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Abstract. The unprotected implementations of Kyber and Dilithium

have recently been shown to offer a variety of side-channel attack paths.
These attacks have in turn triggered the investigation of secure and effi-
cient masked implementations. In this paper, we observe that the design
and evaluation of such masked implementations come with new chal-
lenges, due to the manipulation of small and non-uniform secrets that is
common in post-quantum encryption algorithms, which may hinder their
good understanding. On the one hand, we show that using the Signal-
to-Noise Ratio (SNR) per share to select Points-of-Interest (POIs) in
leakage traces, as it is common in symmetric cryptography, can lead to
confusing outcomes where leakage samples that correspond to the ma-
nipulation of another share than the targeted one are detected. On the
other hand, we show that the arithmetic encoding of small and non-
uniform secrets leads to representation-dependencies so that summing
or subtracting shares leads to different amounts of information leakage.
We apply these observations to Kyber and show that they essentially
vanish when increasing the number of shares. Incidentally, we also dis-
cuss the attack strategies to recover small and non-uniform secrets with
side-channel attacks efficiently. We hope these observations can help im-
plementers and evaluators to better interpret their security claims.

1 Introduction

The implementation of post-quantum cryptographic algorithms with security
guarantees against side-channel attacks is known to be challenging. Focusing
on recently selected standards, powerful attacks against Crystals-Kyber [56]
have been put forward in an already long sequence of works, for example in-
cluding [53,47,60,62,51,59], which then motivated the investigations of protected
implementations [9,2,10,14]; similar efforts exist for Crystals-Dilithium [38],
both on the attack side [52,37,43,7] and on the protection side [46,1,15].

The main countermeasure used in these protected implementations is mask-
ing [27,13]. It allows building on a broad literature primarily developed for sym-
metric cryptography, which clarified the theoretical guarantees that masking
offers [33,50,20,21] and the various challenges for these guarantees to be ob-
served in practice [42,48,16,3,23]. Yet, and despite conceptual similarity, mask-
ing post-quantum cryptographic algorithms also comes with specificities. One of
them, already covered in the aforementioned references, is the requirement to
mix Boolean encodings and prime encodings. Negatively, this implies expensive
conversion algorithms, a topic that was itself the focus of a long sequence of
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works (e.g., see [17,26] for early results and [18,8,6,19] for more recent ones).
Positively, arithmetic masking in prime fields has recently been shown to offer a
better tolerance to low-noise leakages, due to its reduced “algebraic compatibil-
ity” with the typical (linear) leakage models observed in practice [45].

In this paper, we are concerned with another difference, namely the fact that
post-quantum algorithms require the manipulation of small and non-uniform se-
crets. Despite looking innocuous at first sight (e.g., it does not affect the security
order of the countermeasure), this implies that a number of convenient intuitions
that hold when masking symmetric algorithms like the AES do not apply to post-
quantum algorithms, which we summarize in two cautionary notes.

The first observation relates to the selection of Points-of-Interest (POIs) in
the leakage traces, which is an important step toward mounting powerful profiled
attacks [25,22]. The Signal-to-Noise ratio is among the most popular tools for
this purpose [39], since it allows spotting all the (bijectively connected) POIs
that can be characterized with a single template. However, we show that the
natural approach of estimating the SNR per share of a masked implementation
can lead to confusion in the case of a small non-uniform secret. Namely, if such
a small secret is shared in two pieces, it inevitably implies that the leakage of
the shares is (mathematically) correlated. As a result, the SNR estimated for
the first share will also lead to detect samples that depend on the second share,
which may degrade the quality of the templates built for each share.

The second observation relates to the increased representation-dependency of
post-quantum arithmetic encodings compared to Boolean masking. In the case of
Boolean masking which is most frequently used in symmetric cryptography, there
is a single way to write the additive encoding. But for arithmetic encodings, one
can choose to sum or subtract shares, which creates a representation-dependency
of the leakage informativeness computed with the mutual information [58]. This
representation-dependency is then amplified by the small size of the secret, which
implies that only selected distributions can be observed by the adversary.

