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Abstract. There exists a mismatch between the theory and practice of
cryptography in the presence of leakage. On the theoretical front, the
bounded leakage model, where the adversary learns bounded-length but
noiseless information about secret components, and the random probing
model, where the adversary learns some internal values of a leaking imple-
mentation with some probability, are convenient abstractions to analyze
the security of numerous designs. On the practical front, side-channel
attacks produce long transcripts which are inherently noisy but provide
information about all internal computations, and this noisiness is usually
evaluated with closely related metrics like the mutual information or sta-
tistical distance. Ideally, we would like to claim that resilience to bounded
leakage or random probing implies resilience to noisy leakage evaluated
according to these metrics. However, prior work (Duc, Dziembowski and
Faust, Eurocrypt 2014; Brian et al., Eurocrypt 2021) has shown that
proving such reductions with useful parameters is challenging.

In this work, we study noisy leakage models stemming from hockey-stick
divergences, which generalize statistical distance and are also the basis
of differential privacy. First, we show that resilience to bounded leakage
and random probing implies resilience to our new noisy leakage model
with improved parameters compared to models based on the statistical
distance or mutual information. Second, we establish composition theo-
rems for our model, showing that these connections extend to a setting
where multiple leakages are obtained from a leaking implementation. We
complement our theoretical results with a discussion of practical relevance,
highlighting that (i) the reduction to bounded leakage applies to realistic
leakage functions with noise levels that are decreased by several orders of
magnitude compared to Brian et al., and (ii) the reduction to random
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probing usefully generalizes the seminal work of Duc, Dziembowski, and
Faust, although it remains limited when the field size in which masking
operates grows (i.e., hockey-stick divergences can better hide the field
size dependency of the noise requirements, but do not annihilate it).

1 Introduction

Side-channel attacks leverage properties of cryptographic implementations to
obtain partial information about supposedly secret components, such as the long-
term keys of authentication or encryption schemes. Several textbook versions of
well-known algorithms are easily broken in practice via side-channel attacks. For
example, textbook RSA is vulnerable to timing attacks, whereby an adversary
measures the time elapsed during encryption and/or decryption [26]. Over the
past two decades, various types of (usually simple) side-channel attacks have
been employed with devastating effects on most (symmetric and asymmetric)
cryptographic algorithms, including also tracking power consumption [25], the
emission of electromagnetic radiation [1], and cache-based attacks [32]. Small
embedded devices are natural targets, but side-channel attacks have been extended
to hardware implementations [30] and high-frequency devices [2]. They can also be
applied remotely [29], and new attacks keep on being discovered [27]. In general,
more complex and high-frequency targets and more remote and less invasive
adversarial conditions make the side-channel measurements less informative.

The devastating effect of these attacks have led to the study of generic
solutions to prevent them, which we can roughly divide in two directions:

– Primitive-level countermeasures aim to design cryptographic algorithms of
which (parts of) the implementation, that are usually denoted as leakage-
resilient [19], remain secure even in the presence of bounded leakage. Such
countermeasures typically leverage the frequent refreshing of the algorithms’
secret state, which limits the side-channel attack surface and makes it more
realistic to expect that a state’s leakage is (intrinsically) bounded.

– Implementation-level countermeasures rather aim to limit the leakage for the
parts of the cryptographic algorithms that are not leakage-resilient, such as
the initialization of a secret state with a long-term secret key. In this case,
where the adversary can continuously accumulate information on the same
secret, masking (a.k.a. secret sharing) [12] is usually considered as the most
viable option.6 It allows amplifying the implementation noise exponentially
in the number of shares at the cost of (roughly) quadratic overheads.

These solutions can then be combined so that leakage-resistant modes of operation
can efficiently mix parts of the implementation where bounded leakage is obtained
via cheap countermeasures (or no countermeasures at all) and a limited number
of calls to parts of the implementation that require masking [6].
6 There are, however, primitive-level alternatives to this initialization problem, such as

using a leakage-resilient PRF for this part of the computation [20, 5, 13].
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Most works on the formal study of leakage-resilience conveniently assume that
the adversary is allowed to learn arbitrary bounded-length information about
secret components. In particular, the adversary is allowed to choose a function
f : {0, 1}∗ → {0, 1}ℓ, for a predetermined leakage bound ℓ, and to learn the
bounded leakage f(sk) ∈ {0, 1}ℓ, where sk is a secret key. We will refer to this
model as the bounded leakage model. The survey of Kalai and Reyzin [24] is an
excellent source on prior work on bounded leakage-resilience.

One of the main reasons behind the widespread usage of the bounded leakage
model is that formally proving the security of a cryptographic algorithm in
this model is more approachable than for most other leakage models. However,
bounded leakage does not directly capture real-world side-channel attacks [39].
For example, transcripts produced via power analysis are typically much longer
than the secret key under attack but, unlike bounded leakage, are inherently noisy.
Motivated by this limitation, several models for noisy leakage have been studied
in the literature. On the practical front, the most popular measure of a given
leakage’s “noisiness” is mutual information [38, 34]. More precisely, if X denotes
the secret and Z is leakage from X, then MI(X; Z), the mutual information
between X and Z, captures the mutual dependence between X and Z. Ideally,
we would like to design cryptographic schemes that are secure against all noisy
leakages Z satisfying MI(X; Z) ≤ δ for δ as large as possible.

Another closely related noise measure is the statistical distance [14] (a.k.a.
the total variation distance) between PXZ (the joint distribution of X and Z)
and PX ⊗ PZ (the product distribution of X and Z, i.e., (PX ⊗ PZ)(x, z) =
PX(x) · PZ(z)), denoted SD(PXZ ; PX ⊗ PZ). The two measures are related via
Pinsker’s inequality, which implies that

SD(PXZ ; PX ⊗ PZ) ≤
√

1
2MI(X; Z).

This means that a scheme which is leakage-resilient against all leakages Z
such that SD(PXZ ; PX ⊗ PZ) ≤ δ is resilient against all leakages Z such that
MI(X; Z) ≤ 2δ2. Other noise measures have been considered, including the average
conditional min-entropy [31] and the average ℓ2-norm between the marginal
distribution X and the conditional distributions X|Z = z [35].7

A similar situation can be observed in the context of implementation-level
countermeasures and masking. There, one typically considers a stateful crypto-
graphic circuit Γ (k) (where k is the secret key) in the presence of adversaries
that interact with the circuit via the input-output interface over several rounds,
and continuously get leakage from the circuit wires in each round. Abstract
leakage models have been introduced, such as the threshold probing model [23]
(in which the adversary can probe a bounded number of wires in the circuit) and
the random probing model [14] (in which the adversary can recover intermediate
values in the circuit only with some probability). But despite the security of
7 The statistical distance term SD(PXZ ; PX ⊗ PZ) corresponds (up to a multiplicative

1/2 factor) to the ℓ1-norm between PXZ and PX ⊗ PZ .
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masked implementations is conveniently analyzed in these models, actual im-
plementations are again better reflected by the noisy leakage model [35], which
instead bounds the noisiness of the information retrieved from intermediate values
based on the statistical distance and the mutual information metrics.

1.1 Reductions as a Bridge from Theory to Practice

As a result of the above discussion, on the one hand, there are many (primitive-
level or implementation-level) cryptographic schemes that can be proven secure in
the presence of bounded leakage or threshold/random probing. On the other hand,
real-world side-channel attacks yield leakage whose noisiness can be measured by
means of mutual information and statistical distance, but that is not bounded in
length and leaks about all intermediate values. In this light, it is a fundamental
question to study the connection between different leakage models, towards
understanding whether cryptographic schemes formally proven secure under less
realistic leakage assumptions remain secure against more realistic ones.

In the context of primitive-level countermeasures, progress towards answering
the above question comes from a recent work of Brian, Faonio, Obremski, Ribeiro,
Simkin, Skórski, and Venturi [9], which studied the relationship between the
bounded leakage model and various notions of noisy leakage in a very general
setting. More precisely, they consider a general simulation paradigm. Given a secret
distribution X on X and a leakage Z from X, they ask if there exists a simulator
Sim which is allowed to choose any bounded leakage function g : X → {0, 1}ℓ,
learns g(X), and, after post-processing of g(X), outputs a simulated leakage Z ′

such that
(X, Z) ≈ε (X, Z ′),

where ≈ε means that the two joint distributions are within statistical distance
at most ε of each other, for a small error term ε. In other words, no adversary
can distinguish (with non-negligible advantage) between the real secret-leakage
pair (X, Z) and the fake pair (X, Z ′) where Z ′ is produced with only the help of
a single query of ℓ-bounded leakage. On the positive side, using this paradigm,
they showed that many cryptographic schemes resilient to ℓ bits of bounded
leakage are also resilient to ℓ′-min-entropy noisy leakage [31] (i.e., the class of all
leakages Z on a secret X such that Z drops the min-entropy of X by at most ℓ′

bits), with ℓ′ ≈ ℓ and little ε (as a function of the security parameter).8

In the context of implementation-level countermeasures, Duc, Dziembowski,
and Faust showed an interesting reduction between the more abstract thresh-
old probing model and the more realistic noisy leakage model, using random
probing as a useful intermediate abstraction [14], which has then been (in part
heuristically) connected to practical side-channel attacks [15].

