the square power map, which leads to efficient
masked implementations [27]. As a result, we opted for F functions based on two
rounds of a generalized Feistel networkﬂ We selected the Type-III version which
is more similar to SPNs in terms of their number of non-linear G; ; functions and
replaced the middle shift of the Fj,-words by an invertible linear layer in order
to speed up the non-linear diffusion, an idea that resembles the one in [§].

Regarding the choice of the linear layer, we opted for an MDS matrix which
allows to achieve full non-linear diffusion over Fy in only two rounds. Examples
include lightweight candidates [66l60J/39] adapted to the prime case (where the
multiplication per two can be cheap — see Footnote 2). Such MDS matrices could
be replaced by any invertible matrix with a smaller branch number that allows
to get full non-linear diffusion in two rounds, as the ones in [65].

Finally, the round constant additions aim to (i) differentiate the rounds
(e.g., for preventing slide attacks [20021]), (ii) break any fixed points, and (iii)
break any invariant subspace [63J64/48]. Since x ~ 2 has only two fixed points
(namely, 0 and 1) and since F,, does not have any non-trivial subspace (as op-
posed to Fyr = F}), we believe that one F,-constant addition before each non-
linear Type-III generalized Feistel layer is sufficient. As an extra condition when
using Mersenne primes, we require that the round constants do not belong to

® For instances relying on invertible G; ; functions, we suggest using two SPN rounds.
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Figure 3: F-function used in small-pSquare.

any subspace of F5 (where p = 2# — 1). The choice to generate them via a bit
rotation of a fixed mathematical constant like 7 is for efficient (hardware) im-
plementation purposes. The mathematical constant must be chosen such that
all the rotations are in {0,1,...,p — 1} where p is the prime that defines F,,.

4 small-pSquare: a Hardware-oriented Instance

In this section, we provide the specifications of a first instance of an FPM..
cipher. As mentioned in the introduction, its high-level rationale follows two main
guidelines. First, we aim to exploit the recently proposed secure squaring gadgets
from [27], which were shown to be more efficient than secure multiplications
in F,. As a result, we use the square as power map for the G, ; functions of
Section [2.3] Second, we aim to enable efficient hardware implementations. As a
result, we use a small Mersenne prime p = 27 — 1. We then propose to use the
rounds depicted in the right part of Figure [2] leading to a FPM..(7,4,4) cipher
that provides &~ 7 x 4 x 4 = 112 bits of security and we denote as small-pSquare.

We first detail the different components of the function F (depicted in Fig-
ure , then finalize the specification of the tweak scheduling algorithm and
conclude with the suggested number of rounds per steps and steps.

Non-Linear Layer. The non-linear layer of small-pSquare is instantiated with
the following F3,_, — F5._, mapping:

(zo, 21, T2,23) — (wo + ximl + :rg,xg + (z3 + cm-)2,x3 + Ci,j) ,

where ¢; ; is a round constant specified thereafter.

Linear Layer. The linear layer of small-pSquare is instantiated with the invert-
ible matrix M € Fg?fl defined as:

3211

7651

1132

5176

This matrix has been introduced by Duval et al. [39] and is MDS over For_;. It
can be implemented as a Type-II Feistel-like construction as shown in Figure
with only 8 additions and a depth of 4 (which is optimal for 8 additions). We
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recall that the doubling operation (i.e., 2 — 2 - z) modulo a Mersenne prime is
just a bit rotation, hence free in hardware and cheap in software.

Round Constants. The first 64 bits of the binary sequence of 7 are (in hex-
adecimal): Tpinea = 0xC90FDAA22168C234. Let us denote the bit-wise rotation
left via <. Then, the left F-function at round 7 uses the round constants:

— ¢i,0 = (Thinga < @) mod 27,
— ¢,1 = (Tbines < (i 4 16)) mod 27,

while the right F-function at round ¢ uses the round constants:

— ¢i2 = (Tbinea < (i + 32)) mod 27,
— ¢i3 = (Tpines < (i 4 48)) mod 27.

As no sequence of 7 consecutive 1s exists in mhinea, all ¢;0, ¢i.1,¢i 2, ¢i3’s € For_.

Tweak Scheduling (7 > 1 Only). Let IT;5 be the shuffle of the 16 For ;-
words in the tweak schedule sub-tweak word permutation defined as:

Ie(zollz1]l - - - [715) = zo| 25| z13|215]|T 12|27 |214] 22 |24 |26 |28 |23 | 210|271 [| 211 |20

111 has a cycle period of 140 which is the largest we found for 16-element shuffles
(and more than sufficient for our envisioned step numbers). On each Fyr_;-word,
we then apply a bit-shuffle ¥; defined as

vie {0,1,...,15}: @y (z) = ¥7(2' - £ mod 27),

where the multiplication with 2! corresponds to a shift of the bits of [ positions
(when working over F7), and where v is defined as:

6
(I (mz Z%"Qi) =x0-2% 421 2429204232 41428 415 26 416 - 22,
i=0

for each © € Far_; where zg, x1,...,x¢ € {0,1}. The cycle period of 17 is 12 (i.e.,
the maximum possible for a permutation over 7 bits). Moreover, the polynomial
corresponding to ¢7 over For_ is of degree 125 (i.e., the maximum possible) and
contains 46 out of the 127 monomials possible. We refer to the full version of
this paper [47] for details on 17, where we also prove that the polynomial over
Fae 1 corresponding to any bit shuffling only contains monomials of odd degree.

Number of rounds. For a security level of 112 bits and the aforementioned
parameters (p = 27 — 1;b = 4,¢ = 4), we use N,. = 4 rounds per step and we use
N, = 9 steps for 7 = 0, Ny = 16 steps for 7 = 1 and Ny = 21 steps for 7 = 2.
The security analysis that supports these choices is given in the next section.
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5 Mathematical Security Analysis of small-pSquare

We now evaluate the security of small-pSquare against standard attack vectors,
including classical and truncated differential attacks and algebraic attacks (based
on interpolation, linearization, higher-order differentials and Grobner bases). We
describe the attacks having a larger impact on small-pSquare’s number of rounds
in the paper. Details of further attacks are presented in the full version [47].