As part of our investigations we also discuss the (e.g., maximum likelihood
and maximum a posteriori) attack strategies that can be used to efficiently re-
cover small and non-uniform secrets with profiled side-channel attacks.

We illustrate these notes using both simulated leakages and actual measure-
ments, show that they hold for Simple Power Analysis (SPA) and Differential
Power Analysis (DPA), and discuss their application to Kyber.1 We also rela-
tivise their impact by showing that they essentially vanish when the number of
shares used in the encodings increases. Overall, we nevertheless believe these ob-
servations are important to highlight the specificities of post-quantum arithmetic
encodings. They have a direct impact on first-order masking that remains popu-
lar due to the reduced overheads it leads to. For example, [31,34] are specialized
to first-order and [9,5,24] are only evaluated for first-order. They also convey the
message that post-quantum cryptography comes with side-channel evaluation
challenges that differ from the ones observed in symmetric cryptography.

1 In the SPA case, the leakage informativeness depends on the few inputs that the
adversary can observe, so the representation-dependency is less unique [41].
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2 Background

2.1 Kyber algebraic structure

Kyber is an IND-CCA2-secure key-encapsulation mechanism that allows the es-
tablishing of a shared secret key between two communicating parties. Its security
is based on the hardness of solving the Learning-With-Errors problem in Mod-
ule lattices (MLWE problem). In short, the MLWE problem is to distinguish
between the uniform samples (ai, bi) from Rk

q × Rq and samples (ai, bi), where

ai is uniformly distributed from Rk
q and bi = aTi s + ei, and where the secret s

and the noise ei follow special distributions. The polynomial ring is defined to
be Rq = Zq[X]/(Xn + 1) consisting of polynomials of the form

f = f0 + f1X + · · ·+ fnX
n, (1)

where fi ∈ Zq for all j. The noise polynomials in Kyber are sampled from the
Centered Binomial Distribution (CBD). The CBD is parameterized by an integer
η ∈ {2, 3}. To sample a polynomial e, from CBD (Bη) requires to sample each
of its coefficients ej independently from Bη, with Bη defined as

(a1, a2, . . . , aη, b1, b2, . . . , bη)
$← {0, 1}2η,

ej =

η∑
i=1

(ai − bi).
(2)

Kyber comes with different sets of parameters, which depend on the target secu-
rity level (see Table 1 in [56]). For the sake of simplicity, we fixed the parameters
in this note to Kyber512, where n = 256, q = 3329, η = 2, and k = 1.

Notations For the rest of the note we use, calligraphic letters (e.g., X ) for sets,
capital letters (e.g., X) for random variables, small letters (e.g., x) for realiza-
tions of the random variable. Bold capital and bold small letters (e.g., X, x)
further denote random vectors and their realizations, respectively

We use the notation X
$← X for X being sampled uniformly at random from

the set X and X ← Bη if it follows the CBD distribution with parameter η. Due
to our choice of parameters, the set of secrets is fixed to

S = {0, 1,−1, 2,−2}, (3)

of which the corresponding prior distribution is given by

pS = [0.325, 0.25, 0.25, 0.0625, 0.0625]. (4)

2.2 Boolean and arithmetic masking

In a dth-order masked implementation, each intermediate variable is split into
d+ 1 shares, leading to so-called encodings that we define next [50].
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Definition 1 (d-share encoding). Let X be a set in a group (G, ∗) where ∗ is
some group operation, and let d be a positive integer. The d-share encoding of
X ∈ X is a mapping

Encg,∗d : X → Gd :

X 7→ (X1, . . . , Xd)

such that (Xi)
d−1
i=1

$← G, X = g(X1, X2, . . . , Xd) and g acts on Xi through ∗.

In this definition, the g function dictates how shares are combined at the be-
ginning (resp., unmasked at the end) of a sensitive operation. For example, in a
symmetric cipher like the AES Rijndael, where the underlying group is Z28 , the
Boolean additive 2-share encoding is defined as

Encg,⊕d (X) = (X1, X2),

where X1
$← Z28 and X = g(X1, X2) = X1 ⊕X2 (i.e., X2 = X ⊕X1).