8 More precisely, H̃∞(X|Z) ≥ H∞(X)− ℓ′ where H∞(X) = − log(maxx Pr[X = x])
denotes the min-entropy of X and H̃∞(X|Z) = Ez∼Z

[
2−H∞(X|Z=z)] denotes the

average conditional min-entropy of X given Z.
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1.2 Limitations of Statistical Distance and Mutual Information

Although [9] derived positive results for some types of noisy leakages, they
also showed that it is impossible to obtain non-trivial simulation theorems for
noisy leakages based on statistical distance and mutual information via bounded
leakage. The reason behind this is simple and instructive. Define the class of
δ-SD-noisy leakages of X to be the set of all random variables Z such that

SD(PXZ ; PX ⊗ PZ) ≤ δ. (1)

First, note that it is trivial to simulate Z with error δ even without access to
bounded leakage from X. In fact, by Equation (1), the simulator can simply output
Z ′ sampled independently according to the marginal PZ . To complement this, [9]
also shows that increasing the amount of bounded leakage available does not help
in decreasing the error much compared to the trivial simulator. Indeed, there
exist secret-leakage distributions PXZ such that Z is δ-SD-noisy leakage from
X, but Z cannot be simulated with error ε < δ/2 even with n − 1 bits of leakage
from X. More precisely, let X be uniform over {0, 1}n, and consider what we
call the catastrophic leakage Z from X defined as follows: with probability δ, set
Z = X; otherwise, set Z = ⊥.9 It holds that Z is δ-SD-noisy leakage from X. To
see intuitively why we cannot simulate Z with error below δ/2 from n − 1 bits of
bounded leakage from X, suppose that we query X to learn the (n − 1)-bounded
leakage (X(1), X(2), . . . , X(n − 1)), where X(i) is the i-th bit of X. If we wish to
simulate Z, then we need to output X with probability approximately δ. However,
this means that in that case we will have to guess X(n), and we will fail and be
caught by the adversary with probability approximately δ · 1/2 = δ/2. A similar
argument yields an impossibility result for simulating the analogous notion of
δ-MI-noisy leakage (i.e., all random variables Z such that MI(X; Z) ≤ δ).

From a practical perspective, the above is unsatisfactory because without
countermeasures δ decreases poorly with noise (e.g., see [15, Equation (7)]).
Since good simulation can only be obtained by making δ exponentially small,
it implies that formal security guarantees require extremely high noise levels
that are not intrinsically present in actual implementations. As a result, the
only way to exploit the reduction to bounded leakage is to rely on masking
even for the leakage-resilient parts of an implementation. This goes against
the aforementioned expectation that bounded leakage can be ensured without
expensive countermeasures in this case, thanks to frequent state refreshing.

A similar limitation can be found in the reduction from noisy leakage to
random probing of Duc, Dziembowsi and Faust [14], where δ-SD-noisy leakage
from a secret supported on a set X can only be simulated with random probes
having parameter δ · |X |, although this “field size loss” does not seem to be
observed for practically-relevant leakage functions [34, 4].

9 This corresponds to the random probing model of [23, 14] in a large (n-bit) field.
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1.3 A High-Level Overview of Our Contributions

In this paper, we show that the above limitations are not an insurmountable
barrier towards general simulation theorems for practical noisy leakage models,
but rather an invitation for further refining the statistical distance and mutual
information metrics as empirical measures of quality for side-channel attacks.

Starting with the limitations of the simulation via bounded leakage, the issue
with statistical distance and mutual information is that they cannot distinguish
between innocent leakages such as “Z = X(1) with probability 1” and catastrophic
leakages such as “Z = X with probability 1/n and Z = ⊥ otherwise”. Positing
that such edge cases are the main impediment standing in front of practically
useful simulation theorems, we explore ways to circumvent them in order to better
match practical side-channel attacks. Towards this goal, we study noisy leakage
models based on hockey-stick divergences [36], a well-known family of divergences
that generalizes statistical distance (and is a special case of f -divergences).

Definition 1 (t-hockey-stick divergence). For a real number t ≥ 0, the
t-hockey-stick divergence between two distributions P and Q supported on a
discrete set X , denoted by SDt(P ; Q), is defined as

SDt(P ; Q) = sup
S

[P (S) − 2t · Q(S)],

where the supremum is taken over all sets S ⊆ X .10

Equivalently, we have SDt(P ; Q) ≤ δ if and only if

P (S) ≤ 2t · Q(S) + δ (2)

for all sets S ⊆ X . It is easy to see that SD0 = SD, i.e., the 0-hockey-stick diver-
gence is the statistical distance. These divergences form the basis of differential
privacy [17] (approximate differential privacy is equivalent to an upper bound on
a hockey-stick divergence [3]), something which we exploit in our results.

Following the previous approach for SD-noisy leakage, considering hockey-stick
divergences leads to a noisy leakage model which is a two-parameter generalization
of the SD-noisy leakage model: we say that Z is (t, δ)-SD-noisy leakage from X if
SDt(PXZ ; PX ⊗ PZ) ≤ δ. In a nutshell, the additional parameter t in our model
allows us to avoid the catastrophic examples that sever the connection between
bounded leakages and SD-noisy leakages. We use it to establish several properties
of (t, δ)-SD-noisy leakage which we expect will be useful in practical applications.
This includes: (i) a simulation theorem for (t, δ)-SD-noisy leakage from bounded
leakage, and (ii) a composition theorem for (t, δ)-SD-noisy leakages, which allows
one to argue about the combination of multiple (t, δ)-SD-noisy leakages.
10 Hockey-stick divergences are usually defined with an et factor as opposed to the

2t factor we use here. We opt for the latter because it leads to cleaner theorem
statements; this change has no other consequences.
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As a complement, we also study a natural reverse variant of (t, δ)-SD-noisy
leakage, which we call (t, δ)-RevSD-noisy leakage, in which the roles of the
distributions PXZ and PX ⊗ PZ are swapped (i.e., we require that SDt(PX ⊗
PZ ; PXZ) ≤ δ, and note that SDt is not symmetric). We then show a simulation
theorem for RevSD-noisy leakage from the random probing leakage model. This
simulation theorem is a strict generalization of the main result of [14] (which we
obtain as a special case by setting t = 0), and it allows us to mitigate the field
size loss incurred in their simulation by random probing.

We conclude the paper by investigating the t and δ parameters that can
be obtained for realistic leakage functions and noise levels. Compared to prior
work [9], our concrete evaluations allow us to put forward considerable improve-
ments of the simulation error for modest amounts of bounded leakage, both for
the Hamming weight function and variants of which the deterministic part is
bijective (ruling out trivial simulation). Combined with our composition theorems,
these results can even be used to state formal guarantees for leakage-resilient
modes of operation based on physical assumptions that can be matched by
parallel hardware implementations (e.g., of the AES), confirming the intuition
that bounded leakage can be ensured without (expensive) masking techniques.

We also discuss the practical impact of our improved reduction from (t, δ)-
RevSD-noisy leakage to random probing. Although it remains conceptually
contrasted since the δ parameter can only be used to hide the field size dependency
in the reduction of [14], we show that the good scaling of the δ parameter in
the noise level of realistic leakage functions makes this mitigation relevant,
especially if masking is implemented in small fields (e.g., F28 for the AES). This
contribution is a more consolidating one, since Prest et al. already proposed a
noisy leakage model allowing to get rid of the field size penalty (at the cost of
using a metric that scales worse with the noise than the mutual information
or statistical distance) [34]. It nevertheless illustrates the unifying nature of
hockey-stick divergences for cryptography in the presence of leakage.

2 More Detailed Overview of our Contributions

We now proceed with a more technical overview of our results, followed by a
discussion about their practical implications. Our main new noisy leakage model
is defined analogously to the notion of SD-noisy leakage as follows.

