
Area Efficient Polynomial Arithmetic Accelerator
for Post-Quantum Digital Signatures and KEMs

Dina Kamel� ID and François-Xavier Standaert ID

UCLouvain, ICTEAM, Crypto Group, Louvain-la-Neuve, Belgium
{dina.kamel, fstandae}@uclouvain.be

Abstract. Cryptographic schemes relying on Lattice-based hard learn-
ing problems are popular options for post-quantum signature and key en-
capsulation. This is for example witnessed by the selection of CRYSTALS-
Dilithium and CRYSTALS-Kyber as new standards by the National In-
stitute for Standards and Technology (NIST). Many other algorithms
are currently being considered by the scientific community. All lattice-
based algorithms rely on polynomial operations, among which the poly-
nomial multiplication is generally one of the most expensive from the
implementation viewpoint. As a result, the Number Theoretic Trans-
form (NTT) is very frequently considered to speed up the implementa-
tions of these algorithms. For this purpose, we propose a semi-generic
lightweight hardware architecture that supports polynomial operations
for multiple lattice-based schemes, namely Dilithium, Hawk, Raccoon,
Kyber and Polka. Implementation results on an Artix-7 FPGA show
that our design features a relatively small footprint compared to state-
of-the-art implementations. For example, our polynomial arithmetic core
requires 2604 LUTs, 770 FFs and 4 DSPs for Dilithium and 1583 LUTs,
458 FFs and 2 DSPs for Kyber and can operate at 100 MHz. It com-
putes NTT/INTT, point-wise-multiplication, multiply-accumulate and
addition/subtraction in 519, 134, 135 and 131 clock cycles for Dilithium
and in 455, 134, 135 and 131 clock cycles for Kyber, respectively.

Keywords: Kyber · Dilithium · HAWK · Raccoon · Polka · Number theoretic
transform (NTT) · Polynomial arithmetic · Lightweight design · FPGAs

1 Introduction

Post-Quantum Cryptography (PQC) has gained a significant momentum in re-
cent years to match the advancements on the development of quantum com-
puters [24]. Indeed, implementing Shor’s algorithm [37] on quantum computers
can break current public key cryptosystems (e.g Rivest-Shamir-Adleman (RSA)
and Elliptic Curve Cryptography (ECC)) that rely on the hardness of integer
factorization and discrete logarithms [9]. In 2016, the National Institute for Stan-
dards and Technology (NIST) launched a call for standardization of new post-
quantum public key algorithms, covering both public-key encryption and digital

https://orcid.org/0000-0002-7238-9567
https://orcid.org/0000-0001-7444-0285

2 Dina Kamel� ID and François-Xavier Standaert ID

signatures. The lattice-based CRYSTALS-Dilithium [4] is one of three digital
signature schemes selected for standardization in 2022. CRYSTALS-Kyber [2],
which belongs to the same CRYSTALS family as Dilithium, was the only se-
lected scheme for Key Encapsulation Mechanism (KEM). On top of that, the
NIST posted a call for additional signature proposals to be considered in the
PQC standardization process to diversify its post-quantum signatures portfolio.
The lattice-based signature schemes Hawk [8] and Raccoon [35] were submitted
to this call and Hawk has been accepted for the second round.

All these lattice-based schemes use operations in the polynomial ring Rq =
Zq[X]/(Xn+1), where n is the degree of the polynomial. One of the most costly
operations is the multiplication of high-degree polynomials. The Number Theo-
retic Transform (NTT) reduces the complexity of high-order polynomial multi-
plication from O(n2) (in case of direct school-book multiplication) to O(n log n).
As a result, most lattice-based schemes choose their parameters’ sets to enable
using the NTT allowing fast and efficient polynomial arithmetic computation.
This leads the core module that handles all polynomial arithmetic to be quite
similar. Hence, it suggests that having a generic design of a polynomial arith-
metic module that can be tailored to the above-mentioned lattice-based schemes
would be quite useful. At the same time, developing efficient implementations
that satisfy a wide spectrum of applications from high-performance through mid-
range to light-weight for different platforms (software and hardware) is a growing
research field. In this work, we focus on light-weight hardware applications.

Many efficient hardware implementations of the polynomial arithmetic unit in
the literature explore the trade off between the hardware cost and performance.
Here are some examples in the case of Dilithium. Beckwith et al. [5] proposed a
polynomial arithmetic unit featuring a radix-4 NTT that calculates two layers
of NTT/INTT at a time. This allowed to reduce the latency and the cost of
memory access while reordering coefficients during these operations to optimize
the BRAM utilization. Similarly, Wang et al. [38] employed a radix-4 NTT to
implement the polynomial multiplication. However, they opted for a conflict-
free memory mapping scheme applied to four-bank Block RAMs. In contrast,
Land et al. [23] opted for a radix-2 NTT that takes advantage of readily avail-
able DSPs on low-end FPGA. Another approach by Zhao et al. [43] is to use a
radix-2 multipath delay commutator (R2MDC) NTT architecture that has fewer
memory accesses and a simpler control logic compared to in-place NTT archi-
tectures. Gupta et al. [17] on the other hand used two dual-port RAMs in their
radix-2 NTT implementation to allow reading and writing their internal data
in a ping-pong fashion. A different strategy was presented by Pham et al. [34]
emphasizing effective hardware resource reuse and minimizing redundancies.

Similarly, there exists many works in the literature that target resource-
constrained hardware applications for Kyber. For example, Ni et al. [33] pre-
sented a compact polynomial arithmetic module promoting a BRAM-free radix-
2 NTT architecture where BRAM units are replaced with three smaller FIFOs.
Both Nguyen et at. [31] and Xing et al. [39] adopted a similar approach. Zhang

https://orcid.org/0000-0002-7238-9567
https://orcid.org/0000-0001-7444-0285

Area Efficient PAU for PQC Digital Signatures and KEMs 3

et al. [41] on the other hand implemented a ping-pong memory access scheme
for their polynomial arithmetic module that uses a radix-2 NTT architecture.

Since Hawk is quite recently introduced, to our knowledge there has not been
any hardware implementations for it yet in the literature. Besides the actual
proposal, there has been one software implementation [15]. Nevertheless, as a
lattice-based signature, the implementation of its polynomial arithmetic core is
expected to be similar to that of Dilithium and Kyber.

Finally, and in order to cover a wider spectrum of algorithms, we also chose
to implement Raccoon which is a lattice-based digital signature submitted to
NIST in response to its call for additional digital signature schemes [35]. The
reason behind our choice is the appealing argument of Raccoon being a masking-
friendly scheme that should enable better resistance against side-channel analysis
attacks [19]. This appears as a natural motivation given the significant cost of
protecting Dilithium against leakage [3]. For a similar reason, we added Polka
to our portfolio [18], which is a lattice-based encryption scheme developed to
take side-channel leakage into account. The design is based, among others, on
avoiding “leaky” functions such as the Fujisaki-Okamoto transform and adopting
masking-friendly key-homomorphic computations.

Based on this state of the art, in this work, we therefore propose an effi-
cient low-cost hardware design that is suitable to perform polynomial opera-
tions among which the complex NTT/INTT for any of the target lattice-based
schemes mentioned above. Concretely, our main contributions are threefold:
– First, our polynomial arithmetic module design is semi-generic in a way that

provides compile-time configurability for the scheme parameters allowing
easy implementation of any of the aforementioned lattice-base standards.
Depending on whether log n is even or odd and whether the choice of the
prime modulus q allows a fully-splitting ring or not, only minor changes in
the core implementation of the polynomial arithmetic unit will be required.
Namely, the address generation of the polynomial coefficients and the twiddle
factors in the address control logic are the target of such slight modifications.
Besides, the modular reduction is not generic – hence the full design is only
semi-generic. The reason behind this is the fact that customized optimiza-
tions are required to design the Barrett reduction module for each standard
(as they obviously have different prime moduli) in order to minimize its
resource utilization for our target low-cost applications.