Overview of the attacks. As we are going to show, the main attack vector
against small-pSquare is differential cryptanalysis [I8/19], which we present in
detail in Section for the case 7 = 0 and the case 7 > 1 (for which we con-
sider related-tweak differential attacks). In this last case, we exploit the strategy
introduced by the LED designers and recalled in Section for guaranteeing
security against related tweaks. Truncated [59] and impossible differential [17]
cryptanalysis as well as other statistical attacks including linear cryptanaly-
sis [68] and boomerang attacks [87] are detailed in the full version [47]. Contrary
to MPC-/FHE-/ZK-friendly schemes defined over prime fields, and similar to
classical /traditional symmetric primitives, algebraic attacks are not the main
threat against small-pSquare in our analysis, essentially due to the small size of
the prime p = 27 —1 and the high number of variables n = 16. For this reason, we
discuss the degree and density of the polynomial representation of small-pSquare
in Section limit ourselves to linearization attacks [31] in Section while
we defer the description of interpolation [55], higher-order differential [61J59] and
Grobner bases based attacks to the full version of the paper [A7].

We mention that in all these cases, we tried to identify concrete strategies on
how to speed up the attacks by making use of related tweaks. In particular, we
propose concrete ways to use related tweaks for speeding up algebraic attacks
which, to the best of our knowledge, has not been thoroughly studied yet in the
open literatureﬂ Besides, the non-linear tweak scheduling algorithm of small-
pSquare is also aimed to frustrate such improved cryptanalysis attempts.

5.1 Differential Cryptanalysis

Given pairs of inputs with some fixed input differences, differential cryptanal-
ysis [I8I19] considers the probability distribution of the corresponding output
differences produced by the cryptographic primitive. Let A, Ao € F) be re-
spectively the input and the output differences through a permutation P over
. The Differential Probability (DP) of having a certain output difference Ao
given a particular input difference A; is equal to:

o e B | Pz + A1) = P(a) = Ao}|
p'(l

PI‘ObP(AI — Ao) =

5 Binary schemes like AES or SHA-3/Keccak have been shown vulnerable to statistical
attacks mainly, while algebraic attacks gain more popularity recently due to the
raising of symmetric schemes designed for applications as MPC, FHE, and ZK. Still,
symmetric schemes designed for such applications are not tweakable designs.
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In the case of iterated schemes, a cryptanalyst searches for ordered sequences
of differences over any number of rounds that are called differential character-
istics/trails. Assuming the independence of the rounds, the DP of a differential
trail is the product of the DPs of its one-round differences.

Differential property of F. As first step, we compute the maximum differential
probability of F. Since x +— 2 is a quadratic map, DPyax (7 +— 22) = p~1 ~ 277,
For our goal, we just need to compute the minimum number of active square
maps in F. We can check that it corresponds to 2. Indeed, let (xg, z1, 2, z3) —
(w0, 23 + 21,23 + 22,73 + x3) be the Feistel layer, and keep in mind that the
branch of the MDS matrix M is 5. Then:

— If no square map is active in the first Feistel layer of F (hence, x5 is the only
active component), then only one output is active at its output. After the
multiplication with the MDS matrix, all inputs of the second Feistel layer
are active, which implies the result. A similar result holds if only one square
map is active in the first Feistel layer, which corresponds to the case in which
only one among {xg, 1, z2} is active. In such a case, two outputs of the first
Feistel layer are active, which implies that at least 3 inputs of the second
Feistel layer are active and at least 3 square maps are active for each F;

— If two inputs are active, the best scenario for the attacker occurs when the
active inputs are either {zg, x5} or {z1,z3}. In this case, exactly one square
map is active in the first Feistel layer (due to the fact that z3 does not
activate any square map), and three outputs of the Feistel layer are active
(due to the fact that zg,z; and x5 are not consecutive). Since the matrix is
MDS, then at least two inputs are active for the second Feistel layer, which
implies that at least one square map is active in the second Feistel layer. As
a result, at least 2 square maps are active for each F;

— If 3 or 4 inputs are active, at least two square maps are active for each F.

Overall, it directly follows that DP . (z — F(z)) = p~2 ~ 2714,

Differential property of S. As shown in [83I28], at least four consecutive
rounds of Type-II generalized Feistel network are necessary to reach full diffusion
(i.e., N, = 4). Over 4 consecutive rounds, at least 3 functions F are active (as
visually illustrated in the full version [47]). As a result, by setting N, = 4, it
directly follows that DPax (2 + S(2)) < DPpax(z — S(z))? < p76 ~ 2742,
Number of steps for security. Finally, we compute the minimum number of
steps N for guaranteeing security. Due to clustering effect (that is, due to the
fact that several differential characteristics can be used together for setting up
the attack) and due to the possibility to exploit a Meet-in-the-Middle approach
for setting up the attack, we claim that the scheme is secure if every differential
characteristic has probability smaller than 272-5% ~ 27280 for an arbitrary factor
2.5[] where k = 112 = 7- 16 is our target security level. Moreover, we conjecture
that the attacker cannot skip more than 2 steps S by a simple partial key-
guessing, since one step S is sufficient for achieving full diffusion.

" We take inspiration on the AES-128, which has 10 = 2.5 - 4 rounds, where 4 is the
minimum number of rounds for preventing classical differential attacks.
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Case: T = 0. By simple computation, we have Ny > [280/42]+2=7+2 =9
where 2 steps S are added for preventing partial key-guessing strategies.

Case: 7 = 1. Following the argument proposed by LED’s designers in [51 Sect. 3]
and recalled in Sect. the attacker can choose related tweaks such that only
one out of two consecutive steps S is active. As a result, it is sufficient to double
the number of steps S obtained for 7 = 0 to guarantee security. That is, Ng >
2.7+ 2 = 16, where we again add 2 steps S for preventing partial key-guessing.