The arithmetic 2-share encoding in an additive group (G,+) can be defined
similarly as Encgi,+d (X) = (X1, X2), with as only difference that it can be ex-
pressed in two different ways, with

X = g1(X1, X2) = X1 +X2 or X = g2(X1, X2) = X2 −X1.

For the rest of the note, we focus on such additive masking, omit the group
operation on the superscript, and use the simplified notations

Encsumd for g(X1, X2, . . . , Xd) =

d∑
i=1

Xi, i.e., Xsum
d = X −

d−1∑
i=1

Xi,

Encdiffd for g(X1, X2, . . . , Xd) = Xd −
d−1∑
i=1

Xi, i.e., Xdiff
d = X +

d−1∑
i=1

Xi.

Lastly, the noise polynomials in Kyber consist of n = 256 coefficients that are
independently sampled from Bη and are masked independently. Without losing
generality, we consider the masking of one coefficient of such polynomials.

2.3 POI detection with the SNR

Side-channel attacks exploit leakage traces L = {li}qi=1 that correspond to data
X = {xi}qi=1. Each trace may contain hundreds of thousands of samples, i.e.,
l = {lt}Nt=0 with largeN values, where only a few of them are actually informative
for the attack in the sense that they directly depend on the target variable X. As
a result, selecting such POIs usually comes as a preliminary step in side-channel
attacks. A popular statistical tool for this purpose is the side-channel SNR [40].
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Assuming standard modeling of the leakage traces such that every sample is the
sum of a deterministic δt(x) part and a noise part nt [55], namely

lxt = δt(x) + nt, (5)

the side-channel SNR can be directly estimated as

SNRt =
v̂arx[Ê[l

x
t ]]

Êx[v̂ar[lxt ]]
· (6)

Next, the adversary can work on a subtrace made of samples with sufficient SNR
rather than working on the full trace, leading to better efficiency.

2.4 Profiled attacks

From profiling samples (L, X), a profiled distinguisher estimates a model of the
conditional Probability Mass Function (PMF) p̂(x|l), from which a maximum a
posteriori attack can be launched, with the most likely secret chosen as

x∗ = argmax
x∈X

p̂(x|l).

In the following, we estimate such a model using Fisher’s Linear Discriminant
Analysis (LDA), which can be viewed as an improvement of Chari et all.’s sem-
inal template attacks [13,57]. We then exploit the information extracted from
individual shares using a Soft-Analytical Side-channel Attack (SASCA), which
allows us to efficiently recover information on the target secret [61,29]. We will
denote such a combination as LDAxSASCA for the rest of the note.

Linear Discriminant Analysis The task of modeling p̂(x|l) is well-known
to suffer the curse of dimensionality [36]. So to further reduce the number of
dimensions after POI selection, LDA projects the original data to a subspace
of lower dimension which maximizes the inter-class variance and minimizes the
intra-class variance. LDA is known to be optimal in terms of minimizing the
Bayes error for binary classification under normality and homoscedasticity as-
sumptions [30]. The LDA directions w are the solution of the maximization

problem of the objective wTSBw
wTSWw

, where SB and SW are the inter-class scatter
and intra-class scatter matrices, respectively. They can be estimated as

ŜB =

nc∑
c=1

Nc(µ̂c − µ̂)(µ̂c − µ̂)T ,

ŜW =

nc∑
c=1

N∑
i=1

(lci − µ̂c)(l
c
i − µ̂c)

T ,

where µ̂c = 1
Nc

∑Nc

i=1 l
c
i is the empirical mean of the traces corresponding to x

in class c, and, µ̂ = 1
N

∑nc

c=1 µ̂cNc is the total mean of all classes.
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Finding w is usually reduced to the problem of finding the eigenvectors of the
matrix Ŝ−1