– Second, our compact FPGA-based polynomial arithmetic architecture has
a small area footprint for most implemented standards. On an Artix-7, our
core uses 2604 Look-Up Tables (LUT)s, 770 Flip-Flops (FF)s and 4 Digital
Signal Processor (DSPs) to implement Dilithium. For Hawk1024 and prime
modulus p2, our core occupies 4451 LUTs, 1139 FFs and 8 DSPs. In the
case of Raccoon (using the prime modulus q2 = 33292289), the resource
utilization is 3458 LUTs, 998 FFs and 4 DSPs. For Kyber, our core uses
1583 LUTs, 458 FFs and 2 DSPs. Regarding Polka, it utilizes 2512 LUTs,
593 FFs and 2 DSPs. Our core operate at a maximum of 83 to 100 MHz
depending on the standard.

4 Dina Kamel� ID and François-Xavier Standaert ID

– Third, we provide the Verilog code for our design at https://git-crypto.
elen.ucl.ac.be/dkamel/genericpolyarithunit to support open source
research, something currently lacking in the literature.

The rest of the paper is organized as follows. Section 2 introduces preliminaries.
The proposed poly-arithmetic architecture and design details of its sub-blocks
are presented in Section 3. Section 4 discusses the implementation results and
compares with related work. Section 5 concludes the paper.

2 Preliminaries

2.1 Notations

We denote by Zq the ring of integers modulo the prime q and by Rq = Zq[X]/(Xn

+ 1) the polynomial ring in X modulo Xn + 1, with n the degree of the poly-
nomial. We represent a polynomial with regular lowercase (e.g. a), a vector of
polynomials with bold lowercase (e.g. a) and a matrix of polynomials with bold
uppercase (e.g. A). The i-th coefficient of a polynomial is denoted by ai. The ·
symbol denotes the multiplication operation whereas ◦ refers to the point-wise
polynomial multiplication. Letters with a hat symbol correspond to their repre-
sentation after NTT (e.g. â).

2.2 Standards

Our design covers several lattice-based post-quantum standards for both digital
signature and Key Encapsulation Mechanism (KEM).

CRYSTALS-Dilithium. Dilithium is a lattice-based digital signature recently
standardized by NIST as ML-DSA in FIPS 204 [29] for secure Post-Quantum
Cryptography (PQC) in 2024. Its hardness is based on the Module Learning
With Errors (MLWE) and the Module Short Integer Solution problems. The
signature scheme design is based on the “Fiat-Shamir with Aborts” paradigm
proposed in [26, 27]. The initial proposal is described by Ducas et al. in [12]
and later refined in the NIST PQC submission [4]. Its main characteristics are:
randomness generation from a uniform distribution instead of a discrete Gaussian
distribution which is difficult to implement securely and efficiently, [13], adhere
the public key and signature sizes to a minimum, and easiness to vary the security
level by changing the size of the module (dimensions of the matrices and vectors).
Relying on an algebraic structured lattice (MLWE) problem rather than an ideal
lattice (Ring-LWE) or completely unstructured lattice (LWE) problems was an
optimal intermediate solution that moves further away from the weaknesses of
ideal lattice problems while still profiting from their efficiency without the extra
cost of using unstructured LWE [12]. As for the rational behind building the
digital signature scheme using the “Fiat-Shamir with aborts” paradigm was to
reduce the size of the mask randomness and thus the signature significantly [27].
An extra rejection sampling step is needed to perform the aborts. Dilithium uses
a 23-bit prime modulus q = 8380417 and degree n = 256 for all security levels.

https://orcid.org/0000-0002-7238-9567
https://orcid.org/0000-0001-7444-0285
https://git-crypto.elen.ucl.ac.be/dkamel/genericpolyarithunit
https://git-crypto.elen.ucl.ac.be/dkamel/genericpolyarithunit

Area Efficient PAU for PQC Digital Signatures and KEMs 5

Hawk. Hawk is a lattice-based signature scheme whose hardness is based on
the module Lattice Isomorphism Problem (LIP) that responded to the NIST
PQC call for additional digital signature scheme. The scheme was first intro-
duced in [13] and later optimized in [8]. The goal of this call was to diversify its
post-quantum signature portfolio which is mostly based on structured lattices
so far (namely; CRYSTALS-Dilithium and Falcon). Hawk has been recently se-
lected to move forward to the second round of the standardization process. Its
main features are: randomness generation is either from a centred binomial dis-
tribution (during key generation) or from uniform distribution (during signing),
compact public key and signature sizes (even smaller than those of Dilithium),
floating-point free arithmetic which enables its implementation on various (con-
strained) hardware devices, small memory footprint and no rejection-sampling.
The basic idea was to combine the use of module lattice based on LIP and
ideas from NTRUSign and Falcon in order to design a highly efficient signature
scheme. Hawk uses two 31-bit primes p1 = 2147473409 and p2 = 2147389441.
The degree n is either 512 or 1024 for security level I or IV, respectively.

Raccoon. As a response to the NIST PQC call for additional digital signature
schemes Raccoon [35] was submitted, but was not selected in the second round.
It is a masking-friendly lattice-based digital signature scheme based on the “Fiat-
Shamir” paradigm. As Dilithium, its hardness is based on the MLWE problem.
The main objective of Raccoon is to build a scheme that is inherently resistant
against side-channel attacks by making its subroutines either masking friendly
(with quasilinear overheads) or ones that do not need to be masked at all. This
was motivated by the fact that even though the standardized lattice-based signa-
tures Dilithium and Falcon and the hash-based signature SPHINCS are efficient
and their black-box security is well-understood, they remain vulnerable against
side-channel attacks if left unprotected [10, 16, 20, 21, 28] (as some examples).
The cost of protecting these schemes using the masking countermeasure is ex-
tremely expensive. Indeed, lattice-based signatures contain subroutines (mainly
the rejection loop and the hash functions) which when masked incur quadratic
or worse than quadratic overheads, see for example [3]. Raccoon uses a 49-bit
modulus q = 549824583172097 which is a composite number consisting of two
primes: 24-bit q1 = 16515073 and 25-bit q2 = 33292289. The degree n = 512 for
all security levels.

CRYSTALS-Kyber. Belonging to the same CRYSTALS family as Dilithium,
Kyber is a lattice-based KEM recently standardized by NIST as ML-KEM in
FIPS 203 [30] for post-quantum secure KEMs in 2022. It is based on the hardness
of MLWE where a CPA-secure Public Key Encryption (PKE) scheme is used
to create a CCA-Secure KEM by applying a variant of the Fujisaki-Okamoto
(FO) transform. Its main characteristics are: secret and noise generation from
a centred binomial distribution which is easily, efficiently, and securely sampled
from, adopting an implicit rejection approach, using a compress function to
discard some low-order bits in the ciphertext; thus reducing its size, and easiness
to vary the security level by changing the size of the module (dimensions of the

6 Dina Kamel� ID and François-Xavier Standaert ID

matrices and vectors). Kyber uses a 12-bit modulus q = 3329 and a degree
n = 256 for all security levels.
Polka. Polka [18] is a lattice-based encryption scheme that relies on the re-
cently introduced Learning With Physical Rounding (LWPR) assumption [14].
As Raccoon, the main goal of Polka is to enable efficient side-channel protected
implementations, but for encryption schemes. To do that, Polka leverages var-
ious features such as the rigidity property introduced by Bernstein and Per-
sichetti [6] which allows avoiding the FO transform that proved to be a source
of side-channel leakage. It also proposes to randomize the decryption process
and adopts key-homomorphic computations that are easily masked with linear
overheads. Polka uses a 16-bit modulus q = 5939 and a degree n = 1024 that
satisfies security level I.