Case: 7 = 2. In this case, the attacker has more freedom in the choice of the
related tweaks. Still, we can adapt the previous security argument as follows.
Let us consider separately the next two cases: (i) both T(® and T are active
(hence, Ty ,; and T3 ; are both active for each ¢ > 0 due to the definition of the
tweak schedule), and (ii) only one among T® and T() is active (hence, only
one among Ty, and 717 ; is active for each ¢ > 0 due to the definition of the
tweak schedule). In the first case, the analysis proposed for 7 = 1 applies, which
implies that at least one among two consecutive steps S is active. In the second
case, w.l.o.g., we assume that 7 is active and TV is inactive. We introduce a
“super-step” S? := SoS as the application of two consecutive steps S. By working
as before, we can deduce at least one among two consecutive super-steps S? is
active. Moreover, if a super-step is active, then the two steps S that compose
it are active. Indeed, the fact that S? is active implies that Th,; introduces the
difference in the first S. Its output difference cannot be canceled by T ;, which
is inactive due to the tweak schedule and due to the assumption. Hence, both
steps of S? are active. The same result applies if TV is active and T is active.

This reasoning implies that Ny > 14 is a necessary condition for security. Yet,
we have to keep in mind that the attacker can potentially skip one super-step S?
at each side of the cipher by working with input (respectively, output) differences
in the plaintexts (resp., ciphertexts) that cancel out with the ones in the tweaks,
leading S? to be inactive. As a result, we require that Ny > 2-7 + 4 + 2 = 20,
where we again add 2 steps S for preventing partial key-guessing.

5.2 Degree and Density of the Polynomial Representation

In general, algebraic attacks try to take advantage of the “simple” algebraic de-
scription of a scheme for breaking it, where the simplicity can relate (among other
properties) to the low degree of the encryption/decryption function, the sparsity
of the polynomial representation of such functions, or a particular structure of
the algebraic system generated by the cipher. The main ingredient for preventing
these attacks is the minimal number of rounds such that the polynomial rep-
resentations of the cipher have a sufficient degree and too many monomials for
the attacks to apply with a complexity lower than 2%. In this section, we there-
fore study these two characteristics, pointing out that the encryption function of
small-pSquare with a fixed key and tweak could be analyzed as a mapping over
Fpi6 for p = 27 —1. Nevertheless, since all the operations of F are at the basis field
level (squaring in F,), the field we consider for the cryptanalyses is F,, and the
polynomials built by an adversary belong to F,[zo, ..., z15]/(z5—1,... 275 —1).
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Note that similar results hold in the context of related tweaks, for which the ad-
versary can consider the same polynomials but with more variables.

Growth of the degree. We first focus on the minimal degree that a polynomial
in this representation can have, and the number of different monomials that
appear in an algebraic system obtainable, after » rounds. Note that the degree
in one variable is at most p — 1, the total degree is then at most 16(p — 1),
and the total number of monomials is p'6. The degree of F is deg(F) = 4. More
precisely, it is 4 in three components and 2 in the last one. The degree of its
inverse is deg(F~1) = 82 = 26. Indeed, note that the inverse of the internal
function given by (yo,y1,y2,y3) = (o + 2%, 21 + 23,29 + 23, 23) is given by
(w0, 21,22, 23) = (Yo — (Y1 — (y2 —¥3)*)* 91 — (2 — ¥3)*, y2 — 43, y3)-

In both cases (F and F~!), we emphasize that one component of the internal
function of F and F~! has degree one only. Moreover, in the second case, we
emphasize that the degree is different for each output variable, and that only
one of them has actually maximum degree 8, and therefore 64 for F~1. It follows
that the degree of a step of 7 consecutive rounds S is deg(S) = deg(F)" = 227,
where we point out that half of the components have degree 1 at the end of the
first round due to the Feistel structure. Accordingly, at round r two blocks have
degree deg(F"~!) = 227=2. Therefore the minimal degree a polynomial can have
after r rounds is 22773 until it reaches the maximum degree. Since the degree
of the inverse of a Type-II Feistel scheme is equal to the degree of the Type-II
Feistel scheme itself, the same bound applies for r consecutive steps S~ 1.

Density of the polynomial representation. While the degree’s growth is
an important indicator in order to prevent algebraic attacks, another factor
that plays a crucial role is the density of the polynomial representation. Indeed,
various algebraic attacks depend on the number of monomials that appear in
the polynomials, which implies that a scheme that admits a sparse polynomial
is in general not secure against algebraic attacks even if it is of high degree.

Experimentally, we can verify the number of monomials we obtain in each
of the 16 polynomials of a round, but even with simpler versions with a prime
smaller than 127 it becomes too complex in practice after a few rounds. For
example, even for p = 3, we observed by practical tests that we already get
more than 2'6 different monomials in some of the polynomials at the end of the
third round. Since these experiments are quickly getting impractical, we decided
instead to determine the number of rounds for which we expect each polynomial
to be dense by considering the following approach. First, we determine r,,, defined
as the minimal number of rounds such that at least one complete monomial is
present in each one of the 16 polynomials. We denote as complete monomial one
monomial 2¢ = Hio x5 such that for each i € [0, 15] it holds that 0 < e; < p—1
(i.e., ¢ depends on all the variables). Then, we add the number of rounds such
that all possible degrees in one variable can be taken, in other words we add the
number of rounds sufficient to wrap over p (note that the degree in z; inside a
monomial is always between 0 and p — 1 since ¥ = z; over F,).