W ŜB and several eigenvectors that correspond to the highest eigenval-
ues are composed into a projection matrix W. The original data is then trans-
formed to lower dimension space (i.e., llda = Wl). The leakage traces after LDA
projection are finally used to model the leakage Probability Density Function
(PDF) as multivariate Gaussian templates, leading to the conditional PDF

f̂(l|x) = 1√
(2π)k det Σ̂

exp

(
−1

2
(l− ν̂c)

T Σ̂−1(l− ν̂c)

)
, (7)

where ν̂c is the empirical mean of the projected traces corresponding to x in
class c and the covariance matrix Σ̂ (also estimated from projected traces) is

pooled from the covariance matrices of all classes Σ̂c as

Σ̂ =
1

N

nc∑
c=1

NcΣ̂c.

Soft-Analytical Side-channel Attacks. SASCAs were introduced in [61]
and have recently gained popularity in analyzing masked implementations of
symmetric ciphers [12], to perform single-trace attacks against Keccak imple-
mentations [35] or to target the Number Theoretic Transform (NTT) used in
lattice-based cryptosystems [49]. In general, a SASCA combines a description of
a leaking implementation thanks to a factor graph with a decoding, for example
using the Belief Propagation (BP) algorithm. While initially introduced as a way
to exploit the deeper leakage samples of block cipher implementations (i.e., where
the intermediate computations depend on too many key bits to be targeted via
a divide-and-conquer approach), it also turns out to be very handy to analyze
the leakage of masked implementations at limited computational cost [28].

Precisely, in the context of this paper, we want to estimate the leakage PDF
f̂(l|s) of a d-share encoding Encd(S) = (X1, . . . , Xd), which corresponds to the
following (Gaussian) mixture distribution

f̂(l|s) =
∑

x1,...,xd−1∈ZQ

f̂(l|x1) · f̂(l|x2) · . . . · f̂(l|xd) · p(x1) · p(x2) · . . . · p(xd−1),

without exhaustively summing over all the shares. The latter can be done effi-
ciently by using Proposition 1 in [44] and computing

f̂(l|s) = f̂(l|x1) ◦ f̂(l|x2) ◦ . . . f̂(l|xd) , (8)

where ◦ denotes the convolution operation. Performing these convolutions can
be seen as a SASCA on a tree-like graph, and the BP algorithm is known to
provide an exact solution in this case. We use the optimized library SCALib for
this purpose, adjusted to fit with the special distribution of the secret.2 Based
on the obtained PDF, we finally compute the PMF p̂(s|l) thanks to Bayes.

2 https://scalib.readthedocs.io/en/stable/

https://scalib.readthedocs.io/en/stable/
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2.5 Evaluation metrics

We will use information theoretic metrics (namely, the mutual & perceived in-
formation) in order to assess security against DPA (since they provide a tight
quantification of such attacks’ data complexities) and security metrics (namely
the guessing entropy) in order to assess security against SPA.

Mutual Information and Perceived Information Information theoretic
metrics are common tools to evaluate the worst-case security against DPA [58].
The most popular such metric is the Mutual Information (MI), defined as

MI(S;L) = H(S) +
∑
s∈S

p(s)

∫
l∈Ld

f(l|s) · log2 p(s|l).

The MI value can be used to bound the minimum number of measurements Na

that an adversary must obtain in order to recover X via DPA [4]. In practice,
the MI is usually estimated by sampling to avoid the intractable cost of the
integration when the dimension of L grows as

M̂I(S;L) = H(S) +
∑
s∈S

p(s)
Nx∑
i=1

1

Nx
· log2 p(s|ls(i)), (9)

where ls(i) and Nx are ith leakage trace generated with the secret S = s and the
total number of traces corresponds to this secret, respectively. This estimation
is known to converge to the correct MI value as Ns grows [11].