2.3 Number Theoretic Transform

All the before-mentioned standards (and others) share the fact that their main
algebraic operation is high-order polynomial multiplication (whether on a ma-
trix, vector or a single polynomial). The NTT is the most efficient method for
multiplying two high-order polynomials where the complexity is reduced from
O(n2) in case of school-book multiplication for example to O(n log n) in case of
NTT. The NTT is the special case of Discrete Fourier Transform (DFT) over
finite-field polynomials in Rq = Zq[X]/(Xn + 1). This ring structure enables
the implementation of the Negative Wrapped Convolution-based (NWC) NTT
effectively. Accordingly, n is a power of two and the prime modulus q satis-
fies q ≡ 1 mod 2n, such that the primitive 2n-th root of unity ζ in Zq exists;
thus allowing a “fully-splitting” of the NTT algorithm. The NTT transform can
therefore be written as:

âj =

n−1∑
i=0

aiζ
(2j+1)i mod q, j ∈ [0, n− 1]

Conveniently, the inverse NTT (INTT) is also straightforward and can be written
as:

ai = n−1
n−1∑
j=0

âjζ
−(2i+1)j mod q, i ∈ [0, n− 1]

Now, one can compute polynomial multiplication efficiently using NTT as a ·b =
INTT(NTT(a) ◦NTT(b)). The radix-2 NTT is the simplest form of NTT where
a polynomial of length n is split into two parts of length n/2 and this can go
on recursively until the original polynomial is reduced to degree 0. One efficient
algorithm is the Cooley-Tukey (CT) butterfly that takes advantage of the fact
that ζn ≡ −1 mod q. As a result it holds that Xn + 1 = Xn − ζn = (X

n
2 −

ζ
n
2)× (X

n
2 + ζ

n
2) mod q. If this step is repeated log n times then the polynomial

Xn + 1 can therefore be written as

Xn + 1 =

n−1∏
i=0

(X − ζ2i+1) =

n−1∏
i=0

(X − ζ2brvlog n(i)+1),

where the brvlogn(i) is the bit reversal of the unsigned log n-bit integer i. This
essentially implies that if the coefficients of the polynomial are kept in natural

https://orcid.org/0000-0002-7238-9567
https://orcid.org/0000-0001-7444-0285

Area Efficient PAU for PQC Digital Signatures and KEMs 7

𝜁4

𝜁2

𝜁4

𝜁4

+

+

+

+

−

−

−

−

+

+

+

+

−

−

−

−

𝜁

𝜁4

𝜁2

𝜁6

𝜁6

𝜁5

𝜁3

𝜁7

+

−

+

−

+

−

+

−

𝑎0

𝑎1

𝑎2

𝑎3

𝑎4

𝑎5

𝑎6

𝑎7

ො𝑎0

ො𝑎4

ො𝑎2

ො𝑎6

ො𝑎1

ො𝑎5

ො𝑎3

ො𝑎7

+

−

+

−

+

−

+

−

𝜁−5

𝜁−3

𝜁−7

𝜁−1

+

+

+

+

−

−

−

−

𝜁−2

𝜁−2

𝜁−6

𝜁−6

+

+

+

+

−

−

−

−

𝜁−4

𝜁−4

𝜁−4

𝜁−4

𝑎0

𝑎1

𝑎2

𝑎3

𝑎4

𝑎5

𝑎6

𝑎7

NTT𝑛0→𝑏𝑜
 𝐶𝑇 NTT𝑏0→𝑛𝑜

−1 𝐺𝑆

ൗ1
8

ൗ1
8

ൗ1
8

ൗ1
8

ൗ1
8

ൗ1
8

ൗ1
8

ൗ1
8

Fig. 1: Signal flow graph of radix-2 NTT/INTT for n = 8.

order (no), after the NTT operation they will be in bit-reversed order (bo). On
the other hand, the INTT can be efficiently implemented using the Gentleman-
Sande (GS) butterfly algorithm by inverting the mapping process. Keeping the
inputs in bit-reversed order will result in naturally ordered coefficients after the
INTT operation. This is quite convenient as it avoids the cost of reordering
the polynomial coefficients [36]. Figure 1 shows the flow diagram for an 8-point
radix-2 NTT and INTT using CT and GS algorithms, respectively.

2.4 NTT in Target Standards

The ring structure of Dilithium, Hawk, Raccoon and Polka were carefully chosen
to enable the fully-splitting of the NWC NTT effectively without zero-padding.
Accordingly, n is power of two and the prime modulus q satisfies q ≡ 1mod 2n,
such that the primitive 2n-th root of unity ζ in Zq exists. Therefore, the defining
polynomial Xn + 1 of the ring R factors into n polynomials of degree 1 modulo
q and the NTT of a polynomial a ∈ Rq is a vector of n polynomials of degree
zero. Powers of ζ in the range (0 : n − 1) are referred to as twiddle factors.
Polynomial multiplication can be efficiently computed using NTT as described
in the previous section.

As for Kyber the prime modulus q is chosen to satisfy q ≡ 1modn (instead
of q ≡ 1mod 2n), such that the primitive n-th root of unity (instead of 2n-th
root of unity) ζ in Zq exists. The idea of decreasing the prime modulus was
presented in [44] citing the main advantage as enabling the reduction of both
the public key and the ciphertext sizes. As a result of this choice, the NTT
algorithm cannot fully split. However, the defining polynomial Xn + 1 of the
ring R factors into n/2 polynomials of degree 2 modulo q and the NTT of a
polynomial a ∈ Rq is a vector of n/2 polynomials of degree one. This leads
to powers of ζ being in the range (0 : n/2 − 1). Polynomial multiplication can
be computed using NTT as a · b = INTT(NTT(a) ◦ NTT(b)). Nevertheless,
NTT(a) ◦ NTT(b) = â ◦ b̂ = ĉ consists of the n/2 products in the form of
ĉ2i+ ĉ2i+1X = (â2i+ â2i+1X).(b̂2i+ b̂2i+1X) mod(X2− ζ2brv(log n−1)(i)+1), where
i is the coefficient index and brv(logn−1) is the bit reverse operation over (log n−
1)−bits. As a result, an additional school-book multiplication is necessary to
complete the polynomial multiplication.

8 Dina Kamel� ID and François-Xavier Standaert ID

For each of Dilithium, Kyber and Polka, the prime moduli used are all less
than 31 bits which can easily fit on 32-bit platforms (mostly applicable to soft-
ware). However in the case of Hawk and Raccoon, the moduli needed are larger
than 32-bits. As a result, both schemes opted to apply the Chinese Remain-
der Theorem (CRT) and split the large modulus into two smaller primes to fit
into 32-bit platforms, as explained in Section 2.2, then perform the necessary
operations over these two primes.

3 Proposed Poly-Arithmetic Architecture

In this section, we describe the architecture of our proposed semi-generic poly-
arithmetic core which is responsible for the computation of all polynomial op-
erations in the target standards.

3.1 Architecture overview

Figure 2a demonstrates the high-level architecture of the poly-arithmetic mod-
ule. Our design consists of two butterfly units (BFUs) arranged in parallel (BFU
2X1), an address control unit with conflict-free memory access (thanks to an
integrated address resolver block), a twiddle factor memory (TF ROM) as well
as some data and control multiplexers. The proposed poly-arithmetic module is
able to perform both radix-2 NTT and INTT as well as polynomial arithmetic
operations such as pointwise multiplication (PWM), multiply and accumulate
(MAC), addition (ADD) and subtraction (SUB) for all target standards. Addi-
tionally, the poly-arithmetic unit handles all interactions with the data RAMs
where the polynomial coefficients are stored.