We next determine a bound on 7,,. First, due to the Type-II Feistel structure,
after 3 rounds not every input has an impact on the 16 outputs, which implies
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T > 3. Then, we get an upper bound on r,, based on our experiments (the
real value could be smaller, taking the upper bound is conservative). With p = 3
we obtain monomials depending on 10 variables in the polynomials in position
1, 2 and 3 and in positions 9, 10 and 11 by symmetry of the Type-II Feistel
structure. These monomials contain all the variables from xg to x7 and xg to
x15 respectively. Calling X and Y monomials of this shape, we get that at round
5 there are terms of shape X+Y in the polynomials in positions 0, 1, 2, 3, 8,
9, 10 and 11, therefore giving complete monomials after passing through F due
to the square operations. Since only half of the input goes through F at each
round, one more round is needed to obtain these complete monomials in each
position, therefore r,, < 7. When moving to p = 27 — 1 we can only observe
more monomials (since all the ones with a coefficient multiple of 127 rather than
3 are canceled). Combined with the fact that the degree is at least 227=3 as
shown before, we conclude that 5 extra rounds are sufficient to wrap around
p and reach any degree in one variable. This gives us a bound of 12 rounds
(equivalently, three steps S) to expect dense polynomials in the 16 positions.

5.3 Linearization Attack

Given a system of polynomial equations, one possible way to solve it is via the
linearization technique which works by turning it into a system of linear equa-
tions and adding new variables that replace all the monomials in the system
of degree larger than 1. The resulting linear system of equations can be solved
using linear algebra if there are sufficiently many equations. Consider a system
in 2 unknowns of degree limited by D, where the number of monomials N (D, x)
is given by N(D,z) = (Dgz) when D < p. The attack has a computational cost
of O(N (D, z)¥) operations (for 2 < w < 3), and a memory cost of O(N (D, x)?)
to store the linear equations. Depending on parameters’ choices, the hybrid ap-
proach which combines exhaustive search with this resolution may lead to a
reduced cost. Guessing | < x variables leads to a complexity of:

O(p'-ND,z—-1)) .

Case: 7 = 0 (no tweak). Since the key is composed of 16 Fyr_;-words, for any
l € [0,15] we computed that p' - N(D,z — 1) > 2112 occurs already for D = 69
(taking the conservative value of w = 2). Since the minimal degree follows 2273
as shown previously (where 22”72 > 27 — 1 for r > 5), and based on the density
analysis just given, we can conclude that 3 steps S (equivalently, 12 rounds) are
sufficient to prevent algebraic attacks based on linearization.

Case: 7 = 1 (related tweaks). The freedom of choosing the tweak(s) can be
exploited to cancel some monomials whose coefficients depend on the tweak(s)
or part of them. Similarly, the difference of two polynomials under related tweaks
can be exploited to cancel monomials whose coefficients are independent of the
tweaks. Moreover, the linear combinations of more polynomials under properly
chosen related tweaks can be exploited to cancel monomials whose coefficients
depend on the tweaks or part of them. In this last case, the attacker has to (i)
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set up a system of equations in which the linear combinations of the coefficients
of some monomials is set to zero, and (ii) solve it (e.g., via linearization or using
Grobner bases) to find the related tweaks that satisfy such conditions.

Obviously, this procedure is not free, since one has to solve equations in the
tweak variables that are dense and of high (e.g., maximum) degree. Moreover,
the non-linear tweak scheduling must be taken into account as well. Based on the
analysis just given (and on the results presented in the full version for attacks
based on Grébner bases [47]), it would be infeasible for the attacker to solve a
system of equations (in the tweaks instead of the plaintexts) that cover more than
12 rounds (or equivalently 3 steps) of the cipher once the tweak is fully absorbed
(where we remind that 12 is the minimum number of rounds for achieving full
diffusion in the interpolation polynomial). For this reason, we conjecture that
124+4-(7—1) = 84+4-7 extra rounds (or 247, extra steps, which means 3 or 4 for
7 € {1,2}) are sufficient for preventing related-tweak algebraic attacks. We note
that this conjecture does not have to be tight for the security of small-pSquare
to hold, since we need a larger number of extra steps to prevent related-tweak
statistical attacks (respectively, 9 and 12 for 7 € {1, 2}).

Note on Grobner Bases Attacks. We recall that Grobner bases based attacks
reduce to linearization attacks when (i) the attacker aims to solve equations
linking the plaintexts (and the tweaks) to the ciphertexts only, with the key
as only variable, and (ii) the attacker can collect enough data for linearizing
the system (i.e., the best scenario for the attacker). Hence, when analyzing the
security of our scheme against such attacks in the full version [47], we only
consider the case in which the system of equations is set up at round level.

6 Hardware Performance Evaluation of small-pSquare

In this section we evaluate the hardware cost and performance of the small-
pSquare instance in comparison to respective implementations of the SKINNY
lightweight tweakable block cipher [6]. Due to its simple and efficient design,
SKINNY has gained remarkable popularity in recent years, both in academia and
industry, and was selected as part of the ISO/IEC 18033-7:2022 standard for
tweakable block ciphers. It has been designed with efficient application of side-
channel countermeasures in mind, in particular masking, and is therefore ideally
suited for our comparison [6]. Naturally, the general design strategy as well as the
individual operations employed by the two ciphers (small-pSquare vs. SKINNY) are
vastly different. At first sight, comparing two primitives with more differences
than similarities may appear suboptimal to gain meaningful insights. However,
in order to achieve a high level of cost-efficiency, lightweight TBCs necessarily
need to be tailored to the amenities of their particular mathematical foundation.
Hence, the stark differences between these primitives are a direct manifestation
of their specialization to the finite fields they operate in. Only such a comparison
can answer the question which mathematical setting (e.g., binary field vs. prime
field masking) is preferable for constructing dedicated instances to maximize the
efficiency vs. security tradeoff of protected TBC implementations.



18 L. Grassi, L. Masure, P. Méaux, T. Moos, F.-X. Standaert

Table 1: Cost and performance of round-based unprotected SKINNY-128 and
small-pSquare hardware implementations evaluated in TSMC 65 nm technology
at typical operating conditions for 100 MHz and 250 MHz clock.