The MI can however only be computed in case the adversary has access to the
true leakage distribution. In concrete settings, this leakage distribution is usually
unknown, leading to the need to estimate either the model p̂(.|.) or the metric.
The Perceived Information (PI) captures the first approach and allows evaluating
the amount of information that can be extracted from an estimated model,
possibly biased by estimation or assumption errors [54]. It can be computed by
sampling as

P̂I(S;L) = H(S) +
∑
s∈S

p(s)
Ns∑
i=1

1

Ns
· log2 p̂(s|ls(i)). (10)

The sampling process to estimate P̂I(S;L) needs to be carried out on a separate
set than used to estimate p̂(.|.), to ensure it is unbiased. It is shown in [11] that
the PI upper bounds the MI, and the equality holds if the model is perfect.

Guessing Entropy While information theoretic metrics offer an efficient way
to predict the data complexity of side-channel attacks, they ignore their time
complexity and therefore, are usually paired with security metrics that give a
more direct view of an implementation’s concrete security level. A popular option



8 Duyen Pay, François-Xavier Standaert

for this purpose is to estimate the Guessing Entropy (GE), which measures
the average amount of keys an adversary must enumerate to perform a side-
channel key recovery. Typically, after performing an attack, the adversary has a
guess vector g = [g1, . . . , g|S|], where target secret candidates gi’s are sorted by
decreasing likelihood. Then GE of such the attack is

ĜE = Ê
attacks

[i|gi is the correct key]. (11)

In the context of SPA, one can directly estimate such a metric (without infor-
mation theoretic ones), since the attack complexity is fixed by the context.

3 Leakage simulation and real measurement setup

We illustrate our cautionary notes with both simulations and actual measure-
ments. The first ones aim to enable easier interpretation, since they correspond
to a more controlled environment where the leakage function is known. The
second ones aim to confirm the practical relevance of our observations.

3.1 Simulated leakages

The secrets are generated from the set of Equation 3 and follow the distribution
of Equation 4. The leakages for d-share encodings are generated as follows:

1. First, generate Encd(S) where the first d− 1 shares are drawn uniformly at
random from Zq, and the last share Xd is computed to ensure correctness.

2. Next, the leakage of each share Li is computed with the Hamming Weight
(HW) model and additive Gaussian noise: Li = HW(Xi) +Bi, where Bi ←
N (0, σ2). As a result, the share’s leakage PDF has the form

f(li|xi) =
1

σ
√
2π

e
− 1

2

(
li−HW(xi)

σ

)2

. (12)

3. Finally, the leakage vector corresponding to the processing of S, L is the
concatenation of the shares’ leakages, i.e., L = [L1, . . . , Ld].

Integrating such leakage into Equation 6, the SNR for each share can be com-

puted as a function of the noise variance σ2, i.e., SNR = 2,67
σ2 ≈ 11/4

σ2 , where 11
is the number of bits used to represent the moduli and 11/4 is the variance of
the Hamming weights corresponding to random 11-bit values (and the ≈ sign
reflects the fact that shares are uniform in Zq for q prime rather than Z211).

3.2 Measurement setup

We measured an implementation similar to the public one from [10], running
on an ARM Cortex-M4 STM32F415. This implementation uses Encsum2 and we
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tweaked it in order to produce traces for Encdiff2 as well. The noise coefficients
are generated following Equation 2 with {ai, bi} produced by the AES128.

The MCU was mounted on the CW308 UFO board, with an external 8 MHz
crystal oscillator to fix the system clock. The leakages were measured with the
CT1 current probe and the signal was sampled by a PicoScope 5244D at 500
MSamples/s with 12-bit resolution with no signal pre-processing nor averaging.
We collected two million traces for each target and focused our analysis on the
encoding loaded before the execution of the NTT in Kyber’s re-encryption.

3.3 Evaluation Methodology

Based on the previous background, our evaluations (both with simulated leakages
and actual measurements) are based on the following steps:

1. Divide the dataset into a profiling dataset and an attack dataset.
2. On measurements Use the SNR in order to select POIs (i.e., pick the

points with highest SNR for evaluation). Then estimate (for the POIs)

the leakage PDF given the shares f̂(l|xi) for each share using LDA.
In simulations Compute f(l|xi) directly as given by Equation 12.

3. Estimate the secret PDF f̂(l|s) from the shares PDF using SASCA.
4. Compute the MI/PI/GE using the secret PDF on the attack dataset.