To meet the bandwidth requirement, the data RAMs are designed as a 4-bank
memory block depicted in Figure 2b similar to [23,42]. The goal is to ensure that
the four different polynomial coefficients accessed in parallel during NTT/INTT
are always located in four different banks to guarantee a conflict-free memory
access without having to shuffle and reorder the coefficients. Although a more
efficient BRAM configuration that has a higher utilization of each memory row
was proposed by [5], their final BRAM cost of a full Dilithium implementation at

BFU 2X1
datai

acc
datao

Other

ADD/
SUB/
MAC

D
at

a
 M

ux

0

TF ROM

z

D
at

a
 M

ux

NTT/
INTT

Other

Address Controller

Ω addr

D
at

a
 M

ux

rbank

D
at

a
 M

ux
D

at
a

 M
ux

wbank

RAM1

RAM0

RAM2

raddr waddr

0

PW
M

M
AC

N

TT
/

IN
TT

AD
D

/
SU

B

(a)

D
at

a
 M

ux

B0

B1

B2

B3

i=0

i=1

i=2

i=3

i=0

i=1

i=2

i=3

D
at

a
 M

ux

rbankwbank

R
A

M

(b)

Fig. 2: (a) Proposed architecture and (b) internal RAM and data MUX structure.

https://orcid.org/0000-0002-7238-9567
https://orcid.org/0000-0001-7444-0285

Area Efficient PAU for PQC Digital Signatures and KEMs 9

security level 5 is slightly less than that of [23]. The banks are implemented with
dual-port 36-kbit block RAMs capable of reading and writing in the same clock
cycle. Each BRAM is configured as 1024 × 36 memory. This configuration can
store up to 16 polynomials of degree n = 256, 8 polynomials of degree n = 512 or
4 polynomials of degree n = 1024. Although the utilization of each memory row
is not maximized for all target standards (66%, 86%, 69% in case of Dilithium,
Hawk and Raccoon, respectively and 33% and 44% in case of Kyber and Polka,
respectively), for the sake of generality we decided to keep such configuration. For
NTT, INTT a single data RAM is needed. The addition, subtraction and point-
wise multiplication operations require two data RAMs where coefficients of two
distinct polynomials are stored. As for the MAC operation, three data RAMs are
employed. Two RAMs store the coefficients of two polynomials to be multiplied
and the third RAM stores their product which is later accumulated as required
by operations over vectors of polynomials. The data multiplexers/demultiplexers
are internally divided into 4 blocks, each connected to a bank RAM and con-
trolled by the address controller via the rbank and wbank signals for read and
write operations, respectively. The TFs are stored in a distributed memory (TF
ROM). Details of each block are provided in the following sections.

3.2 Dual Butterfly module

The butterflies arrangement in the BFU 2X1 block is illustrated in Figure 3.
The two BFUs, each capable of performing both CT and GS butterfly opera-
tions as well as basic arithmetic operations such as multiplication, addition and
subtraction, are placed in parallel. They process either 4 coefficients per clock
cycle during NTT/INTT or 2 coefficients per clock cycle during all other oper-
ations when the pipeline is fulfilled. The multiplexers at the inputs and outputs
provide the design with the flexibility to change between the operating modes
depending on the 3-bit mode signal as explained in Table 1.

BFU0

a0

a1

b0

b1

0/3

Other

0/3

Other

0/3

Other

Other

5/2

0/3
5/2
4/1

0/3

Other
0

0

da
ta

o[
3:

0]

da
ta

i[3
:0

]
ac

c[
1:

0]
z[

1:
0]

z 0

BFU 2X1

0/3

Other

BFU1

c0

c1

d0

d1z 1 0/3

Other0: NTT, 1: ADD
2: PWM, 3: INTT
4: MAC, 5: SUB

Fig. 3: Dual Butterfly unit.

3.3 Modular Reduction

The modular reduction is the main operation that has to be tailored to the prime
modulus adopted by each standard. Different modular reduction techniques exist

10 Dina Kamel� ID and François-Xavier Standaert ID

Table 1: Dual butterfly unit in/out interconnections. ’X’ represents a do not care
state and ’-’ denotes an unconnected input.

Operation NTT ADD PWM INTT MAC SUB
mode[2:0] 0 1 2 3 4 5

In.

datai[0] a0 a1 a1 a0 a1 a1

datai[1] a1 c1 c1 a1 c1 c1
datai[2] c0 - - c0 - -
datai[3] c1 - - c1 - -

z[0] z0 X z0 z0 z0 X
z[1] z1 X z1 z1 z1 X

acc[0] - a0 X - a0 a0

acc[1] - c0 X - c0 c0

Out.

datao[0] b0 b0 b1 b0 b0 b1
datao[1] b1 d0 d1 b1 d0 d1
datao[2] d0 0 0 d0 0 0
datao[3] d1 0 0 d1 0 0

in the literature. The most common are the Montgomery and the Barrett reduc-
tion algorithms. However, both of these algorithms require additional multipli-
cations, which are expensive in time and hardware resources. Beckwith et al [5]
implemented Barrett reduction in hardware for Dilithium by only using shifts
and additions. Nevertheless, their optimization method is highly customized to
Dilithium’s modulus using a complex Verilog code (available online [1]) and
as a result difficult to reuse in case of other moduli. Another reduction tech-
nique recursively exploits the congruency relation within the prime modulus.
For example in the case of Dilithium, q = 223 − 213 + 1, so by exploiting the
relation 223 ≡ 213 − 1 mod q recursively as in [23]. Other reduction techniques,
which are variants of Montgomery reduction, such as KRED, KRED-2X [25]
and K2RED [7] are also proposed in the literature. They require the modulus
to be a Proth prime of the form q = qh2

ω + 1, where ω > log q/2 which is not
the case for all supported standards.

An optimized Barrett reduction implementation customized for a specific
modulus using only addition, subtraction and shift operation was proposed in [22]
and used for the Dilithium modulus in [34]. The basic principle of the original
Barrett reduction is to subtract the multiplication result between the quotient
⌊U/q⌋ and the modulus q from the input number U . To avoid the expensive
division of U and q, 1/q can be replaced by T/2k which is just a right-shift
operation and T = ⌊2k/q⌋ such that:

D = (U × T) >> k,
U mod q = U −D × q,

Algorithm 1 explains the optimized version of the Barrett reduction as in [22].
The input U is split into two overlapping parts, where the upper value V and
the lower value Y intersect in minimum two bits. Instead of multiplying the
2 log q-bit value U by T , the smaller upper value V , which is the most-significant
bits (MSB)s of U replaces it then the product is scaled by ≈ 1/q (1/2⌈log q⌉+1).

https://orcid.org/0000-0002-7238-9567
https://orcid.org/0000-0001-7444-0285

Area Efficient PAU for PQC Digital Signatures and KEMs 11

Algorithm 1 Optimized Barrett reduction [22,34]

Require: U , q, l = ⌈log q⌉, T = ⌊22l/q⌋
Ensure: Z = U mod q
1: V = U >> (l − 1)
2: W = (V × T) >> (l + 1)
3: X = (W × q) mod 2l+1

4: Y = U mod 2l+1

5: if Y < X then
6: Z = 2l+1 + Y −X
7: else
8: Z = Y −X
9: end if

10: if Z ≥ q then
11: Z = Z − q
12: end if

The scaled product is then multiplied by q as in the original Barrett reduction.
Finally, the subtraction step is performed slightly different where the lower bits
of this product is subtracted from the least-significant bits (LSBs) of the input Y .
We follow the same path and optimize the modular reduction for each modulus
of the target standards. Here we present the Barrett reduction of Dilithium and
Kyber as examples due to space restrictions.

Dilithium Figure 4 illustrates the optimized Barrett reduction for Dilithium,
i.e. for the specific prime q = 8370417, where the parameter l = 23 and the
constant T = 8396807. The figure first shows a full multiplication between two
23-bit integers A and B which requires two DSPs. The DSP48 slices available on
the target Artix7 FPGA allow multiplication between signed 25-bit and 18-bit
values. As a result, to multiply two 23-bit values, two DSPs are required as well
as a shift and an addition operation which are available within the DSP slice.
The modular reduction then follows the steps in Algorithm 1. A highly optimized
method to perform the multiplication by constants (T , q) using only addition,
subtraction, xor and shift operations was detailed in [34] and presented here.
The reduction operation is divided into two parts. The upper half multiplier
(UH-MULT) sub-block handles the multiplication of the most-significant bits of
the full multiplier V = U [45 : 22] by the constant value T :

V × T = V [23 : 0]× (223 + 213 + 22 + 2 + 1)

= 213(210V [23 : 0] + V [23 : 0]) + 2(2V [23 : 0] + V [23 : 0]) + V [23 : 0]

= 213(210V [23 : 0] + V [23 : 0]) + 2(2V [23 : 0] + V [23 : 0] + V [23 : 1])

+ V [0]

V1[34 : 0] = 210V [23 : 0] + V [23 : 0]

= concat{V [23 : 0] + V [23 : 10], V [9 : 0]}

12 Dina Kamel� ID and François-Xavier Standaert ID

where, the concatenation from the MSB on the left to the LSB on the right is
denoted by the concat function.
V2[25 : 0] = 2V [23 : 0] + V [23 : 0] + V [23 : 1]

= (V [23 : 0] << 1) + V [23 : 0] + V [23 : 1]

V × T = 213V1[34 : 0] + 2V2[25 : 0] + V [0]

= 2(212V1[34 : 0] + V2[25 : 0]) + V [0]

= concat{V1[34 : 0] + V2[25 : 12], V2[11 : 0], V [0]}
V12 = V1[34 : 0] + V2[25 : 12]

Now, the output of the UH-MULT is computed as:
W [23 : 0] = (V × T) >> 24

= V12[34 : 11]
Next, the lower half multiplier (LH-MULT) manages the multiplication of W [23 :
0] by Dilithium prime modulus q.