Cipher Block Size|Key Size|Tweak Size| Freq. |Crit. Path| Area Power | Latency
[MHz] [ns] [GE] [mW] |[cyc/enc]
0 1001250 | 1.877155| 2450.75| 0.3915 40
SKINNY 128 128 128 1001250 | 1.812617| 3396.00| 0.5613 48
256 100|250 | 1.905185| 4353.00| 0.7304 56
0 100 9.777720| 9684.75| 1.3547 36
112 100 9.970046| 10798.75| 1.5424 64
224 100 9.937350| 11989.50| 1.6745 84
small-pSquare 112 112
0 250 3.945602| 12407.75| 1.7942 36
112 250 3.971674| 14716.50| 2.1160 64
224 250 3.972123| 16034.00| 2.2392 84

small-pSquare has been designed to offer competitive performances to com-
mon binary lightweight block ciphers when masking is applied. Nevertheless, we
begin by comparing its critical path delay, area, power consumption (at 100 MHz
operation) and encryption latency to SKINNY-128 when both are implemented as
unmasked round-based hardware circuits in Table[I} All values are post-synthesis
results obtained using Synopsys Design Compiler Version 0-2018.06-SP4 as a
synthesis tool together with the TSMC 65nm standard cell library at typical
operating conditions for two different clock frequencies, 100 MHz and 250 MHz.
The results show that regardless of the tweak size, unmasked SKINNY-128 is sig-
nificantly more efficient in terms of critical path delay, area footprint and power
consumption when compared to unmasked small-pSquare. The encryption la-
tency, which directly corresponds to the number of rounds, is slightly smaller for
small-pSquare without tweak compared to SKINNY-128 without tweak. However,
for the tweakable variants it is larger in case of small-pSquare. We conclude that
when unprotected, and hence for implementation settings where physical attacks
are not a concern, small-pSquare is not fully competitive with binary lightweight
ciphers in hardware. Yet, as mentioned before, this was not the primary goal of
our design effort. Significantly better efficiency in unprotected hardware would
have commanded different design choices that, in part, directly oppose to effi-
ciency in masked representation.

We now focus on the more relevant comparison of secure higher-order masked
hardware circuits. We have chosen to compare the small-pSquare version with
7 = 1 with SKINNY-128-256 for 2 up to 4 shares (i.e., first- to third-order secure
designs). SKINNY-128-256 is the denotation of the SKINNY variant which receives
a 128-bit plaintext, 128-bit key and 128-bit tweak (i.e., a 256-bit tweakey) as
inputs and computes 48 cipher rounds for one encryption or decryption. We
recall that small-pSquare with 7 = 1 receives a 112-bit plaintext, 112-bit key
and 112-bit tweak as inputs and computes 64 cipher rounds for one encryption
or decryption. To put the difference of round numbers in perspective, remember
that small-pSquare is a Type-1I generalized Feistel design, i.e., each round updates
only half of the state. We will see in the next results that with all other factors
being equal, masked small-pSquare implementations generally require fewer clock
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Table 2: Cost and performance comparison of masked SKINNY-128-256 and
small-pSquare (7 = 1) hardware implementations evaluated in TSMC 65 nm tech-
nology at typical operating conditions for 100 MHz and 250 MHz clock.

Cipher Ref. |Par.| Frequ. | d |Pip.|Crit. Path Area| Power| Latency| Random
[MHz] [ns] [GE] [mW]| [cyc/enc]| [bit/cyc]
2 1.519177| 19026.75| 2.8547 432/1 128
3 1.763878| 38828.75| 6.2545 432/1 384
4 1.839592| 65502.00| 8.9225 432/1 768

128 ' 100|250
2| v 1.566238| 58475.50| 13.6144 432/9 128
3|V 1.801272| 94611.50| 21.6698 432/9 384
s 4| v 1.882408|137625.50| 30.8983 432/9 768
2 1.743940| 9274.50| 1.0755 2160/1 32
SKINNY-128-256 3 1.903482| 15999.00| 2.0608| 2160/1 96
4 1.823993| 24442.00| 8.2697| 2160/1 192

32 ' 100|250
2| v 1.885406| 39016.25| 9.1220 2160/9 32
3|V 1.943746| 57757.00| 13.4186 2160/9 96
4| v 1.909085| 78243.00| 17.9452 2160/9 192
2 3.715469| 18035.75| 2.5276 288/1 32
[85] | 128 | 100/250 | 3 3.232731| 28740.75| 4.1347|  288/1 96
4 3.849724| 41136.75| 5.9918 288/1 192
2 9.845555| 21714.50| 2.9370 128/1 84
3 9.854049| 41982.50| 5.6533 128/1 210
4 9.852280| 62587.75| 8.4822 128/1 504
100 2| v 9.852014| 30730.25| 4.4491 128/2 168
3|V 9.854022| 65273.00| 9.2764 128/2 420
112 4| v 9.853921|101168.00| 14.3426 128/2 1008
2 3.857306| 29438.50| 3.7809 128/1 84
3 3.861372| 52073.50| 6.9574 128/1 210
4 3.907730| 78441.00| 10.5274 128/1 504

2
o0 2| v 3.852503| 40414.75| 5.5467 128/2 168
3| v 3.857475| 77556.50| 11.0357 128/2 420
4| v | 3.859051|121589.25| 17.4111 128/2 1008
small-pSquare  [this]
2 9.847473| 15332.25| 1.9296 256/1 42
3 9.851035| 27215.75| 3.4077 256/1 105
4 9.852068| 39237.50| 4.9897 256/1 252
1

00 2| v | 9.848985| 20735.75| 2.8794 256/2 84
3| v | 9.941982| 39958.75| b5.5274 256/2 210
56 4| v | 9.851659| 59404.75| 8.2398 256/2 504
2 3.855009| 20471.00| 2.4330 256/1 42
3 3.858206| 34485.25| 4.2527 256/1 105
4 3.859086| 48511.25| 6.1763 256/1 252
250 2| v | 3.858980| 26823.25| 3.5092 256/2 84
3| v 3.858999| 48147.50| 6.5390 256/2 210
4| v 3.857775| 72245.00| 9.9639 256/2 504

Cipher = Evaluation target, either SKINNY-128-256 or small-pSquare (7 = 1).