Definition 2 ((t, δ)-SD-noisy leakage). Let X be a random variable over X .
Then, we say that a randomized function f : X → Z is a (t, δ)-SD-noisy leakage
function from X if, denoting Z = f(X), it holds that

SDt(PXZ ; PX ⊗ PZ) ≤ δ.

We denote the set of (t, δ)-SD-noisy leakage functions from X by SDt,δ(X), and
we also say that Z = f(X) is (t, δ)-SD-noisy leakage from X.

7



Since SD0 = SD, we recover δ-SD-noisy leakage as (t = 0, δ)-SD-noisy leakage.
The useful properties (simulation via bounded leakage, composition) that we
establish for (t, δ)-SD-noisy leakage actually hold as is for an even broader class
of noisy leakages also inspired by hockey-stick divergences, which we call GSD-
noisy leakage (the “G” standing for “Generalized”). We refrain from defining
it formally here, and instead present the relevant definition later in Section 4.
All of our results are established directly for (t, δ)-GSD-noisy leakage, as this
leads to a much cleaner technical discussion, and they carry over automatically
to (t, δ)-SD-noisy leakage which we use for our practical applications.

2.1 Simulation via Bounded Leakage

As discussed above, it is trivial to simulate δ-SD-noisy leakage from even 0 bits
of bounded leakage with statistical error δ. Moreover, by [9], this cannot be
improved much, even if we allow n − 1 bits of bounded leakage (assuming that
X ∈ {0, 1}n). As our first technical result, we establish the following simulation
theorem for (t, δ)-SD-noisy leakage from bounded leakage.

Theorem 1 (Informal). For any X and α > 0, it is possible to simulate the
class of (t, δ)-SD-noisy leakage functions from X using ⌈t + log ln(1/α)⌉ bits of
bounded leakage from X, with statistical error δ + α.

For formal statements and proofs, see Section 5.

Given Theorem 1, we may see the parameter t as controlling the number of bits
of bounded leakage required for simulation, and the parameter δ as controlling the
statistical simulation error. At first sight, it may seem that we are not improving
over the trivial simulator for δ-SD-noisy leakage, which also has error δ and uses 0
bits of bounded leakage. However, this is not the case as the additional parameter
t now affords us significant freedom. In particular, we expect that when fitting
concrete, widely used models for real-world side-channel attacks (e.g., Hamming
weight leakages with additive Gaussian noise) into the (t, δ)-SD-noisy leakage
model, we can significantly decrease δ by slightly increasing t, therefore trading
some extra bits of bounded leakage for a much smaller statistical simulation error.
Our empirical evaluation in Section 8, confirms this behavior.

Theorem 1 can be used to automatically establish that a broad class of
cryptographic primitives resilient to bounded leakage are also resilient to (t, δ)-
SD-noisy leakage for good choices of t and δ. As a concrete example, suppose that
we have a symmetric-key PRNG that is γ-resilient to ℓ-bounded leakage with
ℓ = log(n) for some security parameter n [33]. This guarantees that no adversary
with access to arbitrary log(n)-bounded leakage from the secret key can predict
the next pseudorandom block with advantage more than γ. Then, combining
this with Theorem 1 (where X plays the role of the secret key) immediately
implies that, given any parameters α, δ > 0, the same scheme is γ′-resilient to
(t, δ)-SD-noisy leakage with γ′ = γ + δ + α and t = log(n) − log ln(1/α).
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2.2 Composition Theorem

There exist situations where the physical implementation of a cryptographic
scheme may provide the adversary with several samples of noisy leakage. For
example, a (round-based) hardware implementation of the AES will provide a
few leakage samples per round, typically correlated with the Hamming weight of
the intermediate value manipulated by the device. In such a case, it can be useful
to have access to formal composition theorems for the noisy leakage model being
used, so that we can formally argue about the combination of these multiple
leakage samples. At an abstract level, consider the scenario where m noisy leakage
samples Z1, . . . , Zm are computed from a secret random variable X. If we know
that each Zi is (ti, δi)-SD-noisy leakage from X, and that for each i ̸= j it holds
that Zi and Zj are conditionally independent given X, then what can we say
about the noisiness of the global leakage Z = (Z1, . . . , Zm)?

We prove the following composition theorem for (t, δ)-SD-noisy leakages that
shows that such noisy leakages compose nicely, yielding a global leakage that is
also simulatable via bounded leakage with good parameters.

Theorem 2 (Informal). Suppose that Z1, . . . , Zm are conditionally indepen-
dent given a secret random variable X and the samples Zi are (ti, δi)-SD-
noisy leakage from X for i ∈ [m]. Then, for any α > 0, the global leakage
Z = (Z1, . . . , Zm) can be simulated using ⌈log ln(1/α) +

∑m
i=1 ti⌉ bits of bounded

leakage from X with statistical error α +
∑m

i=1 δi.

For formal statements and proofs, see Section 6.
For concrete leakages, the parameter t should be small, of the order log(n)

for a security parameter n. On the other hand, δ will be negligible in the noise
level. Therefore, the blow-up in the simulation error compared to the original
δi’s will also be small. Note that since practical leakage functions are often close
to a deterministic function of X corrupted by additive noise [37], the conditional
independence condition boils down to an independent noise one, which is a
standard approximation. Note also that the ti’s in Theorem 2 do not need to be
integer-valued. Not having to round each ti to its ceiling can provide significant
gains with respect to simulation when composing many noisy leakages.

In the full version of the paper we also study the notion of strong composition
for a natural strengthening of the (t, δ)-SD-noisy leakage model.

2.3 Simulation via Random Probing

As already briefly mentioned above, a previous success story in linking practical
noisy leakage models and theoretically-minded leakage models stems from work
of Prouff and Rivain [35] and Duc, Dziembowski, Faust, and Standaert [14, 15]
on compilers for leakage-resilient arithmetic circuits. Most relevant to our setting,
Duc, Dziembowski, and Faust [14] showed that the leakage-resilient circuit
compiler of Ishai, Sahai, and Wagner [23], which efficiently transforms any given
arithmetic circuit into an equivalent circuit resilient to threshold probing leakage
from the wires during computation, also yields a circuit resilient to SD-noisy
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leakage on the wires.11 The key lemma behind the main result of [14] (from
which their applications to circuit computation easily follow) states that δ-SD-
noisy leakage from a uniform secret X over X can be perfectly simulated by
p-random probing leakage from X with p = δ|X |.12 The linear dependence of p
on the support size |X | in this simulation has been noted to be unsatisfactory
and avoidable for concrete applications of this result [15, 34, 4]. We extend the
key lemma of [14] for δ-SD-noisy leakage to a more general notion of reverse
(t, δ)-SD-noisy leakage. In particular, this extension allows us to alleviate the
“support size penalty” in the noisy-to-probing leakage simulation. The notion of
reverse (t, δ)-SD-noisy leakage we use is similar to (t, δ)-SD-noisy leakage, and
can also be seen as a natural generalization of δ-SD-noisy leakage.

Definition 3 ((t, δ)-RevSD-noisy leakage). Let X be a random variable over
X . Then, we say that a randomized function f : X → Z is a (t, δ)-RevSD-noisy
leakage function from X if, denoting Z = f(X), it holds that

SDt(PX ⊗ PZ ; PXZ) ≤ δ.

We denote the set of (t, δ)-RevSD-noisy leakage functions from X by RevSDt,δ(X),
and we also say that Z = f(X) is (t, δ)-RevSD-noisy leakage from X.

We next highlight the connection we prove between RevSD-noisy leakage
and random probing leakage, which generalizes the key lemma of [14, Lemma 2]
mentioned above (which corresponds to the t = 0 case).

Theorem 3 (Informal). Let X be uniform over X and suppose that Z is
(t, δ)-RevSD-noisy leakage from X. Then, Z is perfectly simulatable by p-random
probing leakage from X with p = (1 − 2−t) + δ · 2−t · |X |.

For formal statements and proofs, see Section 7.
This result generally improves on [14, Lemma 2]. However, there still exists

a tradeoff between the need to keep the t parameter small so that (1 − 2−t) is
small and the fact that the scaling of the δ parameter with respect to the noise
level of the implementation gets worse for small t values (recall that for t = 0 we
have that (t, δ)-RevSD-noisy leakage is equivalent to δ-SD noisy leakage). The
empirical results of Section 8 nevertheless confirm that Theorem 3 can lead to
sweet spots for practically-relevant leakage functions and noise levels.

In the full version of the paper we additionally present a reduction that trades
the aforementioned field size penalty for positive statistical simulation error,
and show how to apply the above reductions in order to obtain leakage-resilient
circuit compilers tolerating RevSD-noisy leakage from the wires.