W × q = W [23 : 0]× (223 − 213 + 1)

= 213(210W [23 : 0]−W [23 : 0]) +W [23 : 0]

= concat{210W [23 : 0]−W [23 : 0] +W [23 : 10],W [12 : 0]}
X[23 : 0] = (W [23 : 0]× q) mod 224

= concat{210W [0]−W [10 : 0] +W [23 : 13],W [12 : 0]}
Ws[10 : 0] = W [23 : 13]−W [10 : 0]
Then, the output of the LH-MULT is computed as:
X[23 : 0] = concat{210W [0] +Ws[10 : 0],W [12 : 0]}

= concat{W [0]⊕Ws[10],Ws[9 : 0],W [12 : 0]}

х

х

<<17

A[22:0]

A[22:0]

B[16:0]

B[22:17]

+

10

A

B

U[45:0]

U
[4

5:
22

]

U
[2

3:
0]

Y[
23

:0
]

Z[23:0]

𝒒

si
gn

(d
)

d

out

\

\

\

\

23

23

6

17

\

\

46

Modular reduction

<<1

co
nc

at
en

at
eV[23:0]

V[23:10]

V[9:0]

V1[34:0]

V[23:0]

V2[25:12]

V[23:1]

\
14

\
10

\
25

\
23

\
26

\
14

UH-MULT
𝑽 × 𝑻 ≫ 𝟐𝟒

concatenate

W[23:0]

W
[23:13]

W
[10:0]

W
s [10]

Ws[9:0]

W [12:0]

X[23:0]

W[0]

13

1

11

11

W
s [10:0]

35

24
V12[34:11]

LH-MULT
𝑾 × 𝒒 𝒎𝒐𝒅 𝟐𝟐𝟒

Full MULT

29

40

+

+ +

-- -

1

11

Fig. 4: Dilithium modular reduction module [34].

https://orcid.org/0000-0002-7238-9567
https://orcid.org/0000-0001-7444-0285

Area Efficient PAU for PQC Digital Signatures and KEMs 13

The X value in fact represents the multiples of q that is closest to the LSB
of the input to the reduction module Y . Finally, X is subtracted from Y at the
output of the LH-MULT sub-block and stored in Z. A multiplexer is needed in
case Z ≥ q. The design consists of 4 pipeline stages, the first two are deployed
within the full multiplier (inside the DSPs). The third pipeline stage is located at
the output of the UH-MULT sub-block. To respect the timing, a pipeline stage
is added on the LSB of the input to the reduction module U [23 : 0]. The fourth
and final pipeline stage is placed at the output of the modular reduction block.

Kyber Similar to the Barrett reduction for Dilithium, the one for Kyber is
optimized for the specific prime q = 3329, where the parameter l = 12 and the
constant T = 5039. Figure 5 first shows a full multiplication between two 12-
bit integers A and B which takes place within a single DSP slice. The modular
reduction then follows the steps in Algorithm 1. Using the same optimization
techniques as in the Barrett reduction of Dilithium, multiplication by constants
(T , q) needs only addition, subtraction, xor and shift operations.

The reduction operation is divided into two parts. The upper half multiplier
(UH-MULT) sub-block handles the multiplication of the most-significant bits of
the full multiplier V = U [23 : 11] by the constant value T :

V × T = V [12 : 0]× (212 + 29 + 28 + 27 + 25 + 23 + 22 + 2 + 1)

= 25(27V [12 : 0] + V [12 : 0]) + 22(27V [12 : 0] + V [12 : 0])

+ 2(27V [12 : 0] + V [12 : 0]) + (27V [12 : 0] + V [12 : 0]) + 23V [12 : 0]

V1[20 : 0] = 27V [12 : 0] + V [12 : 0]

= concat{V [12 : 0] + V [12 : 7], V [6 : 0]}
V × T = 25V1[20 : 0] + 22V1[20 : 0] + 2V1[20 : 0] + V1[20 : 0] + 23V [12 : 0]

= 25V1[20 : 0] + 2(2V1[20 : 0] + V1[20 : 0] + V1[20 : 1]) + V1[0]

+ 23V [12 : 0]

V2[22 : 0] = 2V1[20 : 0] + V1[20 : 0] + V1[20 : 1]

= (V1[20 : 0] << 1) + V1[20 : 0] + V1[20 : 1]

V × T = 25V1[20 : 0] + 2V2[22 : 0] + V1[0] + 23V [12 : 0]

= concat{V1[20 : 0] + V2[22 : 4], V [12 : 2], V [1 : 0] + V2[3 : 2], V2[1 : 0],

V1[0]}
V12 = V1[20 : 0] + V2[22 : 4] + V [12 : 2]

Now, the output of the UH-MULT is computed as:
W [12 : 0] = (V × T) >> 13

= V12[21 : 8]

Next, the lower half multiplier (LH-MULT) manages the multiplication of
W [12 : 0] by Kyber prime modulus q.

14 Dina Kamel� ID and François-Xavier Standaert ID

W × q = W [23 : 0]× (212 − 29 − 28 + 1)

= 28(24W [12 : 0]− 2W [12 : 0]−W [12 : 0]) +W [12 : 0]

= concat{24W [12 : 0]− 2W [12 : 0]−W [12 : 0] +W [12 : 8],W [7 : 0]}
X[12 : 0] = (W [12 : 0]× q) mod 213

= concat{24W [0]− 2W [3 : 0]−W [4 : 0] +W [12 : 8],W [7 : 0]}
Ws[4 : 0] = W [12 : 8]− 2W [3 : 0]−W [4 : 0]
Then, the output of the LH-MULT is computed as:
X[12 : 0] = concat{24W [0] +Ws[4 : 0],W [7 : 0]}

= concat{W [0]⊕Ws[4],Ws[3 : 0],W [7 : 0]}

The X value in fact represents the multiples of q that is closest to the LSB
of the input to the reduction module Y . Finally, X is subtracted from Y at the
output of the LH-MULT sub-block and stored in Z. A multiplexer is needed in
case Z ≥ q. The design consists of 4 pipeline stages as in the Barrett reduction
of Dilithium. In order to preserve timing between the different standards’ imple-
mentations, two pipeline stages are used inside the full multiplier even though,
one would have been enough in the case of Kyber. The third and fourth pipeline
stages are placed similar to the Dilithium Barrett reduction module.

3.4 Butterfly Unit

A compact fully pipelined butterfly architecture that supports all polynomial
operations leveraging resource sharing is demonstrated in Figure 6. It is inspired
by the work of Pham et al [34] where one of the four deployed computational
elements efficiently implements the CT and the GS butterfly operations as well
as the remaining arithmetic operations, such as addition, subtraction, pointwise

х
A[11:0]

B[11:0]

A

B

U[23:0]

U
[1

2:
0]

\

\

12

12

\
<<1 +C

on
ca

t.