Ref. = Reference, i.e., related publication, AGEMA is cited for automatically generated circuits.
Par. = Parallelism, i.e., size of the state that is operated on in parallel measured in bits.
Freq. = Synthesis frequency measured in Megahertz (MHz).

d = Number of shares, resulting in security order d — 1.

Pip. = Design is pipelined (v) or not ().

Crit. Path = Critical path of the synthesized circuit measured in nanoseconds (ns).
Area = Area consumption of the synthesized circuit measured in gate equivalents (GE).
Power = Power consumption of the synthesized circuit measured in milliwatts (mW).
Latency = Latency of the synthesized circuit measured in clock cycles per encryption(s).
Random = Fresh randomness consumption measured in bits per clock cycle.

cycles per encryption (sometimes significantly) than masked SKINNY-128-256
implementations, despite the larger number of rounds of the former design.
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We have scanned the literature for publicly available securely masked SKINNY-
128-256 implementations, with moderate success. The only higher-order masked
hardware implementations of tweakable SKINNY-128 we could find have been
published in conjunction with [8578] as part of a study of the leakage resis-
tance of Romulus and other Authenticated Encryption with Associated Data
(AEAD) schemes that made it into the finals of NIST’s Lightweight Crypto
Competition. The concrete implementation is hence of the SKINNY-128-384+
variant which is used in Romulus and publicly available on GitHubH Please
note that the authors have not verified its security properties experimentally.
However, it is based on the trivially composable HPC2 masking scheme [26]
which eases the extension of gadget security to full-implementation security. We
have modified this implementation slightly to make it compute SKINNY-128-256
instead of SKINNY-128-384+, which commanded small changes to the round
numbers and tweak schedule. Since this concrete implementation uses a specific
implementation of the SKINNY 8-bit S-box that is tailored towards a certain set
of optimization goals, we also wanted to include other, more general, masked
SKINNY-128 implementations in our comparison. To this end we have employed
the Automated Generation of Masked Hardware (AGEMA) tool published at
TCHES 2022 [58] which is able to turn unprotected hardware implementations
of cryptographic primitives automatically into securely masked equivalents. We
have utilized the tool to autonomously generate masked implementations of
SKINNY-128-256 from the source code for unprotected hardware circuits pro-
vided by the SKINNY authors on its website as source materialﬂ In particular,
we translated both, round-based and 32-bit serialized implementations into their
masked equivalents based on the HPC2 masking scheme using the Naive pro-
cessing method (see [58]), as it led to the most suitable results for a comparison.
We further generated both pipelined and non-pipelined masked circuits. Given
this collection of securely masked SKINNY-128-256 circuits we are now equipped
for an in-depth cost and performance comparison to our prime-field TBC.

Analogously to the selected implementations of SKINNY, we created round-
based and half-round-based masked hardware circuits of small-pSquare. While
these implementations operate on the full state (112 bits) and half the state (56
bits) in parallel, respectively, non-linear operations are only applied to 56 and 28
bits in parallel respectively due to the Feistel structure. Hence, the half-round-
based implementations compute only one F-function on a 28-bit input at a time,
resulting in a similar serialization level (28 vs. 32) compared to the SKINNY equiv-
alent. The circuits are based on the secure and composable prime-field squaring
gadgets introduced in [27]. In fact, we even optimized the 4-share gadget in a way
that it only needs a single register stage, using similar optimization strategies as
for the 2-share and 3-share case presented by the authors of [27]. The pseudo-
code for the gadget is included in the full version of this paper [47]. The resulting
comparison is presented in Table[2] All results are based on post-synthesis esti-
mations obtained using Synopsys Design Compiler and TSMC 65 nm technology

8 https://github.com/uclcrypto/aead_modes_leveled_hw
9 https://sites.google.com/site/skinnycipher/implementation


https://github.com/uclcrypto/aead_modes_leveled_hw
https://sites.google.com/site/skinnycipher/implementation

Generalized Feistel Ciphers for Efficient Prime Field Masking 21

at typical operating conditions for two different frequencies, 100 MHz and 250
MHz. The resulting figures for the SKINNY-128-256 circuits are identical for
both frequencies due to the short critical path length. The full version of this
paper additionally considers the more extreme cases of 500 MHz and 1000 MHz
operation [47]@ Based on this collection of cost and performance results, we
conclude that small-pSquare is indeed able to compete with SKINNY-128-256
when masked in hardware, especially at lower frequencies. The automatically
generated hardware circuits of SKINNY need a rather large amount of cycles per
round (regardless of the frequency) and are costly when pipelined. At the target
frequencies considered in the table (< 250 MHz) SKINNY-128-256 is only consis-
tently cheaper in terms of area when non-pipelined serialized implementations
are compared. Yet, this advantage in area footprint comes at a steep price, as
the encryption latency is larger by a considerable factor. Overall, considering
the area/power consumption and the latency together, small-pSquare often ap-
pears preferable. This changes when very high operating frequencies are needed.
Then SKINNY becomes preferable, as shown in the full version [47]. In summary,
our results show that small-pSquare is indeed capable of providing competitive
cost and performance results in the envisioned application settings, and even
outperforms its competitor consistently when the frequency is sufficiently low.

Decryption. Our comparison focuses on encryption-only circuits. However, adding
capability for decryption is trivial for small-pSquare due to the Feistel structure.

The additional cost for multiplexing between addition and subtraction of F-

function results for the encryption and decryption process falls in the range of a

few percent (depending on masking order and parallelization). Adding decryp-

tion capability to the SKINNY circuits typically requires twice the area.