11 A tuple (Z1, . . . , Zℓ) is τ -threshold probing leakage from (X1, . . . , Xℓ) if Zi = Xi for
at most τ indices i ∈ [ℓ], and Zi = ⊥ otherwise.

12 Suppose that X is supported on X . Then, Z ∈ X ∪ {⊥} is p-random probing leakage
from X if Pr[Z = X] = p and Pr[Z = ⊥] = 1− p.
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2.4 Practical Interpretation

Informally, the positive observations we obtain in the paper essentially stem from
the fact that (t, δ)-SD-noisy and RevSD-noisy leakage scale much better with
the implementation noise than δ-SD-noisy leakage (or the mutual information).
This is because these former metrics are computed by integrating the (joint
and product) leakage distributions over the whole leakage support. By contrast
(t, δ)-SD-noisy (resp., RevSD-noisy) leakage are computed by integrating these
distributions in regions where the joint (resp., product) distribution is 2t times
larger than the product (resp., joint) one. With modest t and realistic noise levels,
these regions have small probability, explaining a faster decrease of δ.

This better scaling directly has strong impact for PRNGs like the one of [33]
and its many follow-ups. Say, for example, that we want to ensure 128-bit security
using the reduction of [9]. Ensuring 2−128 simulation error would require a noise
variance in the 2128 ≈ 1039 range, which no device offers intrinsically.13 Even
tolerating lower (e.g., 64-bit) security keeps the required parameters completely
impractical. The only solution is then to use masking to “amplify” the noise to
this level, which is expensive and contradicts the goal of leakage-resilience, where
re-keying aims to maintain high physical security without masking.

In contrast, we highlight in Section 8 that for (t, δ)-SD-noisy and RevSD-noisy
leakage it is possible to simulate with 2−128 simulation error by combining a
modest amount of bounded leakage (typically, log(n)/c with c a small constant)
with noise levels that are concretely reachable (e.g., in the 103 range) and may
even be intrinsically present in hardware/parallel implementations.

To give a concrete illustration, assume for simplicity that masking with d shares
raises the noise variance to a power d at the cost of quadratic implementation
overheads. This means that for a leaking device with noise variance ≈ 103

(which provides ≈ 2−128 simulation error with our reduction), the reduction
of [9] would require 13-share masking to ensure the same simulation error (since
(103)13 = 1039), leading to a factor 132 = 169 of implementation overheads.

Finally, despite our reduction to random probing being limited to smaller t
values whenever one wants to ensure a low probing probability, we also show
in Section 8 that Theorem 3 can lead to useful results in the case of small- to
medium-sized fields (e.g., F28 for the AES), since reasonable noise levels can then
be used to hide the field size dependency of the noise requirements with δ.

3 Preliminaries

3.1 Notation

Random variables are denoted by uppercase roman letters such as X, Y , and
Z. Given a random variable X, we denote its probability distribution by PX , its
13 The noise requirements of a masked implementation are more accurately expressed in

terms of a side-channel Signal-to-Noise Ratio (SNR) [28], which we defer to Section 8
to keep this overview of our contributions concise.
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expected value by E[X], and its variance by V(X). We write x ∼ X to mean
that x is sampled according to the distribution of X.

Given two random variables X and Z, we denote their joint probability
distribution by PXZ and their product distribution by PX ⊗ PZ , i.e., (PX ⊗
PZ)(x, z) = PX(x) · PZ(z), where PX and PZ are the marginal distributions of X
and Z, respectively. Note that if X and Z are independent, then PXZ = PX ⊗PZ .
We use uppercase calligraphic letters, such as S and T , to denote sets. We write
log for the base-2 logarithm and ln for the natural logarithm.

3.2 The Leakage Simulation Paradigm

In this section, we formally define our notion of simulation of one family of
leakages by another family. We follow the definition from [9].

Definition 4 (Leakage simulation [9]). Given a random variable X supported
on X and two families F(X) and G(X) of leakage functions from X, we say
that F(X) is ε-simulatable from G(X) if for all f ∈ F(X) there is a (possibly
inefficient) randomized algorithm Simf such that

(X, Z) ≈ε

(
X, SimLeak(X,·)

f

)
, (3)

where Z = f(X) and the oracle Leak(X, ·) accepts a single query g ∈ G(X) and
outputs g(X). Furthermore, when G(X) is the family of all ℓ-bounded leakage
functions g : X → {0, 1}ℓ and Equation (3) holds, we say that F(X) is ε-
simulatable from ℓ bits of bounded leakage.

3.3 A Basic Property of Hockey-Stick Divergences

We state here a basic but useful property of hockey-stick divergences, generalizing
the analogous property for the statistical distance.

Lemma 1. Let P and Q be two distributions supported on X . Then,

SDt(P ; Q) =
∑
x∈X

max(0, P (x) − 2tQ(x)).

Proof. Looking ahead, this simple argument is implicit in our proof of Theorem 6.
We isolate and reproduce it here for the sake of exposition.

Let B = {x ∈ X | P (x) − 2tQ(x) > 0}. For any set S ⊆ X , it holds that

P (S) − 2tQ(S) =
(
P (S \ B) − 2tQ(S \ B)

)
+
(
P (S ∩ B) − 2tQ(S ∩ B)

)
≤ 0 +

(
P (S ∩ B) − 2tQ(S ∩ B)

)
≤ P (B) − 2tQ(B)

=
∑
x∈X

max(0, P (x) − 2tQ(x)),

where the two inequalities and the last equality use the definition of B. The
desired statement now follows because SDt(P ; Q) = supS [P (S) − 2tQ(S)]. ⊓⊔
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4 Our Leakage Models

In this section we recall the definitions of (t, δ)-SD-Noisy and (t, δ)-RevSD-
Noisy leakage, and introduce the more general (t, δ)-GSD-Noisy leakage model.
Intuitively, in the generalized definition, we measure the leakage quality by
bounding the hockey-stick divergence between the distributions PXZ and PX ⊗ Q
for any suitable distribution Q over Z (not necessarily the marginal PZ).

Definition 2 ((t, δ)-SD-noisy leakage). Let X be a random variable over X .
Then, we say that a randomized function f : X → Z is a (t, δ)-SD-noisy leakage
function from X if, denoting Z = f(X), it holds that

SDt(PXZ ; PX ⊗ PZ) ≤ δ.

We denote the set of (t, δ)-SD-noisy leakage functions from X by SDt,δ(X), and
we also say that Z = f(X) is (t, δ)-SD-noisy leakage from X.

Definition 3 ((t, δ)-RevSD-noisy leakage). Let X be a random variable over
X . Then, we say that a randomized function f : X → Z is a (t, δ)-RevSD-noisy
leakage function from X if, denoting Z = f(X), it holds that

SDt(PX ⊗ PZ ; PXZ) ≤ δ.

We denote the set of (t, δ)-RevSD-noisy leakage functions from X by RevSDt,δ(X),
and we also say that Z = f(X) is (t, δ)-RevSD-noisy leakage from X.

Definition 5 ((t, δ)-GSD-noisy leakage). Let X be a random variable over
X . Then, we say that a randomized function f : X → Z is a (t, δ)-GSD-noisy
leakage function from X if, denoting Z = f(X), there exists a distribution Q on
Z such that

SDt(PXZ ; PX ⊗ Q) ≤ δ.

We denote the set of (t, δ)-GSD-noisy leakage functions from X by GSDt,δ(X),
and we also say that Z = f(X) is (t, δ)-GSD-noisy leakage from X.

In the next sections we establish useful properties of these leakage models.
In Section 5, we establish simulation theorems for (t, δ)-GSD-noisy leakage (and
thus for (t, δ)-SD-noisy leakage too) from bounded leakage. In particular, this
yields Theorem 1. Then, in Section 6, we prove composition theorems for these
models, yielding Theorem 2. The relationship between RevSD-noisy leakage and
the random probing model is studied in Section 7. Empirical evaluations of these
different leakage models are finally discussed in Section 8.

In the full version, we study the relationship between the (t, δ)-SD-noisy
leakage model and the dense leakage model studied by [9].
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5 Simulating GSD-Noisy Leakage via Bounded Leakage

In this section we prove our main simulation theorem, which states (using the
language from Definition 4) that the class of (t, δ)-GSD-noisy leakages is (α + δ)-
simulatable from ℓ = t + log ln(1/α) bits of bounded leakage for any α > 0. This
immediately implies Theorem 1. The simulator we use to establish this result
is based on rejection sampling. It is a close variant of the simulator used in [9]
with a (key) new, more streamlined and tighter, analysis. The rejection sampling
simulator is described in Algorithm 1 for some (t, δ)-GSD-noisy leakage Z from
X witnessed by a distribution Q in the sense that for all sets S it holds that

PXZ(S) ≤ 2t · (PX ⊗ Q)(S) + δ.

