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Abstract. Explainability is an increasingly demanded feature for the
deployment of LLMs. In this context, it has been shown that the explana-
tions of models that are equivalent from the accuracy viewpoint can differ
due to their training randomness, leading to a need to characterize the ex-
planations’ distribution and to understand the origin of this sensitivity. In
this paper, we investigate whether the fine-tuning surface, defined as the
number of bits that are fine-tuned in a LLM, can serve as a good proxy for
the stability of its explanations. We answer negatively and show that two
different approaches for reducing the fine-tuning surface, namely quantiz-
ing and freezing (a part of) the models, lead to very different outcomes.

1 Introduction

The progresses of Large Language Models (LLMs) create increasing challenges
for their training and understandability. On the training side, current LLMs
are so complex that only a few actors have the resources to pre-train them.
Pre-trained models can transform texts into relevant yet general embeddings,
which are then fine-tuned to specific tasks [6]. On the explainability side, vari-
ous criteria have been introduced in the literature, but their evaluation can be
challenging and a formal analysis of their interplay is missing [10]. In this paper,
we are concerned with the sensitivity of the explanations of LLMs to the ran-
domness used in their training, put forward in [3], and its link with the models’
fine-tuning surface, defined as the amount of fine-tuned bits in a LLM.

The starting observations made in [3] are twofold. First, it is possible to train
LLMs with different random seeds in order to produce models that are equiva-
lent from the accuracy viewpoint. Second, the explanations of these equivalent
models, for example produced with the Layerwise Relevance Propagation (LRP)
method [5], can lead to very different explanations. This raises a need to char-
acterize the sensitivity to the training randomness of LLM’s explanations. At
the very least, it is for example necessary to verify that the distribution of the
explanations corresponding to indistinguishable seeds differs sufficiently from
the uniform (which would make the selection of an explanation completely arbi-
trary). Box-plots provide a simple and visual tool for this purpose. Metrics like
the explanations’ signal, noise and signal-to-noise ratio can serve as quantitative
surrogates [4], although defining the right metric to capture the sensitivity of
LLM’s explanations to the training randomness remains an open problem.
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In this context, the main research question we tackle is whether a model’s
fine-tuning surface is a good proxy for the sensitivity to the training randomness
of its explanations. That is, we aim to assess whether this sensitivity depends of
the amount of information (quantified in bits) modified inside the model during
the fine-tuning. We consider two options for this purpose. One is to simplify
the models by quantizing their weights [7, 8]. The second is to freeze a part of
the models so that they are not subject to fine-tuning. We answer negatively
and show that the impact of these two options can be very different for a case
study of opinionated journalistic text classification in French. We then discuss
the consequence of our empirical findings for the explanability of LLMs.

2 Background

2.1 Dataset and machine learning models

We run our experiments on the InfOpinion dataset presented in [2]. It contains
10,000 news and was built to train and evaluate a classification model distin-
guishing between texts belonging to the journalistic opinion genre (editorials,
commentaries, reviews, . . . ) from texts belonging to the information genre (press
agency dispatches, news articles, . . . ) This binary categorization relies solely on
the articles’ annotation by their authors as either opinion or information. The
dataset is split in 3 parts: a training set (80%), a validation set (10%) and a test
set (10%). The task is to predict the binary category of a given text.

We consider two types of models for this purpose: fully fine-tuned ones and
partially fine-tuned ones, that we next denote as frozen. Both are based on the
CamemBERT French pre-trained transformer model [11]. In the first case, we
fine-tune the model on the training set during 2 epochs, as presented in [6]. In
the second case, we first probe the internal representation of each text from the
training set at the last layer of the pre-trained model without retraining it. As
in [12], we then use the first token’s representation as a text embedding and train
a RoBERTa classification head during 20 epochs on top of these embeddings.
This process allows us to reduce the fine-tuning surface by reducing the amount
of parameters affected by the fine-tuning. Note that the randomness used by
the frozen and fine-tuned models can be controlled via a seed parameter. This
seed rules the initialization of the layers, the order of the training dataset, and
the neurons that are deactivated by the dropout layers during training.