4 Cautionary note on POI detection

As mentioned in the introduction, the SNR is a popular tool for selecting POIs
in leakage traces. In this section, we show that its application to the shares of
an arithmetic encoding can create confusion when the encoded value is small.
For this purpose, we first report the SNR computed from the measurements of
Section 3.2 for the two shares of an arithmetic encoding in Figure 1a, where
the first share is manipulated around time sample 100 and the second share
is manipulated around time sample 275. One can see that the POIs suggested
by the SNR are not perfectly isolated: the SNR computed for the first (resp.,
second) share can pop up at the position of the second (resp., first) share. Such
ghost peaks give the incorrect impression that there is useful information about
a share beyond the points in time where it is manipulated. As a result, blindly
applying this POI selection can disturb the performances of a profiled attack.

One important remark in this respect is that since conditioned on the secret,
the shares are not independent, it also implies that wrongly selecting POIs for
the first share (resp., second share) in the time samples corresponding to the
second share (resp., first share) does not only increase the profiling data (and
time) complexity, as would be expected if they were independent [36]. We report
the PI estimated from the LDAxSASCA profiled with a blind application of the
SNR-based POI detection vs. an informed one where we only keep the samples
that match the actual manipulation of the shares in Figure 2b. It shows that
the ghost peaks perturb the model persistently, as reflected by a negative PI
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(a) 2 shares. (b) 3 shares.

Fig. 1: Shares’ SNR of an arithmetic encoding.

when incorrect POIs are used.3 This is because errors are not averaged by using
more profiling data in this case, which is in contrast with the selection of non-
informative points that do not correspond to any of the shares.

(a) SNR per share. (b) PI of Encsum2 from LDA-SASCA.

Fig. 2: Impact of wrong POI selection on LDAxSASCA: 2-share case.

These ghost peaks exist due to the fact that the secret is not uniform and has
small support. That is, for each value of the first share (e.g., X1 = 0), the second
share only takes some values corresponding to all possible values of the secret

3 Here, the model is computed with a non-uniform prior. A similar observation holds
with uniform prior. We discuss the impact of these priors in Section 6.4.
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S (i.e., X2 ∈ {0, 1,−1, 2,−2}), and also follows the secret’s distribution. As a
result, instead of being uniformly distributed over Zq×Zq as classically observed
for encodings used in symmetric cryptography, the pairs of shares (X1, X2) lie
in a specific/restricted set and therefore carry information about each other.

More precisely, in the 2-share case, the conditional entropy of one share given
the other, H(X1|X2), exactly equals the entropy of the secret H(S). This fact
holds for all distributions of S and is an unchanged relationship between the two
shares’ values. Combined with the fact that H(X1|X2) spreads on Zq while H(S)
spreads only on S where |S| ≪ q, each share mathematically correlates with the
other. This explains our observations of Figure 1a and shows that they are not
specific to one detection tool: any tool relying on the estimation of statistical
moment (e.g., Pearson’s correlation) would suffer from the same problem.

This phenomenon however disappears when the number of shares is more
than two, as illustrated in Figure 1b, which we will explain based on an example.
Say we consider the pair (X1, X3). Since the secret’s distribution is now absorbed
by the uniform distribution of X2, the pair (X1, X3) is uniform over Zq×Zq and
the correlation between them vanishes. As a result, the SNR per share rightfully
spots leakage samples that correspond to the shares’ manipulation only.

Based on this first cautionary note, and when considering a 2-share case, our
following experiments will therefore all be based on an informed POI selection,
where we manually isolate POIs that correspond to the target share.

5 Interlude on attack strategies

A natural next step after identifying POIs is to perform a profiled attack. In
the case of Kyber, we can for example target the encoding manipulated just
before the NTT computation in the re-encryption step with an SPA (since it is
an ephemeral secret), and therefore estimate the resulting guessing entropy.

Yet, since the secret we target is then non-uniform, the maximum likelihood
and maximum a posteriori attack strategies are not equivalent anymore. This is
again in contrast with the situation in symmetric cryptography, where the target
secrets always have a uniform prior. We next detail these different strategies.