Function Leak(x, r)
for i := 0 to 2ℓ − 1 do

Sample z according to Q using the random tape r

with probability min
(

2−t · PXZ(x, z)
(PX ⊗Q)(x, z) , 1

)
do

return i
end

end
return 2ℓ

end
Function SimLeak(x,·)

r ← a random tape
i := Leak(x, r)
z′ ← the i-th sample according to Q using random tape r
return z′

end
Algorithm 1: The (t, ℓ)-rejection sampling simulator for the (t, δ)-
GSD-noisy leakage Z = f(X), where Q is a distribution on Z such that
PXZ(S) ≤ 2t · (PX ⊗ Q)(S) + δ for all sets S.

Remark 1 (Differences with respect to the simulator from [9]). We next outline
the main differences with respect to the simulator from [9]. First, in our simulator
the zi’s are sampled according to Q, and not necessarily PZ . Moreover, we always
output the last sample if we have rejected all previous samples. Finally, and
of particular importance to our improved analysis, we accept a given sample
z and stop with probability min

(
2−t · PXZ(x,z)

(PX ⊗Q)(x,z) , 1
)

. This means that if 2−t ·
PXZ(x,z)

(PX ⊗Q)(x,z) ≥ 1 then we accept z and stop with probability 1. In contrast, the
simulator from [9] rejected z automatically in this case.
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Remark 2 (Complexity of our simulator). We discuss the computational complex-
ity of our simulator, as it may be relevant for some (non-information-theoretic)
reductions from noisy leakage-resilience to bounded leakage-resilience. Computing
the ℓ leakage bits in Algorithm 1 requires sampling and rejecting 2ℓ samples in the
worst case. Assuming that we have efficient procedures for sampling according
to Q and for computing the functions PXZ(·, ·), PX(·), and Q(·), which is a
reasonable assumption when Q = PZ (i.e., when focusing on (t, δ)-SD-noisy leak-
age) for the noise distributions commonly used to model real-world side-channel
attacks, we conclude that our simulator is efficient whenever ℓ is logarithmic in
our parameter of interest. According to our simulation theorem, this holds when
t is logarithmic, which is also the setting we study empirically in Section 8.

We begin by proving the following two lemmas which are stating useful
properties of our rejection sampling simulator in Algorithm 1.

Lemma 2. Let R(x) = 1 −EQ

[
min

(
2−t · PXZ(x,Z)

(PX ⊗Q)(x,Z) , 1
)]

be the sample rejec-
tion probability for the (t, ℓ)-rejection sampling simulator on input X = x, and
let PSim|X=x be the conditional distribution for the simulator’s output on input
X = x. Then,

PSim|X=x(z) =
2ℓ−2∑
i=0

R(x)i min
(
2−tPZ|X=x(z), Q(z)

)
+ R(x)2ℓ−1Q(z)

≥ 1 − R(x)2ℓ

1 − R(x) min
(
2−tPZ|X=x(z), Q(z)

)
.

Proof. In the first iteration, the simulator samples a given z and accepts it with
probability

px(z) = min
(

2−t PXZ(x, z)
(PX ⊗ Q)(x, z) , 1

)
· Q(z)

= min
(

2−t PXZ(x, z)
PX(x) , Q(z)

)
= min

(
2−tPZ|X=x(z), Q(z)

)
,

and rejects otherwise. The probability that the first round does not result in an
“accept” is 1 − Ez∼Q[px(z)] = R(x). Extending this, the probability of accepting
and outputting z in the first round is px(z), the probability of rejecting in the first
round and accepting and outputting z in the second round is R(x) · px(z), and,
in general, the probability of rejecting in the first r − 1 rounds and accepting and
outputting z in the r-th round is R(x)r−1 ·px(z). However, in the last iteration the
sample is always output, whether it would be rejected or accepted – the probability
of reaching this stage and observing output z is R(x)2ℓ−1 · Q(z). Summing over
the 2ℓ stages of the algorithm gives the first equation for PSim|X=x(z).
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For the inequality, notice that Q(z) ≥ min
(
2−tPZ|X=x(z), Q(z)

)
, so

PSim|X=x(z) ≥
2ℓ−1∑
i=0

R(x)i min
(
2−tPZ|X=x(z), Q(z)

)
.

We obtain the desired inequality by summing this partial geometric series. ⊓⊔

Lemma 3. Let f be a (t, δ)-GSD-noisy leakage function from X and Z = f(X).
Let Q be the associated distribution. Then, the (t, ℓ)-rejection sampling simulator’s
rejection probability equals

R(x) = 1 −
∑
z∈Z

min
(
2−tPZ|X=x(z), Q(z)

)
,

and satisfies 1 − 2−t ≤ R(x) ≤ 1 and EX [R(X)] ≤ 1 − 2−t(1 − δ).

Proof. The acceptance probability 1 − R(x) is

1 − R(x) = EQ

[
min

(
2−t PXZ(x, Z)

(PX ⊗ Q)(x, Z) , 1
)]

=
∑
z∈Z

min
(

2−t PXZ(x, z)
(PX ⊗ PQ)(x, z) · Q(z), Q(z)

)
=
∑
z∈Z

min
(
2−tPZ|X=x(z), Q(z)

)
≤
∑
z∈Z

2−tPZ|X=x(z)

= 2−t,

which gives the first equation and the lower bound on R(x). On the other hand,
we have R(x) ≤ 1 because it is a probability. Taking expectation over X gives

1 − EX [R(X)] =
∑
x∈X

PX(x)
∑
z∈Z

min
(
2−tPZ|X=x(z), Q(z)

)
= 2−t

∑
x∈X ,z∈Z

min
(
PXZ(x, z), 2t(PX ⊗ Q)(x, z)

)
= 2−t

∑
x∈X ,z∈Z

(
PXZ(x, z) − max

(
0, PXZ(x, z) − 2t(PX ⊗ Q)(x, z)

))

= 2−t

1 −
∑

x∈X ,z∈Z
max

(
0, PXZ(x, z) − 2t(PX ⊗ Q)(x, z)

)
≥ 2−t(1 − δ),

where the final inequality holds by Lemma 1, since SDt(PXZ ; PX ⊗ Q) ≤ δ as f
is a (t, δ)-GSD-noisy leakage function from X. ⊓⊔
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The following result immediately implies Theorem 1.

Theorem 4. Let f be a (t, δ)-GSD-noisy leakage function from X. Let Z = f(X)
and Z ′ denote the output of the (t, ℓ)-rejection sampling simulator on input X.
Then, we have that

(X, Z) ≈ε (X, Z ′)

for ε = e−2ℓ−t + δ. In particular, for any α > 0 the class of (t, δ)-GSD-noisy
leakage functions from X is (α + δ)-simulatable from ℓ bits of leakage when

ℓ ≥ t + log ln(1/α).

Proof. We must bound the statistical distance between the true secret-leakage
joint distribution PXZ and the fake joint distribution PXZ′ , where Z ′ denotes
the simulator’s output. This will be achieved by first bounding, for any given x,
the statistical distance D(x) between the conditional distributions (Sim|X = x)
and (Z|X = x) using Lemma 2. Then, we use Lemma 3 to obtain the desired
bound on the original statistical distance. We have that

D(x) =
∑
z∈Z

max
(
0, PZ|X=x(z) − PSim|X=x(z)

)
≤
∑
z∈Z

max
(

0, PZ|X=x(z) − 1 − R(x)2ℓ

1 − R(x) min
(
2−tPZ|X=x(z), Q(z)

))

≤

(
1 − 1 − R(x)2ℓ

1 − R(x) · 2−t

)∑
z∈Z

max
(
0, PZ|X=x(z)

)
+ 1 − R(x)2ℓ

1 − R(x)
∑
z∈Z

max
(
0, 2−tPZ|X=x(z) − min

(
2−tPZ|X=x(z), Q(z)

))
= 1 − 1 − R(x)2ℓ

1 − R(x) · 2−t

+ 1 − R(x)2ℓ

1 − R(x)

(∑
z∈Z

2−tPZ|X=x(z) −
∑
z∈Z

min
(
2−tPZ|X=x(z), Q(z)

))