V[12:7]
V[6:0]

V1[20:0]

V1[20:0]

V1[20:1]

V12[21:8]

\
\
7

\
22

\

\
23

V[12:2]

22
+\

11UH-MULT
𝑽 × 𝑻 ≫ 𝟏𝟑

concatenate

W[12:0]

W
[12:8]

W
[4:0]

W
s [4]

Ws[3:0]

W [7:0]

W[0]

8

5

1

1

4

W
[3:0]

<<1

LH-MULT
𝑾 × 𝒒 𝒎𝒐𝒅 𝟐𝟏𝟑

10

Z[12:0]

𝒒

d

X[12:0]

Full MULT

Modular reduction

Y[
12

:0
]

-

20

V[12:0]

U
[2

3:
11

]

6 +24

19

5

W
s [4:0]

5--

si
gn

(d
)

out

Fig. 5: Kyber modular reduction module.

https://orcid.org/0000-0002-7238-9567
https://orcid.org/0000-0001-7444-0285

Area Efficient PAU for PQC Digital Signatures and KEMs 15

multiplication and multiply-accumulate. The BFU unit is configured to operate
in 4 modes (NTT/MAC, ADD/SUB, PWM and INTT) using only the 2 LSBs
of the mode signal controlling the BFU 2X1 module. Since the MAC operation
is basically the same as one NTT butterfly operation, but with outputs only
from b0 and not b0 and b1 so they both share mode[1:0] of 0. Similarly, the
ADD and SUB operations are both done internally only outputed on different
outputs and they have the same mode[1:0] = 1 within the BFU block. They
only differ at the BFU 2X1 level where we need the full 3-bit mode to route
the correct outputs. These different modes of operations are facilitated by the
integration of 9 q-bit 2-MUXs. The butterfly module also comprises a modular
reduction block after the multiplication is performed. It uses the optimized form
of Barrett reduction as detailed in Section 3.3. Instead of multiplying with 256−1

in the last step of the INTT, a divide-by-2 operation is incorporated inside the
BFU module. This division operation only requires low-cost shift, addition and
multiplexer blocks as explained in [42]. For all target standards, the BFU block
is instantiated in the same way, only the sizes of the signals are adapted to each
standard’s data width and the corresponding Barrett reduction block is called
explicitly for each standard. The BFU block performs its operations as follows.
For NTT, the b0 = a0+a1 ·z0 mod q and b1 = a0−a1 · z0 mod q, where a0 and a1
are the input coefficients and the twiddle factor (stored in a distributed memory
in the order of its fetch request) is applied to the z0 input. The INTT operation
is carried out as b0 = (a0 + a1)/2 mod q and b1 = (a0 − a1) · z−1

0 /2 mod q.
In this case to compute z−1

0 , the twiddle factor is loaded from the memory in
reverse order (at the layer level) and subtracted from q, allowing the reuse of
the twiddle factors of NTT. This is inline with the symmetry property of the
twiddle factor ζk+n = −ζk where k is an integer. For modular multiplication, the
factors are the inputs a1 and z0, whereas input a0 is only used to accumulate the
product of previous multiplications in case of the MAC mode (used for matrix-
vector and vector-vector polynomial multiplications). As for modular addition
and subtraction, the polynomial coefficients are entered through the inputs a0
and a1 that have direct access to the adder/subtracter blocks through a few
independent multiplexers and FFs. Similar to the NTT, INTT and multiplication

0

1

1

0Modular
reduction

1

0
0

1

1

00

1

1

0

1

0

0

1

+

-
+

-

х

- ൗ𝟏 𝟐

𝒒

𝒒

𝒒

a0

z

a1

b0

b1

mode[0]

mode[0]

mode[0]

mode[0]

mode[0]

mode[1]

mode[1]

u

v

u ≥ 𝒒

u < 𝟎

ൗ𝟏 𝟐

1/2

>>1 0

1+
(𝒒 + 𝟏)

𝟐

in[0]

in
out

Fig. 6: Butterfly unit block diagram.

16 Dina Kamel� ID and François-Xavier Standaert ID

operations, a few extra registers are required to balance the pipeline latency. For
NTT, INTT and MAC operations, the latency is 7 clock cycles. As for PWM,
ADD and SUB operations, the latency is 6, 3 and 3 clock cycles, respectively.
The cost of NTT/INTT operations is n/4 · logn + c clock cycles whereas that
of the other operations is n/2 + c, where c is the latency.

3.5 Address Controller

The address controller module is responsible for generating the read/write ad-
dresses of the polynomial coefficients for all six operations as well as the read
addresses of the twiddle factors in the case of NTT/INTT. It also provides the
select signals to the data and address multiplexers connected to the external
RAM blocks. It supports all target standards by simple and inexpensive tweaks.
In the case of NTT/INTT, two main factors affect how the address controller
block generates the read addresses according to the required standard. The first
is the number of NTT levels log n whether it is even or odd. The second factor is
whether the NTT fully splits into degree 0 polynomials or not as in Kyber. Since
the design consists of two parallel butterfly units, four polynomial coefficients
are processed per clock cycle. For any standard, the read addresses of every four
coefficients in each two successive levels are the same, only in different order.
The first and fourth coefficients remain unchanged and only the second and
third ones that switch places between even and odd stages. Figure 7 illustrates
the read address call sequences of the twiddle factors for the NTT/INTT oper-
ation and the polynomial coefficients for all operations applicable to Dilithium
as an example of a standard that has a fully splitting polynomial ring and the
number of its NTT levels is even. Two brackets per line represent address(es) of

Level 0 Level 1 Level 2 Level 3 … Level 7

Level 7 … Level 3 Level 2 Level 1 Level 0

RO
M

ad
dr

es
s

RO
M

ad
dr

es
s

Level 0

[0,128] [64,192]
[1,129] [65,193]

…
[63,191] [127,255]

RA
M

ad
dr

es
s

Level 1

[0,64] [128,192]
[1,65] [129,193]

…
[63,127] [191,255]

Level 2

[0,32] [16,48]
…

[15,47] [31,63]

[192,224] [208,240]
…

[207,239] [223,255]

Level 3

[0,16] [32,48]
…

[15,31] [47,63]

[128,144] [160,176]
…

[143,159] [175,191]

[64,80] [96,112]
…

[79,95] [111,127]

[192,208] [224,240]
…

[207,223] [239,255]

…

…

…

…

…

Level 7

[0,1] [2,3]

[252,253] [254,255]

…

NTT ROM

INTT ROM

Twiddle factor

NTT/INTT

[0] [128]
[1] [129]

…
[126] [254]
[127] [255]

RA
M

ad
dr

es
s

PWM/MAC/ADD/SUB

[1] [1] [2] [3]

[4] [4]
[5] [5]
[6] [6]
[7] [7]

[8] [9]
…

[14] [15]
…

[128] [129]
…

[254] [255]

… [1] [1]
[7] [7]
[6] [6]
[5] [5]
[4] [4]

[3] [2]
[15] [14]

…
[9] [8]

[255] [254]
…

[129] [128]

[64,96] [80,112]
…

[79,111] [95,127]
[128,160] [144,176]

…
[143,175] [159,191]

Fig. 7: Address generation of twiddle factors and polynomial coefficients for stan-
dards supporting fully-splitting NTT with even number of levels.

https://orcid.org/0000-0002-7238-9567
https://orcid.org/0000-0001-7444-0285

Area Efficient PAU for PQC Digital Signatures and KEMs 17

polynomial coefficients (or twiddle factors) required by the two BFUs. Regard-
ing NTT/INTT, four addresses of different coefficients from the same polynomial
and two twiddle factor addresses are generated. As for the remaining operations,
a single address is produced per BFU since they operate on the same coefficient
in two different polynomials placed in different memories.

If the number of NTT levels is odd, read address generation for all successive
pairs of the NTT stages remain the same as explained before. However, the cod-
ing of addresses of the last stage which is odd is different. In a fully-splitting NTT,
the last stage must process consecutively ordered coefficients. Finally for Kyber
where the NTT does not fully split, the modification is quite trivial where the
level count stops at log n−1, but the read address generation remains unchanged.

Since the polynomial coefficients are placed in a data RAM designed as a
four-bank memory, the read addresses generated so far need to be mapped to
real RAM addresses as presented in [23,42] using an integrated address resolver
block within the address controller module. The bank address for selecting the
memory banks and the new addresses of the coefficients are computed as follows:

BankAddr =

⌈ 1
2 log2(n)⌉−1∑

i=0

RawAddr[2i+ 1 : 2i] mod 4

NewAddr = RawAdrr >> 2,
where i is the bit position. This guarantees a conflict-free memory access.