The Maximum Likelihood (ML) approach selects the secret as

s̃ = argmax
s

f(l|s),

while the Maximum A Posteriori (MAP) approach selects it as:

s̃ = argmax
s

p(s|l),

= argmax
s

f(l|s) · p(s)∑
s∗ f(l|s∗) · p(s∗)

,

= argmax
s

f(l|s) · p(s).
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When extended to multi-trace leakage vectors l it directly gives

s̃ = argmax
s

q∏
i=1

f(l(i)|s),

in the ML case, while the generalization of the MAP given in [58,32] is

s̃ = argmax
s

p(s) ·
q∏

i=1

f(l(i)|s).

Those strategies can be equivalently written in logarithmic form as:

s̃ = argmax
s

q∑
i=1

log f(l(i)|s) (ML) (13)

s̃ = argmax
s

[
q∑

i=1

log f(l(i)|s) + log p(s)

]
(MAP) (14)

As a result, the two approaches are equivalent when there is a uniform prior on
s and differ otherwise. Interestingly, the latter happens in our Kyber case study.
Furthermore, the arithmetic encoding we target enables SPA with repetition.
That is, the adversary can repeatedly observe the leakage of this encoding for
the same (stable) secret s. We analyzed the efficiency of these different strate-
gies with the simulated leakages of Section 3.1. The guessing entropy of attacks
exploiting 1, 10, 50, and 100 repetitions in function of the shares’ SNR is given
in Figures 3 and 4 for the sum and diff. encodings (and 500, 1000, 2000, 10000,
20000 repetitions in Figures 5 and 6), leading to the following observations.

Firstly, when the prior information of the secret is available, MAP consis-
tently performs better for every noise level. More precisely, both the ML and
MAP approaches allow accumulating information from multiple traces. Yet,
whenever the distinguisher encounters an non-informative leakage (e.g., when
f(l(i)|·) is equal for correct and incorrect secrets), ML guesses the secret at ran-
dom while MAP bases its guess on the prior distribution. Hence, for low number
of repetitions, MAP leads to better results, as shown in Figures 3 and 4.

Secondly, MAP is essentially ML one-time-weighted by the prior. Thus, both
converge towards the same value and correctly guess the secret when the model
is sound with enough data, as shown for high SNRs in Figures 5 and 6.

Additionally, we observe that the guessing entropy of Figure 4 sometimes
saturates, which is due to the distributions of some secret values that remain
hard to distinguish and will be discussed in the next section.

6 Cautionary note on representation-dependency

In this section, we investigate the dependency of arithmetic encodings protect-
ing small and non-uniform secrets to their representation (i.e., whether they
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Fig. 3: GE of simulated attacks against the sum encoding with different strategies.

Fig. 4: GE of simulated attacks against the diff. encoding with different strategies.

sum or subtract shares). As already mentioned, a natural application of such
encodings is before the NTT in Kyber’s re-encryption step, where a SPA with
repetition is possible. More precisely, the previous section already hinted towards
this representation-dependency and we now aim to discuss it more in depth. For
this purpose, we will start with an intuitive discussion based on PDF plots in
Section 6.1, follow with a simulated analysis that puts forward this dependency
and how it vanishes with a larger number of shares in Section 6.2, confirm these
findings with experiments in Section 6.3 and discuss their extension to DPA for
completeness (since not motivated by a concrete case study) in Section 6.4.
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Fig. 5: GE of simulated attacks against the sum encoding with more averaging.

Fig. 6: GE of simulated attacks against the diff encoding with more averaging.

6.1 PDF plots for the two encodings

The plots corresponding to the mixture PDF of the two (sum and diff.) encodings
in the noisy Hamming weight leakage model are given in Figures 7 and 8.