= 1 − 1 − R(x)2ℓ

1 − R(x) 2−t + 1 − R(x)2ℓ

1 − R(x)
(
2−t − 1 + R(x)

)
= R(x)2ℓ

,

where the first inequality follows from Lemma 2, and the second to last equality
from Lemma 3. Next, notice that R(x)2ℓ is a convex function of R(x), and so we
can upper bound this by a line drawn through the lower and upper bounds for
R(x). Therefore,

D(x) ≤ (1 − 2−t)2ℓ

+ 1 − (1 − 2−t)2ℓ

2−t
(R(x) − 1 + 2−t). (4)
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Finally, we can use Lemma 3 to get a bound on the statistical distance between
PXZ and PXZ′ , where Z ′ is the simulator’s output, which equals EX [D(X)]. We
have that

EX [D(X)] ≤ (1 − 2−t)2ℓ

+ 1 − (1 − 2−t)2ℓ

2−t
(EX [R(X)] − 1 + 2−t)

≤ (1 − 2−t)2ℓ

+ 1 − (1 − 2−t)2ℓ

2−t
(1 − 2−t(1 − δ) − 1 + 2−t)

= (1 − 2−t)2ℓ

+
(

1 − (1 − 2−t)2ℓ
)

δ

= (1 − 2−t)2ℓ

(1 − δ) + δ

≤ e−2ℓ−t

+ δ.

The first inequality uses Equation (4). The second one follows from Lemma 3. The
final inequality holds because 1 + y ≤ ey for any real y. This yields the first part
of the theorem statement. To see the second part, set ℓ so that α ≥ e−2ℓ−t . ⊓⊔

It is natural to wonder how this analysis compares to the indirect one in
which we first establish the parameters of (t, δ)-SD-noisy leakage as dense leakage,
and then apply the known simulator for dense leakage in [9]. The main difference
is that we would get worse simulation error through the indirect approach. More
precisely, while Theorem 4 guarantees simulation of (t, δ)-GSD-noisy leakage with
error α + δ using t + log ln(1/α) bits of bounded leakage, the indirect approach
above would only yield simulation error α + c ·

√
δ using the same amount of

bounded leakage, for a small constant c ≥ 1. Reducing the
√

δ term in the
simulation error to δ is a significant improvement for practical applications.

Intuitively, the reason why the indirect approach via dense leakage can only
yield a

√
δ term in the simulation error is that the definition of dense leakage

in [9] imposes a “with high probability” constraint on X and Z. Namely, if Z
is dense leakage from X, then with high probability over the choices X = x
and Z = z we must have PZ|X=x(z) ≤ T · PZ(z) for an appropriate “density
parameter” T . On the other hand, GSD-noisy leakage imposes an “in expectation”
constraint on X and Z. Namely, if Z is (t, δ)-GSD-noisy leakage from X, then
we only require that Ex∼PX

[SDt(PZ|X=x; Q)] ≤ δ. One can move from the “in
expectation” constraint to the “with high probability” constraint via Markov’s
inequality. However, this incurs a loss, which causes exactly the δ vs.

√
δ difference

between the two approaches. Our direct analysis of the simulator relies only on
the “in expectation” constraint of GSD-noisy leakage, avoiding this loss.

6 Composition of GSD-Noisy Leakages

We now prove our main composition theorem. The theorem below is for two
conditionally independent leakages, and applying it m − 1 times combined with
Theorem 4 directly implies Theorem 2. The approach we take is an adaptation
of Dwork and Lei’s proof of basic composition for differential privacy [16].
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Theorem 5. Suppose that f1 and f2 are (t1, δ1)-GSD-noisy and (t2, δ2)-GSD-
noisy leakage functions from X, respectively, and that the random variables
Z1 = f1(X) and Z2 = f2(X) are independent when conditioned on X. Then
f(X) = (f1(X), f2(X)) is a (t1 + t2, δ1 + δ2)-GSD-noisy leakage function from X.

Proof. Let Q1 and Q2 be the distribution on Z1 and Z2 (the supports of Z1 =
f1(X) and Z2 = f2(X), respectively) that establish f1 and f2 as GSD-noisy
leakages, respectively. Then, set Q to be the distribution Q1 ⊗ Q2. To prove our
result, we must show that for any set S ⊆ X × Z1 × Z2,

PXZ1Z2(S) ≤ 2t1+t2(PX ⊗ Q)(S) + δ1 + δ2.

Using Lemma 1, for i ∈ {1, 2} let

δi(x) = SDt(PZi|X=x; Qi) =
∑

zi∈Zi

max(0, PZi|X=x(zi) − 2tiQi(zi)).

In particular, E[δi(X)] = SDt(PXZi ; PX ⊗ Qi) ≤ δi because fi is a (ti, δi)-GSD-
noisy leakage from X. Let Sx = {(z1, z2) | (x, z1, z2) ∈ S} and Sx,z1 = {z2 |
(x, z1, z2) ∈ S}. Then,

PZ1Z2|X=x(Sx) = EZ1|X=x[PZ2|X=x(Sx,Z1)]
= EZ1|X=x

[
min

(
1, PZ2|X=x(Sx,Z1)

)]
≤ EZ1|X=x

[
min

(
1, 2t2Q2(Sx,z1) + δ2(x)

)]
≤ δ2(x) +

∑
z1∈Z1

PZ1|X=x(z1) min
(
1, 2t2Q2(Sx,z1)

)
≤ δ2(x) +

∑
z1∈Z1

2t1Q1(z1) min
(
1, 2t2Q2(Sx,z1)

)
+
∑

z1∈Z1

max
(
0, PZ1|X=x(z1) − 2t1Q1(z1)

)
min

(
1, 2t2Q2(Sx,z1)

)
≤ δ2(x) + 2t1+t2

∑
z1∈Z1

Q1(z1)Q2(Sx,z1)

+
∑

z1∈Z1

max
(
0, PZ1|X=x(z1) − 2t1Q1(z1)

)
= 2t1+t2Q(Sx) + δ1(x) + δ2(x).

Finally, take the expectation over X to get

PXZ1Z2(S) = EX [PZ1Z2|X(Sx)]
≤ EX

[
2t1+t2Q(Sx) + δ1(x) + δ2(x)

]
≤ 2t1+t2(PX ⊗ Q)(S) + δ1 + δ2.

The theorem statement follows. ⊓⊔
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Remark 3. It is well known that differential privacy enjoys even stronger com-
position theorems in which parameters do not scale linearly with number of
queries, but instead scale with its square root. Given that our leakage model
is closely connected to the metric used in differential privacy, it is natural to
wonder whether we can derive a similar improvement in the context of GSD-noisy
leakages. We show that the answer is positive for a natural restriction of the
GSD-noisy leakage model in the full version of the paper.

7 Simulating RevSD-Noisy Leakage via Random Probing

In their seminal work, Duc, Dziembowski, and Faust [14] showed that δ-SD-noisy
leakage can be perfectly simulated in the probing leakage model of Ishai, Sahai,
and Wagner [23]. An unsatisfactory and unavoidable feature of this connection
is that the probing noise required to simulate δ-SD-noisy leakage grows linearly
with the field size of the secret [15]. In this section, we generalize this connection
to (t, δ)-RevSD-noisy leakage, and show that in this alternative model we can
alleviate the field size penalty for simulation by random probing leakage. Before
stating our main result in this direction, we define p-random probing leakage.

Definition 6 (p-random probing leakage [14]). Let X be some random
variable supported on X . We say that a random variable Z ∈ X ∪{⊥} is p-random
probing leakage from X if Pr[Z = X] = p and Pr[Z = ⊥] = 1 − p.

We have the following result.

Lemma 4. Let X be uniformly distributed over X and suppose that Z is (t, δ)-
RevSD-noisy leakage from X. Then, Z is 0-simulatable by p-random probing
leakage from X with p = (1 − 2−t) + δ2−t|X |.

Duc, Dziembowski, and Faust [14, Lemma 2] proved this result only for the
special case t = 0, which corresponds to δ-SD-noisy leakage.

Proof (Lemma 4). Our argument follows the proof of [14, Lemma 2] closely. For
any given leakage z, we define

π(z) = min
x∈X

PZ|X=x(z).