Comparison to AES-prime. We note that small-pSquare is also significantly more
efficient in hardware compared to AES-prime which has been introduced at Euro-
crypt 2023 as the first example of a dedicated cipher for prime-field masking [67].
It shares the same block and key size as small-pSquare, but is not tweakable. Com-
pared to AES-prime our unmasked small-pSquare with 7 = 0 is at least 3 times
smaller. More importantly, masked small-pSquare with 7 = 1 is on average (over
the number of shares) 5 times smaller compared to masked AES-prime despite
the additional tweak input [67]. This implies that masked small-pSquare with
7 = 0 requires a more than 5 times smaller area footprint while also executing
in fewer clock cycles under the same frequency, constituting a very notable im-
provement over the state of the art. In addition, we recall that all variants of
small-pSquare enable efficient decryption, while AES-prime does not.

Area and power consumption. It is clear that the comparison of the area and
power consumption in Table [2|is affected by the different block, key and tweak

10 More “extreme”, because cryptographic co-processors manufactured in 65nm tech-
nology are rarely clocked at such high frequencies. This is evident for example
in research ASICs manufactured in such technology nodes, as reported in http:
//asic.ethz.ch/technologies/65.html. Furthermore, the vast majority of com-
mon criteria certified co-processors protected against side-channel attacks do not ex-
ceed 200-300 MHz operation (https://www.commoncriteriaportal.org/products).
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sizes of the analyzed primitives. Since all those size parameters are smaller for
the chosen prime-field design, this fact may tilt the comparison of the imple-
mentation size to small-pSquare’s advantage. However, we argue that even if
normalizing all area and power figures related to small-pSquare artificially by, for
example, multiplying them with the corresponding size difference factor, namely
% = %, our conclusions would not change drastically. In order to avoid any con-
fusion we have not applied any artificial normalization of our results. We would
also like to mention that for cases where 112 bits of security are insufficient,
increasing the security level of small-pSquare at low additional cost is possible

using the trick employed by the PRINCE block cipher with whitening keys [22].

Latency vs. frequency. small-pSquare naturally allows to trade latency in cycles
for frequency in Megahertz and vice versa. The considered masked SKINNY-128-
256 implementations offer less flexibility. They always have a very short critical
path but require a larger number of cycles due to the type of masked gadgets
that are used. In fact, bit-wise masking, where each binary two-input non-linear
gate (e.g., AND, OR, NAND, NOR) is individually replaced by a masked gadget
equivalent, enables high frequency operation but requires many register stages
to uphold masking security. This is because any secure masked hardware gadget
computing a non-linear operation requires at least one register stage (attempts
to improve this are usually based on additional specialized hardware assump-
tions [75J70]). Introducing a register stage for each atomic bit-level gate entails
a high overhead in latency of the implementation, but also in area. While this
makes masked SKINNY-128-256 well-suited for high frequency operation, it lim-
its its performance in lower frequency and low-latency applications.

Mild additional constraints. We note that small-pSquare comes with a few ad-
ditional constraints due to the fact that it operates in a prime field while data
is usually encoded in a binary manner. It is however pretty simple to convert
a vector of prime field elements into a sequence of bits, by just viewing it as a
representation of an integer in basis p. For small-pSquare, the maximum value
is worth 12716 — 1 which can represent 111-bit values (yielding a one-bit loss
in the conversion). Similarly, masking small-pSquare requires to generate uni-
formly random prime numbers. Rejection sampling is a viable method (with
probability 1/127 to reject a value). Using a PRNG that natively operates in
F, is an alternative. Eventually, small-pSquare would be best integrated in a
leakage-resistant mode of operation, which should not raise specific problems
since TBC-based constructions like [9] or [78] are field-agnostic. Overall, none of
these minor caveats is expected to bring significant overheads.

7 Side-Channel Security Assessment of small-pSquare

Finally, we evaluate the security of our masked implementations. In particu-
lar, we experimentally assess and compare the side-channel resistance of masked
small-pSquare (7 = 1) and SKINNY-128-256 implementations by measuring their
power consumption on an FPGA device and trying to infer the secret key from
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Table 3: Comparative side-channel evaluation of pipelined masked
SKINNY-128-256 and small-pSquare hardware implementations.

Cipher ‘ Par. CPR‘ d ‘mean SNR‘ median SNR|TVLA det. compl.|SASCA compl.
2 0.0023 0.0021 71000 25000
1281 9 |3 0.0015 0.0019 811000 362000
4 0.0013 0.0010 57000000 29832000
SKINNY-128-256
2 0.0064 0.0048 52000 6000
32| 45 |3 0.0026 0.0028 680000 157 000
4 0.0020 0.0016 48 000 000 17169000
2 0.0021 0.0019 321 000 213000
112 2 |3 0.0032 0.0013 8040000 4002000
4 0.0016 0.0011 > 100000 000| > 100000000
small-pSquare
2 0.0073 0.0031 238000 45000
56 | 4 |3 0.0030 0.0025 7040 000 1754000
4 0.0018 0.0020 > 100000 000| > 100000000

Cipher = Evaluation target, either SKINNY-128-256 or small-pSquare (7 = 1).

Par. = Parallelism, i.e., size of the state that is operated on in parallel measured in bits.
CPR = Cycles per round, i.e., latency of one round function computation measured in cycles.
d = Number of shares, resulting in security order d — 1.

mean SNR = Mean maximum SNR of all S-box/Squaring input shares in the first round.
median SNR = Median maximum SNR of all S-box/Squaring input shares in the first round.
TVLA det. compl. = Minimum number of traces to surpass the TVLA detection threshold.
SASCA compl. = Minimum number of traces to achieve key rank 1 in a SASCA key recovery.

their side-channel leakage. We focus on pipelined implementations of small-
pSquare and SKINNY-128-256 for 2, 3 and 4 shares. The serialized circuits con-
stitute a scenario with lower noise, while the parallel ones help to show the
differences at slightly higher noise levels, although their side-channel Signal-to-
Noise Ratios (SNRs) are not drastically different. The full version of this paper
additionally contains the evaluation results for the small-pSquare versions with
extra register stages to enable larger maximum frequencies [47].