These two types of models can be quantized, which consist in reducing the
size of some of the model’s parameters or weights [7, 8]. This process reduces the
fine-tuning surface by lowering the amount of bits used by some of the parameters
(mainly in the linear layers of the model). We restrict our study to post-training
quantization without quantization-aware training (i.e., we don’t retrain our mod-
els after quantization). The two most common ways of quantizing are to use 8-bit
or 4-bit floating point parameters (FP8 or FP4) and to use 4-bit NormalFloat
(NF4). We use the FP4 and NF4 techniques in the paper, as implemented in
the bitsandbytes library (https://github.com/TimDettmers/bitsandbytes). It
follows that we consider 6 types of models: the finetuned and the frozen ones,
used either with no quantization or with a FP4 or a NF4 quantization.



2.2 Equivalent models and explanations’ stability

To study the impact of the training randomness on the explanations of equivalent
models, we train each model for 200 different random seeds, like in [3, 4]. As
a result, we obtain 200 versions of fine-tuned and frozen transformer models.
Each of these versions can be quantized using the FP4 or NF4 technique. The
accuracy is then evaluated on a test set of 1, 000 news (n = 1, 000). We finally
select a subset of m most accurate models such that the difference between the
best (a) and worst (b) accuracies of the models in the subset is not statistically
significant. For this purpose, we compute the Z statistic [9], which can detect
whether two proportions (here, the accuracies a and b) are different:

z =

∣∣∣∣∣∣ a− b√
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2 )

n

∣∣∣∣∣∣ (1)

We next consider that z values greater than 1.96 (p < 0.025) mean that
the accuracies of the best and the worst models in a subset are different. For
lower values of the z statistic, we conclude that these accuracies do not differ
significantly and therefore, we denote the models in the subset as equivalent from
the performance viewpoint. Concretely, starting from 200 models, a restriction
to m = 100 was sufficient to reach model equivalence in the subset.

The sensitivity of the explanations to the training randomness can be repre-
sented visually with box-plots. Alternatively, [4] proposes a quantification based
on the explanations’s signal and noise. The signal is defined as the variance
(across the words of a text) of the attention means (across the seeds). The noise
is defined as the mean (across the words of a text) of the attention variances
(across the seeds). The Signal-to-Noise Ratio (SNR) is defined as their ratio.

2.3 Explainability method

Once models are trained, we use the Layer-wise Relevance Propagation (LRP)
method to generate word-level explanations for every text [1]. It works by back-
propagating the relevance from the last layer of the network using conservation
constraints, so that the relevance of each neuron is redistributed to the neurons
of the previous layer based on their respective gradient. This principle is then
followed through the whole network up to the input layer in order to get word-
level explanations.1. As the constraints are more difficult to satisfy for some
layers in the models, this method can be improved with additional rules. In this
paper, we used an improved version from [5] and next refer to it as LRP.

3 Accuracy and fine-tuning surface analysis

From Table 1, we can first see that reducing the amount of trainable bits of
the models, whether it is by freezing some of the parameters or by quantizing

1 Since CamemBERT uses the roBERTa tokenization to work with word pieces, we post-
process LRP explanations to obtain one explanation per word instead of one per word piece.



Avg. accuracy Fine-tuning surface
Ft 0.960 ± 0.6 3.5× 109

Frozen 0.960 ± 0.3 1.8× 107

Ftq(FP4) 0.967 ± 0.5 7.4× 107

Ftq(NF4) 0.961 ± 0.6 7.4× 107

Frozenq (FP4) 0.952 ± 0.4 2.4× 106

Frozenq (NF4) 0.951 ± 0.5 2.4× 106

Table 1: Accuracy and fine-tuning surface of the 100 equivalent models.

some of the weights, does not lead to a significant drop in accuracy. This is
rather surprising, as we divide the fine-tuning surface by approximately 1000
when going from the fully-fine-tuned model to the quantized frozen ones.