Note that π(z) ≥ 0 for all z and
∑

z π(z) ≤
∑

z PZ(z) = 1. We will also assume
that Z is not independent of X, in which case there is a z such that π(z) < PZ(z),
and so

∑
z π(z) < 1. When Z is independent of X it is clear that we can perfectly

simulate it using 0-random probing leakage.
The main component of this argument consists in showing that π is “almost”

a probability distribution, in the sense that
∑

z π(z) is approximately equal to 1.
More precisely, we have that

1 −
∑

z

π(z) =
∑

z

PZ(z) −
∑

z

min
x∈X

PZ|X=x(z)
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=
∑

z

(1 − 2−t)PZ(z) +
∑

z

[2−tPZ(z) − min
x∈X

PZ|X=x(z)]

= (1 − 2−t) +
∑

z

max
x

[2−tPZ(z) − PZ|X=x(z)]

≤ (1 − 2−t) +
∑

z

max
x

max(0, 2−tPZ(z) − PZ|X=x(z))

≤ (1 − 2−t) +
∑

z

∑
x

max(0, 2−tPZ(z) − PZ|X=x(z))

= (1 − 2−t)

+ 2−t · |X | ·
∑

z

∑
x

max(0, (PX ⊗ PZ)(x, z) − 2tPXZ(x, z))

≤ (1 − 2−t) + 2−t · |X | · δ.

The last equality uses the fact that X is uniform, and so PX(x) = 1/|X | for all
x ∈ X . The last inequality uses the fact that Z is (t, δ)-RevSD-noisy leakage
from X and Lemma 1. Let p = 1 −

∑
z π(z). By the computation above, we

know that 0 < p ≤ (1 − 2−t) + 2−t · |X | · δ. We proceed to show that Z can
be perfectly simulated by p-random probing leakage from X. Denote the p-
random probing leakage from X by W . For each x, we have that PW |X=x(x) = p
and PW |X=x(⊥) = 1 − p. Consider the randomized function g which receives
w ∈ X ∪ {⊥} as input and acts as follows:

– If w = x for some x ∈ X , then g(w) = z with probability PZ|X=x(z)−π(z)
p ;

– If w = ⊥, then g(⊥) = z with probability π(z)
1−p .

Note that g is well-defined, since
∑

z Pg(⊥)(z) =
∑

z
π(z)
1−p = 1−p

1−p = 1 and∑
z Pg(x)(z) =

∑
z

PZ|X=x(z)−π(z)
p = 1−(1−p)

p = 1. We claim that g(W ) and Z
have the same distribution conditioned on X = x. In fact,

Pg(W )|X=x(z) = p ·
PZ|X=x(z) − π(z)

p
+ (1 − p) · π(z)

1 − p
= PZ|X=x(z).

This implies that (X, Z) ≡ (X, g(W )), and so Z is 0-simulatable by p-random
probing leakage. ⊓⊔

We refer the reader to the full version of the paper for an alternative reduction
that avoids the field size penalty at the cost of a positive statistical simulation
error and for the application of our reductions to leakage-resilient circuits.

8 Empirical Evaluations

We complete the paper by investigating and discussing the practical implications
of our findings. For this purpose, we start by describing how to compute the
parameters t and δ of our new leakage model in Section 8.1. We then describe our
evaluation settings in Section 8.2 and use them to discuss reductions to bounded
leakage and random probing in Section 8.3 and Section 8.4, respectively.
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8.1 Parameter Computation for Noisy Leakages

Given PXZ for two random variables X and Z, we want to determine for which
parameters t and δ we have that Z is (t, δ)-SD-noisy leakage from X. We prove
the following result, which may be seen as a generalization of the fact that for
statistical distance

SD(P ; Q) = sup
S

|P (S) − Q(S)|

the supremum is attained by the set B = {x | P (x) > Q(x)}.

Theorem 6. Let X and Z be any two random variables. Define the set

B = {(x, z) | PXZ(x, z) > 2t(PX ⊗ PZ)(x, z)}.

Then, we have that Z is (t, δ)-SD-noisy leakage from X with

δ = PXZ(B) − 2t(PX ⊗ PZ)(B).

Proof. First, note that for any fixed t we may write

δ = sup
S

[PXZ(S) − 2t(PX ⊗ PZ)(S)], (5)

where the supremum is taken over all subsets S of X × Z. Now, for any such set
S we have that

PXZ(S) − 2t(PX ⊗ PZ)(S)
=
(
PXZ(S \ B) − 2t(PX ⊗ PZ)(S \ B)

)
+
(
PXZ(S ∩ B) − 2t(PX ⊗ PZ)(S ∩ B)

)
≤ 0 + (PXZ(B) − 2t(PX ⊗ PZ)(B)).

To see the inequality, first note that for any (x′, z′) ∈ S \ B we have that
PXZ(x, z) − 2t(PX ⊗ PZ)(x, z) ≤ 0. Then, note also that

PXZ(S ∩ B) − 2t(PX ⊗ PZ)(S ∩ B) =
∑

(x,z)∈S∩B

(PXZ(x, z) − 2t(PX ⊗ PZ)(x, z))

and that each term in this sum is positive by construction of B. This shows that
the set B is the worst case scenario, and so, by Equation (5), we conclude that

δ = PXZ(B) − 2t(PX ⊗ PZ)(B),

as desired. ⊓⊔

The same result can be used to compute the parameters of RevSD-noisy leakages,
by just swapping the roles of the product and the joint distributions.

In many scenarios the process laid out in Theorem 6 (i.e., computing the δ
parameter in practice) can be further optimized. For example, if the deterministic
part of Z takes on only a small amount of values we can go over all fixings
of Z = z, compute δz = PXZ|Z=z(B) − 2t(PX ⊗ PZ|Z=z)(B), and recombine as
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δ =
∑

z∈Z PZ(z) · δz. Moreover, note that Theorem 6 also provides an upper
bound for the δ parameter for Z as (t, δ)-GSD-noisy leakage from X.

In certain cases we may obtain an even smaller δ value by choosing the
distribution Q carefully. In the following, we nevertheless focus on the (t, δ)-
SD-noisy model, which leads to simple and intuitive results for our leakage
application, and we leave the study of improved parameter estimation algorithms
for GSD-noisy leakage as an interesting problem for future work.

8.2 Evaluation settings

As a usual starting point, we considered the setting where leakages are written
as the sum of a deterministic function d and a Gaussian noise R [37]:

Z = d(X) + R. (6)

In this setting, the amount of noise in the leakages is conveniently captured by
the Signal-to-Noise Ratio (SNR) [28], defined as the ratio between the variance
of the leakage function’s deterministic part and the variance of the noise:

SNR = V(d(X))
V(R) · (7)

As a complement to the textbook Hamming weight leakages, we considered noisy
linear leakages where the deterministic function can be written as

d(X) =
n∑

i=1
βi X(i),

with X(i) the i-th bit of X and the βi’s are real-valued coefficients. It generalizes
the Hamming weight function where βi = 1 for all i’s. In order to evaluate
the impact of leakage models that significantly deviate from the Hamming
weight model, we considered two linear functions with coefficients that gradually
deviate from one, and measured the distance between these models and the
Hamming weight one with Pearson’s correlation coefficient. The least variable
model (with correlation 0.9) is illustrated and compared to the Hamming weight
one in Figure 1, for n = 8. The more variable model (with correlation 0.5) goes
significantly beyond the deviations experimentally observed in [22].

8.3 Simulating SD-Noisy Leakage via Bounded Leakage

We first computed the δ parameter (i.e., the simulation error) as a function of
the SNR, for target values X of different bit sizes n and different amounts of
bounded leakage t in the simulation for Hamming weight leakages.

This enables straightforward optimizations since d(X) can only take n + 1
values and has variance n/4 in this case. The δ parameter can therefore be easily
evaluated for large (e.g., up to 128-bit) values, which we report in Figure 2.
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Fig. 1. Joint distribution of the noisy Hamming weight leakage function and exemplary
noisy linear leakage function for different SNR values (with bit size n = 8).

Comparing the three first plots with the lower right one allows us to put
forward the massive advantage of the (t, δ)-SD-noisy leakage model over δ-SD-
noisy leakages (i.e., the t = 0 case). As outlined in introduction, reducing the
simulation error using the techniques from [9] can only be done by reducing
the SNR. But this scales badly because the MI and SD metrics of unprotected
implementations decrease linearly with the noise variance and standard deviation,
respectively [15]. The introduction of the t parameter circumvents this issue since
as the noise increases, it allows limiting the area where the joint distribution is
2t times larger than the product one to the extreme Hamming weights (i.e., the
set B in Section 8.1), which only occur with exponentially small probability.

Quite naturally, a simulation using t = log(n) bits of bounded leakage is
not specially impressive for (noiseless) Hamming weight leakages since a trivial
simulator perfectly succeeds in this case. As a first step towards confirming the
generality of our results, the figure also shows that simulation with negligible
errors can also be obtained with t = log(n)/2 or t = log(n)/3 bits of bounded
leakage, at the cost of increasing the noise (i.e., decreasing the SNR).