Setup. For our experiments we use a SAKURA-G FPGA board which houses
two Spartan-6 FPGAs serving as controller and device under test, respectively.
All designs are operated at 6 MHz clock frequency (for low noise) and their power
consumption is measured using a PicoScope 5244D digital sampling oscilloscope
at 250 MS/s sampling rate with 12-bit vertical resolution through a Tektronix
CT-1 current probe (bandwidth of up to 1 GHz) placed in the power supply path
of the target FPGA. Xilinx ISE Version 14.7 is used to synthesize the circuits,
with default parameters except the ~keep_hierarchy attribute set to yes.
TableBlsummarizes the evaluation results collected for the 12 different masked
implementations, 6 x SKINNY-128-256 and 6 x small-pSquare. It is apparent
from the mean and median side-channel SNRs computed over all first-round
8-bit S-box (SKINNY-128-256) input shares or 7-bit Squaring (small-pSquare)
input shares, that the quality of observations an adversary can make of individ-
ual words processed in the circuits is quite similar in both cases (binary-field
or prime-field cipher). Thus, the noise levels are not expected to significantly
impact the following investigation. We have plotted one set of evaluation results
in Figure |4 for the concrete example of serialized pipelined implementations
with 3 shares. For all 2-, 3- and 4-share implementations respectively, we have
first measured 1 million, 10 million and 100 million traces, in a randomly inter-
leaved sequence of measurements for fixed and for random inputs, according to
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Figure4: Exemplary SCA results of serialized second-order masked
SKINNY-128-256 (left) and small-pSquare (right) hardware implementa-
tions. From top to bottom: Sample traces, SNRs (1M traces), Fixed-vs-random
t-tests (10M traces), Profiled SASCA (1M profiling, 10M attack traces).

the Test Vector Leakage Assessment (TVLA) methodology [(7]. The resulting
non-specific t-test results are illustrated in the third row of Figure [4l The imple-
mentations satisfy the expected statistical security order in the experiments, as
the smallest moment where leakage is detected is equal to the number of shares.
The same holds for all evaluated circuits in Table [3] As a next step we per-
formed exemplary key recovery attacks on the most leaking (highest SNR) 8-bit
or 7-bit word respectively of the state. In order to extract the most information
from the traces and reduce the effective noise level we have employed a profiled
horizontal Soft-Analytical Side-Channel Attack (SASCA) [86]. In a first step
all relevant intermediate values are profiled over multiple clock cycles to obtain
multivariate templates. Next, a Linear Discriminant Analysis (LDA) is used to
perform a linear dimensionality reduction which maximizes class separation on
the profiling traces (always 1M) [81]. Finally, on the distinct attack trace set,
likelihoods for all intermediate values and corresponding templates are collected
separately, before a discrete probability distribution of the secret value is de-
rived using belief propagation inside a SASCA tree graph that contains multiple
intermediate computation stages of the masked S-box or squaring. These proce-
dures are readily implemented in the publicly available SCALib library [25]. We
then estimate the average rank of the correct key (over 1000 iterations) with
the probabilities obtained from all the attack traces. The results of that proce-
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dure plotted over the number of attack traces are shown in the bottom row of
Figure[d] In both the TVLA and the SASCA results it is apparent that, despite
similar SNR values, successful leakage detection and key recovery require con-
sistently significantly more traces (higher data complexity) on the small-pSquare
compared to the SKINNY circuits, regardless of the concrete implementation cho-
sen. This advantage of prime-field masking can be attributed to the “algebraic
incompatibility” between physical leakage and recombination function to com-
pute the secret from its shares. It can be observed that in case of attacks on 3-
and 4-share implementations the advantage of small-pSquare is around or above
one order of magnitude (slightly less in case of 2 shares). Furthermore no leakage
detection or sophisticated key recovery attack succeeded on any of the 4-share
implementations of small-pSquare using 100 million traces. Despite their empir-
ical nature, we believe these results clearly emphasize the interest of efficient
TBCs dedicated for prime-field masking based on established design principles
(e.g., Feistel structures) while also tailoring the design to specific advantages
that a given mathematical structure can lead to (e.g., using squaring as source
of non-linearity in prime fields to exploit their efficient masked gadgets).

8 Summary and Open Problems

In this paper, we proposed both the FPM family of ciphers that leverages a
generalized Feistel structure for prime masking and easy integration in leakage-
resistant modes of operation, and the small-pSquare instance that is tailored for
hardware implementations (due to its small prime) and exploits recent advances
for masked squaring gadgets. Combining a hardware performance evaluation
with an initial side-channel security assessment allows us to put forward the in-
terest of this approach. small-pSquare protected with prime masking shows sig-
nificantly improved (side-channel) security vs. performance tradeoffs compared
to SKINNY protected with Boolean masking. Besides their concrete interest, we
believe our investigations uncover new design principles for side-channel resistant
implementations, leading to new challenges for further research.

Starting from more specific questions, the mathematical and physical secu-
rity evaluation of small-pSquare is, as usual for new ciphers, a natural direction
for deeper analyzes. Given the breadth of the FPM family, investigating other
instances would be interesting as well. For example, a mid-pSquare instance with
p = 231 — 1 would be particularly well-suited for software implementations for
which masking is known to be difficult to implement due to a lack of noise [5l24].
Such an instance could for example be based on the high-level structure depicted
in the left part of Figure 2] combined with the candidate F function given in Fig-
ure [5| For modes of operation where having efficient inverses is not critical, it
could also be possible to replace the generalized Feistel structure of Section [2.2
by an SPN one. More generally, the use of prime masking raises important theo-
retical questions regarding security proofs. For example, while the seed results of
Dziembowski et al. provide a rationale for prime masking [41], the understand-
ing of this approach is still far from the one of Boolean masking. Typical open
problems in this respect are to improve the tightness of the security proofs and
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Figure 5: Candidate F-function for a mid-pSquare instance.

to better formalize the intuition of “algebraic incompatibility” that makes prime
computations less sensitive to a lack of noise than Boolean masking.

The source code for all our small-pSquare implementations is publicly avail-
able here: https://github.com/uclcrypto/small-pSquare
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