They lead to two main observations. First, we see that the diff. encoding
seems more informative than the sum one. This is because the distributions in
Figure 8 are (visually) more separated than the ones in Figure 7. Second, we also
see that some distributions are very hard to distinguish in the diff. encoding case
(e.g., those of s =1,2 or s =-1,-2). This suggests that the diff. encoding will lead
to easier attacks in the DPA setting and (on average) in the SPA setting, but
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Fig. 7: Bivariate PDF f(l|s) for the sum encoding.

Fig. 8: Bivariate PDF f(l|s) for the diff. encoding.

some of these keys may remain hard to distinguish in the SPA setting (which is
what we observed with the saturation effect in the previous section).

6.2 Simulated leakages

Moving to a more quantitative analysis, Figure 9 shows the evolution of the
guessing entropy for the two encodings, in function of the shares’ SNR and the
number of shares, for an increasing number of repetitions (when moving from
left to right). It confirms the previous intuition that the diff. encoding leads
to stronger attacks than the sum one (in similar conditions). It also highlights
that the gap between the informativeness of the two encodings decreases when
the noise and the number of shares increases. This is presumably explained by
the fact that when combining more (noisy) shares, the mixture PDFs tend to
be more uniform, which therefore flattens patterns that may appear with a low
number of shares. Note that the reduction of this gap is combined with the
reduction of informativeness caused by lower SNR and larger number of shares.
It will be easier to observed in the information theoretic plots of Section 6.4.

6.3 Actual measurements

Figure 10 provides the guessing entropy in function of the number traces used to
profile the leakage model (Np) of the two encodings, for two shares and the noise
level provided by our actual measurements (again for increasing the number
of repetitions in the attack). It confirms that the conclusions obtained with
simulated leakages are also matched for our software implementation setting.
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Fig. 9: GE of simulated attacks with different numbers of shares.

6.4 From SPA to DPA

Eventually, and for completeness, we provide results similar to those of the pre-
vious section but replacing the guessing entropy (i.e., a security metric that
captures SPA) by the MI/PI (i.e., information theoretic metrics that efficiently
capture DPA) in Figure 11. The mutual information is used for simulated leak-
ages, the perceived information is used for actual measurements. Our conclusions
are again essentially similar (exhibiting even simpler patterns). Namely, the gap
between the two encodings is clear and vanishes with more shares. As in Sec-
tion 4, we used a non-uniform prior to estimate the MI and PI. Results with a
uniform prior lead to the same conclusions. The study of how such information
theoretic metrics can be formally connected to the different attack strategies
outlined in Section 5 is an interesting scope for further investigations.

7 Conclusions

This note highlights some new challenges that the design and evaluation of post-
quantum cryptographic implementations against side-channel attacks may lead
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Fig. 10: GE of actual attacks with two shares.

(a) Encoding MI (simulations). (b) Encoding PI (measurements).

Fig. 11: MI and PI of simulated and actual attacks

to. For example, confusion in the detection of POIs, need of different attack
strategies and representation-dependencies in arithmetic encodings. It suggests
that some of the (now standard) tools and intuitions that emerged from the
study of symmetric cryptographic implementations cannot be straightforwardly
extended to the post-quantum context without caution. The main reason of
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this gap is the manipulation of small and non-uniform secrets. While it raises no
fundamental impossibilities (i.e., standard attacks can be mounted and standard
countermeasures are still effective), it nevertheless requires slight adaptations
for existing tools to be used in this case. We hope the notes in this paper can
help implementers and evaluators to gain a good understanding of the physical
security provided by masked implementations of post-quantum algorithms.
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46. Vincent Migliore, Benôıt Gérard, Mehdi Tibouchi, and Pierre-Alain Fouque. Mask-
ing dilithium - efficient implementation and side-channel evaluation. In ACNS,
volume 11464 of Lecture Notes in Computer Science, pages 344–362. Springer,
2019.

47. Kalle Ngo, Elena Dubrova, Qian Guo, and Thomas Johansson. A side-channel
attack on a masked IND-CCA secure saber KEM implementation. IACR Trans.
Cryptogr. Hardw. Embed. Syst., 2021(4):676–707, 2021.

48. Svetla Nikova, Vincent Rijmen, and Martin Schläffer. Secure hardware implemen-
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