For example, for n = 128, SNR = 10−3 and t = log(n)/2, we have δ ≈ 2−128

with t = 3.5 and Theorem 1 indicates that we can simulate with statistical error
2−128 + α with 3.5 + log ln(1/α) bits of bounded leakage from X. Comparing the
right plots of Figure 2, we can see that for the same SNR, using the SD (i.e.,
t = 0) would lead to δ ≈ 2−7, and SNRs in the 2−128 range would be required
to reach a 2−128 simulation error. Plugging in these numbers in our PRNG
example of Section 2.1 finally shows that our results have direct application to
leakage-resilient constructions under reasonable noise requirements.

We similarly evaluated the aforementioned linear leakage models that deviate
from the Hamming weight one. Those models are interesting abstractions since
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Fig. 2. Estimation of the δ parameter for SD-noisy leakages, in function of the SNR for
Hamming weight leakages (with bit sizes n and an amount of bounded leakage t).

they are bijective without noise, meaning that the trivial simulation would require
n bits of bounded leakage to succeed. Nevertheless, Figure 3 shows results that
are very similar to Figure 2. This can be explained by looking at Figure 1 where
it is clear that the amount of noise needed to “hide” the deviation of the linear
model from the Hamming weight one is much lower than the amount of noise
needed to simulate. For example, the lower plots of Figure 1 correspond to a
SNR of 10 which is the rightmost point of the plots in Figure 3. This confirms
that our simulation theorem applies to broad classes of leakage functions.14

Fig. 3. Estimation of the δ parameter for SD-noisy leakages, in function of the SNR for
linear leakages (with bit sizes n and an amount of bounded leakage t).

14 This time we only computed the δ parameter for n = 8 because computing it
(exactly) for larger n values is computationally intensive. By approximating the
product distribution as a Gaussian, it is nevertheless possible to obtain efficient
approximations of the δ parameter for larger n values, which should become accurate
as the noise increases, and which we leave as a scope for further investigations.
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Discussion. Based on the previous results, the last mile for implementers is to
ensure SNRs in the 10−3 range. Under the (heuristic but usual) assumption
that side-channel adversaries are computationally-bounded and can only exploit
the signal of small (e.g., 8-bit to 32-bit) targets, a round-based hardware imple-
mentation of the AES, as can be found on off-the-shelf microcontrollers, should
already be enough for this purpose [40]. Assuming (unrealistic) computationally
unbounded adversaries able to characterize a full 128-bit state, one should con-
sider more specialized architectures such as the unrolled ones in [7], where low
SNRs are due to physical reasons (i.e., the weak leakage of the combinatorial
logic) rather than algorithmic ones (i.e., computational limitations).

Similar observations can be made about composition. Taking the AES case
study again, a round-based implementation will produce a ciphertext in 10 cycles,
and each cycle will provide the adversary with a few leakage samples (typically
correlated with the Hamming weight of the intermediate value). Denoting the
intermediate AES results after i rounds as Xi = ρi(P, K), with P the plaintext,
K the master key and ρ the round function, we can assume for simplicity that the
adversary will collect leakage samples of the form Zi = f(Xi) and that every Zi

is (t, δ)-SD-noisy. Since the Xi’s are bijectively connected to K, the application
of Theorem 2 implies that one would need 10 times more bounded leakage to
simulate in this case (with simulation error multiplied by 10). Based on such a
(worst-case) analysis, one should favor (low-latency) unrolled implementations to
ensure high security levels. But this theorem again assumes that the leakage of
all computations in an implementation are equally easy to exploit, which is not
true for computationally-bounded adversaries [21]. So a reasonable rule-of-thumb
to obtain less conservative results would be to apply composition results with
only a fraction of the AES rounds, in which case round-based implementations
should already lead to high security levels at lower implementation cost.

Note that the practical estimations in this section leverage two additional
assumptions. First, the estimation of t and δ assume a uniformly distributed X.
This is a natural assumption in side-channel analysis since the adversary has
in general no efficient ways to force intermediate computations to values of her
choice (e.g., extreme Hamming weights). This is even enforced in leakage-resilient
constructions where the block cipher inputs are fixed by design [19, 6, 10]. But,
of course, our theoretical results are applicable to non-uniform distributions as
well. Besides, we recall that our composition theorem assumes the noise part of
the leakage samples Zi to be independent, which is a standard approximation.

So, overall, we can conclude that the requirements that our simulation and
composition theorems impose are reachable for actual hardware implementations
using known techniques and at non-negligible but affordable cost. Besides, and
most importantly, they formally confirm that it is possible to simulate noisy
leakages from bounded leakage with exponentially small error without masking
(as witnessed by Figures 2 and 3), which in turn formally confirms the interest of
the re-keying techniques used in leakage-resilient cryptography.
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8.4 Simulating RevSD-Noisy Leakage via Random Probing

As a final investigation, Figure 4 reports the t and δ parameters corresponding to
RevSD-noisy leakage, in a setting similar to Figure 2. The upper left plot is for
t = log(n)/2 and it is used to confirm that the trends for this model are similar
to the ones of SD-noisy leakages (essentially for the same reason that increasing
the t parameter leads to computing δ by integrating over low-probability areas,
where the product distribution is 2t times larger than the joint distribution).

Fig. 4. Estimation of the δ parameter for RevSD-noisy leakages, in function of the SNR
for Hamming weight leakages (with bit sizes n and an amount of bounded leakage t).

Concretely, though, the relevant t values are lower than in the simulation
via bounded leakage. This is because the p parameter of the random probes
in Theorem 3 is at least (1 − 2−t). Hence, Figure 4 provides values for t = 0.5
(which corresponds to p > 0.3), t = 0.25 (which corresponds to p > 0.15) and
t = 0.125 (which corresponds to p > 0.08). Assuming n = |X | = 256 (as when
masking the AES S-box) and a SNR of 10−3, we see that even for t = 0.125 we
have δ ≈ 2−13, which is significantly below the field size and therefore amortizes
the penalty term δ · 2−t · |X | ≈ 0.02, only impacting the security level mildly.
Assuming |X | = 2 as in a bitslice cipher, this penalty term falls down to 2 · 10−4.

As mentioned in introduction, Prest et al. already proposed a noisy leakage
model that is tightly connected to the random probing model, using the Average
Relative Error (ARE) metric [34]. They provide an approximate closed-form
formula for this metric in the context of Hamming weight leakages with Gaussian
noise (that becomes accurate for large noise levels / low SNRs):

ARE(X|Z) = n

σ
√

2π
,
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where σ is the leakage noise’s standard deviation. Since the SNR of the Hamming
weight leakage function equals n/4

σ2 , we can directly compare the two approaches
in this case. For this purpose, we plot in Figure 5 the random probing probability
p in function of the SNR using the ARE and our reduction, for different values
of the t parameter. It leads to the following main observations:

– By adapting the t parameter to the SNR, the 1 − 2−t term (reflected by the
plateau’s on the left parts of the plots) is not dominating.

– The loss compared to the ARE increases with the field size, but is smaller
than the field size (e.g., for n = 8, we lose a factor ≈ 2 rather than 28).

Fig. 5. Reductions to random probing using the ARE and RevSD metrics in function
of the SNR for Hamming weight leakages and bit sizes n = 1, 2, 4 and 8.

So despite not improving the state of the art for such a realistic leakage
function (as in the case of bounded leakage), our reduction gets reasonably
close while improving the seminal one of Duc, Dziembowski and Faust with
new techniques, confirming the unifying nature of hockey-stick divergences for
cryptography in the presence of leakage. Besides, it is worth recalling that the
ARE is a worst-case metric whereas the (G)SD and Rev(G)SD metrics are
average-case metrics. So the results of Prest et al. and our results conceptually
differ in the sense that the former deal with the field size loss in the metric
whereas the latter deal with it in the reduction to the random probing model.
Therefore, both types of models shed different light on the same issue.

We finally mention two recent works that tackled the tightness of the reduction
from the noisy leakage model to the random probing model. First, in [8], Brian
et al. show how to get rid of the field size loss at the cost of a quadratic loss
on the noise parameter, leveraging the average random probing model of [18].
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Second, in [11], Béguinot et al. study a variant of the ARE metric (coined Doeblin
coefficients) that is better connected to the attacks’ success.15 They additionally
show that a loss when moving from the (average-case) noisy leakage model to
the (worst-case) random probing model is in general unavoidable.
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