To generate the write addresses, one straightforward method is to use shift
registers to propagate the read addresses for the necessary number of clock cycles
according to the pipeline depth of each operation. However instead of delaying
the read addresses, we opted to store them in a small ROM (distributed mem-
ory) of length that equals the maximum pipeline depth (which is that of the
NTT/INTT operation). The address of this ROM is a simple 3-bit counter. The
polynomial coefficient read addresses are written inside the ROM upon a read
enable signal. Similarly, the write addresses are read from the ROM upon a write
enable signal that is activated after the pipeline is fulfilled for each operation.
Figure 8 shows the timing diagram of the write operation taking the pipeline
depth of the NTT/INTT as an example.

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

r0 r1 r2 r3 r4 r5 r6 r7 r0 r1 r2 r3 r4 r5 r6 r7

r0 r0

r1 r1

r7 r7

….

r0 r1 r2 r3 r4 r5 r6 r7 r0 r1 r2 r3 r4 r5 r6 r7

0 1 2 3 4 5 6 7

r0 r1 r2 r3 r4 r5 r6 r7

r0

r1

r0

0

r0

Read_en

Write_en

addr

Read_addr

ROM[0]

ROM[1]

ROM[7]

Write_addr

Fig. 8: Write address generation timing diagram for an NTT operation.

18 Dina Kamel� ID and François-Xavier Standaert ID

4 Implementation results

Our proposed architecture was implemented on an Xilinx XC7A100T Artix-7
FPGA using Vivado 2022.1. For each standard, post-place and route (PnR) sim-
ulations using the Vivado simulator were performed.Table 2 details the resource
utilization of our butterfly and modular reduction (MR) units and compares
them to the state-of-the-art. Our Dilithium BFU is similar to the first control
element (CE0) of [34]. The nubmer of required LUTs is slightly higher as for the
number of FFs, we report 48% more because we deploy registers at the input
and output of the BFU whereas in [34] they do not show these registers in their
FF count, but from their NTT latency it is evident that they also implement
these registers, but most probably at a higher level. Compared to [33]’s lookup-
table-based modular reduction, our Kyber MR unit needs 64% more LUTs and
only 4 more FFs. In [11] the number of LUTs and FFs of the BFU are almost
the same for both Dilithium and Kyber. This is because the authors unified
the butterfly unit to support multiple lattice-based PQC schemes at run time.
Our Dilithium and Kyber BFUs (that are tailored at design time) require 43%
and 65% less LUTs and similar percentages less FFs, respectively. Table 3 shows
the implementation results of the polynomial arithmetic unit and comparison
with state-of-the-art.

For Dilithium, our proposed architecture fairly occupies overall less resources
compared to other existing implementations. It requires 2604 LUTs, 770 FFs and
4 DSPs. Since our design targets low-cost area-constraint applications, we opted
to optimize each sub-block individually while promoting resource sharing wher-
ever possible. Using the same FPGA, Nguyen et al. [32] designed a configurable
high-speed NTT accelerator suitable for both Dilithium and Kyber and supports
both radix-2 and radix-4 MDC NTT operation. Compared to their radix-2 im-
plementation, our design occupies 2.85× less LUTs and 6.85× less FFs, at the
expense of an extra 4 DSPs. Land et al. [23] proposed a mid-range implementa-
tion that focused on optimizing the usage of LUTs and FFs by exploiting DSPs
available in low-end FPGAs. Their design consists of three modules (NTT based
on two radix-2 BFUs, Multiply-Accumulate and Matrix-Vector Mult.) that col-
lectively perform the poly arithmetic functions. Our design needs 2× less LUTs,
1.6× less FFs and far less DSPs. A single BRAM is needed to store the twid-

Table 2: Detailed Resource utilization comparison with state-of-the-art imple-
mentations of the butterfly and the modular reduction units.

Work Module LUT FF DSP Work Module LUT FF DSP
Dilithium Kyber

[34] BFU 351 209 2 [33] BFU
⌊ MR 69 71 0 ⌊ MR 50 34 0

[11] BFU 705 488 8 [11] BFU 703 474 8
⌊ MR ⌊ MR

⋆
BFU 400 310 2

⋆
BFU 241 167 1

⌊ MR 114 72 0 ⌊ MR 82 39 0

https://orcid.org/0000-0002-7238-9567
https://orcid.org/0000-0001-7444-0285

Area Efficient PAU for PQC Digital Signatures and KEMs 19

Table 3: Resource utilization comparison with state-of-the-art implementations
of the poly arithmetic unit.

Work Plat. n ⌈log2(q)⌉
Resources Freq. Latency (CCs)

LUT FF DSP BRAM [MHz] NTT INTT PWM
Dilithium

[32] A7 256 23 7451 5275 0 0 180 319 319
[23] A7 256 23 5676 1218 41 1 311 533 536
[5] VUS+ 256 23 4509 3146 8 0
[43] Z7000 256 23 2812 1748 10 2 296 296
[17] ZUS+ 256 23 2759 2037 4 7 606 614 147
[34] ZUS+ 256 23 2637 1071 8 1 385 268 268
[38] Z7000 256 23 2386 932 8 1 217 264
[11] A7 256 23 2119 1058 8 3 117 1052 1318 3688
⋆ A7 256 23 2604 770 4 0 100 519 519 134

Hawk

⋆ A7

512 31 3801 1135 8 0 83 1159 1159 262
512 31 3968 1135 8 0 83 1159 1159 262
1024 31 4287 1139 8 0 83 2567 2567 518
1024 31 4451 1139 8 0 83 2567 2567 518

Raccoon

⋆ A7 512 24 3194 912 4 0 83 1159 1159 262
512 25 3458 998 4 0 83 1159 1159 262

Kyber
[32] A7 256 12 4834 4683 0 1 250 247 247
[11] V7 256 12 2128 1144 8 3 174 922 1184 3812
[39] A7 256 12 1579 1058 2 3 512 448 256
[31] A7 256 12 1416 1074 2 1.5 227 448 448 256
[33] A7 256 12 1154 1031 2 0 300 456 456 265
[40] A7 256 12 948 352 1 2.5 190 904 904 3359
[41] A7 256 12 609 640 2 4 257 490 490
⋆ A7 256 12 1583 458 2 0 100 455 455 134

Polka
⋆ A7 1024 16 2512 593 2 0 100 2567 2567 518

20 Dina Kamel� ID and François-Xavier Standaert ID

dle factors whereas we decided to use a distributed ROM instead. In [5] the
authors targeted a high-performance implementation. They use a radix-4 2× 2
NTT BFU arrangement to speed up the NTT and INTT operations. As a result,
their design requires 1.7×, 4× and 2× more LUTs, FFs and DSPs than our de-
sign, respectively. Zhao et al. [43] proposed a compact and high-speed hardware
design that employs four BFUs in a radix-2 R2MDC NTT architecture. Our
design utilizes slightly less LUTs, 2.3× less FFs and 2.5× less DSPs. The two
BRAMs are reportedly used to store the twiddle factors and to replace large
shift registers (required by the R2MDC NTT). The work by Gupta et al. [17]
reports a lightweight hardware implementation that invested in resource and
control logic sharing as well as pre-computed LUTs among other optimization
strategies. Their design requires two radix-2 BFUs and two 64 × 256 dual-port
RAMs to transfer internal computations of NTT in a ping-pong fashion until all
the layers have been processed. Our design requires slightly less LUTs, 2.6× less
FFs and the same number of DSPs. As for the BRAM cost, their design uses 7
BRAMs, however, it is not clear how they are exploited. The polynomial arith-
metic module introduced in [34] targets a lightweight hardware implementation
even though it implements a radix-4 NTT. Our design employs almost the same
number of LUTs and 1.4× less FFs, but half the DSPs. Wang et al. [38] targets
a high-performance efficient design that uses a radix-4 NTT block. Among the
reported state-of-the-art, Wang’s implementation is the smallest even though it
requires 4 BFUs. Yet, our design still uses less FFs (18%), slightly higher LUTs
(9%) and half the DSPs. An interesting implementation by [11] offers both run-
time and compile-time configurability to cover a wide base of parameter sets (n
and q) and performance requirements of various platforms. Compared to their
one BFU implementation, our design uses 23% more LUTs, but it requires 27%
less FFs and half the DSPs. Our design can run at a maximum frequency of 100
MHz on Artix-7 FPGA. Indeed, this is less than the state-of-the-art reported
frequencies. Nevertheless, they mostly used high-speed FPGAs and targeted ef-
ficient high-performance applications. In addition, our target is area-constrained
applications, therefore the maximum frequency requirement can be relaxed. We
also provide latency figures for all polynomial operations which admittedly lie
mid-range the state-of-the-art spectrum.