4 Explanations’ sensitivity to the training randomness

We first illustrate the distribution of the attention that LRP assigns to each
word of a given text in our subset of equivalent models. Figure 1 gives this
distribution with box-plots, where wider boxes reflect a higher variability of the
explanations corresponding to different random seeds. The two bottom (resp.,
upper) rows display the sensitivity to the training randomness of the fine-tuned
(resp., frozen) model and its quantized version. We can first observe that the
different models, despite their very close accuracy, do not give attention to the
same words on average. For example, the frozen models tend to look more on
words 2 and 4 (Policiers/Policeman and Chargé/Rushed) than the fine-tuned
models, while the fine-tuned models tend to look more at the end of the text
(Selon les journalistes/According to the journalists). We can also notice that
the box-plots of the frozen model and its quantized version are thinner than the
ones of the fine-tuned models. Finally, the quantization has little impact on the
top words considered by the models. However, even if it lowers the fine-tuning
surface, it tends to increase the box sizes, in particular for the frozen model.

Fig. 1: Boxplot for a short text (FP4 quantization).



Fig. 2: Signal, noise and SNR for a short text (FP4 quantization).

Fig. 3: Signal, noise and SNR for a long text (FP4 quantization).

We confirm these intuitive observations by estimating the explanations’ sig-
nal, noise and SNR metrics of [4] for a short and a long text in Figures 2 and 3.
For readability, we only reports results for FP4 quantization (results for NF4
are similar). We first note that there is no statistically significant differences for
the signal (i.e., the amount of statistical information in the explanations) with
different FTS. We next observe that the noise (i.e., the explanations’ sensitivity
to randomness) is not reduced by the models’ weights quantization. This is pre-
sumably because it does not bridge the gap between the complexity of the models
and the simplicity of the (LRP-based) explanations we consider. That is, de-
spite using quantized weights, fine-tuned models probably exploit features of the
texts to classify that hardly reduce to word-level explanations [4]. By contrast,
freezing a part of the models significantly reduces the explanations’ sensitivity
to randomness. We discuss the impact of this approach in conclusions.

5 Conclusion and further works

The sensitivity of the explanations of LLMs to their training randomness leads to
new challenges for their trustworthy use. While it may not always be detrimental
to their explainability (e.g., if this sensitivity was shown to emulate a variability
found for human annotators), it requires characterization efforts that are cur-
rently not standard and raises questions on the origin of this sensitivity and
how to deal with it. In this paper, we contribute to this issue by investigating
whether the fine-tuning surface is a good proxy for this sensitivity.



Our results provide empirical evidence that it is not. On the one hand, sim-
plifying the models by quantization does not reduce the explanations’ sensitivity
to the training randomness. This raises the question whether other model sim-
plifications, or other explanation methods, could lead to different results. On
the other hand, freezing the models significantly reduces this sensivity. However,
such a freezing is hiding the sensitivity issue more than it is impacting it. It takes
the frozen part of the model as a ground truth whereas it is also the outcome
of a pre-training, the explainations of which are possibly affected by an equally
high sensitivity to the training randomness (even harder to characterize due to
computational reasons). It should therefore be viewed as a possible separation
of duties, which only makes sense if the frozen part of the model used to generate
text embeddings is itself explainable via other (e.g., linguistic) means.

Eventually, and from a more methodological viewpoint, our results are depen-
dent on a definition of signal and noise that is connected to simple (word-level,
first-order, univariate) explanations [4]. The questions whether the explanations’
variance due to random seeds only corresponds to noise (as defined) or whether
a more semantic definition of signal (e.g., focused on fewer words) could help
refining our conclusions therefore remain an interesting research direction.
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