For Kyber, our proposed architecture requires 1583 LUTs, 458 FFs and 2
DSPs. Compared to the configurable design of Nguyen et al. [32], our imple-
mentation needs 1.9× less LUTs, 7.9× less FFs at the expense of an extra 2
DSPs. Compared to the one BFU implementation of [11], our design uses 1.3×
less LUTs, 1.88× less FFs and 4× less DSPs. Xing et al. [39] implemented a
compact hardware design. Our design needs slightly more LUTs, but 2.3× less
FFs. Works such as [31,33] opted to rearrange the order of the polynomial coeffi-
cients at all NTT/INTT stages instead of changing the data addresses to access
the coefficients stored in the RAMs in a conflict-free memory access fashion.
This requires the use of a reordering unit that also acts a temporary memory to
hold coefficients after each stage. Their design eliminates the need for additional
memory usage in the iterative NTT design claiming to simplify the control logic.

https://orcid.org/0000-0002-7238-9567
https://orcid.org/0000-0001-7444-0285

Area Efficient PAU for PQC Digital Signatures and KEMs 21

Our design again requires slightly more LUTs, but 2.3× less FFs. Yaman et
al. [40] proposed three different hardware architectures (lightweight, balanced,
high-performance), we compare our work to their lightweight implementation
that employs one BFU. Indeed their design occupies 1.67× less LUTs, 23% less
FFs and half the DSPs compared to ours. Zhang et al. [41] reported an efficient
implementation that favors a ping-pong memory access to read/write the poly-
nomial coefficients from/to the block RAMs. Their approach avoids read/write
conflicts without the cost of reordering the coefficients. Indeed, our design oc-
cupies 2.3× more LUTs, but 1.4× less FFs which makes the overall resource
utilization in favor of [41]. Also, the maximum frequency of most reported works
is higher than ours which is 100 MHz even though all implementations are done
on the same Artix-7 FPGA. As for the latency of the NTT and INTT operations,
they are quite comparable to similar designs that use two butterflies. Regarding
the point-wise multiplication we report nearly half the clock cycles compared
to similar works. This is because the polynomial arithmetic unit does not com-
pute the last step of polynomial multiplication needed after NTT. It is left to
be implemented on the upper level. We also provide the resource utilization for
Hawk, Raccoon and Polka, but comparison to the literature was not possible
since there is no available hardware implementations that we know of.

A cautionary note, since the block RAMs used to store the coefficients are
shared among other higher level modules, they are not considered part of the
BRAM cost within the poly arithmetic unit in our design and in most state-
of-the-art works.

5 Conclusion

This paper presents a lightweight polynomial arithmetic hardware architecture
for post-quantum digital signatures and KEMs, suitable for low-cost and area-
constrained applications. Our approach uses an in-place NTT without reordering
of coefficients during the NTT and INTT operations, which reduces the complex-
ity and the area cost of the control unit. In addition, storing the NTT twiddle
factors in LUTs avoids occupying unnecessary BRAM footprint and reusing them
during INTT avoids redundancy. The proposed architecture also establishes a
straightforward address generation mechanism with simple conflict-free memory
access which further facilitates the usage of lower resources. For most algorithms,
our work utilizes fewer hardware resources than state-of-the-art lightweight im-
plementations.

Acknowledgment

François-Xavier Standaert is a senior research associate of the Belgian Fund for
Scientific Research (F.R.S.-FNRS). This work has been funded in part by the Eu-
ropean Research Council (ERC) Advanced Grant BRIDGE (number 101096871).
Views and opinions expressed are those of the authors and do not necessarily

22 Dina Kamel� ID and François-Xavier Standaert ID

reflect those of the European Union or the ERC. Neither the European Union
nor the granting authority can be held responsible for them.

References

1. CERG, dilithium. https://github.com/GMUCERG/Dilithium
2. Avanzi, R., Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck,

J.M., Schwabe, P., Seiler, G., Stehlé, D.: CRYSTALS,-kyber algorithm specifica-
tions and supporting documentation (version 3.02). https://pq-crystals.org/
kyber/data/kyber-specification-round3-20210804.pdf

3. Azouaoui, M., Bronchain, O., Cassiers, G., Hoffmann, C., Kuzovkova, Y., Renes,
J., Schneider, T., Schönauer, M., Standaert, F., van Vredendaal, C.: Protect-
ing dilithium against leakage revisited sensitivity analysis and improved im-
plementations. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2023(4), 58–79
(2023). https://doi.org/10.46586/TCHES.V2023.I4.58-79, https://doi.org/
10.46586/tches.v2023.i4.58-79

4. Bai, S., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schwabe, P.,
Seiler, G., Stehlé, D.: CRYSTALS,-dilithium algorithm specifications and support-
ing documentation (version 3.1). https://pq-crystals.org/dilithium/data/
dilithium-specification-round3-20210208.pdf

5. Beckwith, L., Nguyen, D.T., Gaj, K.: High-performance hardware implementation
of crystals-dilithium. In: 2021 International Conference on Field-Programmable
Technology (ICFPT). pp. 1–10 (2021). https://doi.org/10.1109/ICFPT52863.
2021.9609917

6. Bernstein, D.J., Persichetti, E.: Towards KEM unification. Cryptology ePrint
Archive, Paper 2018/526 (2018), https://eprint.iacr.org/2018/526

7. Bisheh-Niasar, M., Azarderakhsh, R., Kermani, M.M.: High-speed ntt-based poly-
nomial multiplication accelerator for crystals-kyber post-quantum cryptography.
IACR Cryptol. ePrint Arch. p. 563 (2021), https://eprint.iacr.org/2021/563

8. Bos, J.W., Bronchain, O., Ducas, L., Fehr, S., Huang, Y.H., Pornin, T., Postleth-
waite, E.W., Prest, T., Pulles, L.N., van Woerden, W.: HAWK version 1.0.2
(september 26, 2024). https://hawk-sign.info/hawk-spec.pdf

9. Chen, L., Jordan, S.P., Liu, Y.K., Moody, D., Peralta, R.C., Perlner, R.A., Smith-
Tone, D.C.: Report on post quantum cryptography. https://nvlpubs.nist.gov/
nistpubs/ir/2016/NIST.IR.8105.pdf (Apr 2016), nathional Institute of Stan-
dards and Technology, Tech. Rep. NIST IR 8105

10. Chen, Z., Karabulut, E., Aysu, A., Ma, Y., Jing, J.: An efficient non-profiled
side-channel attack on the crystals-dilithium post-quantum signature. In: 39th
IEEE International Conference on Computer Design, ICCD 2021, Storrs, CT,
USA, October 24-27, 2021. pp. 583–590. IEEE (2021). https://doi.org/10.1109/
ICCD53106.2021.00094, https://doi.org/10.1109/ICCD53106.2021.00094

11. Derya, K., Mert, A.C., Öztürk, E., Savaş, E.: CoHA-NTT: A configurable hardware
accelerator for NTT-based polynomial multiplication. Cryptology ePrint Archive,
Paper 2021/1527 (2021), https://eprint.iacr.org/2021/1527

12. Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehlé,
D.: Crystals-dilithium: A lattice-based digital signature scheme. IACR Trans.
Cryptogr. Hardw. Embed. Syst. 2018(1), 238–268 (2018). https://doi.org/10.
13154/TCHES.V2018.I1.238-268, https://doi.org/10.13154/tches.v2018.i1.
238-268

https://orcid.org/0000-0002-7238-9567
https://orcid.org/0000-0001-7444-0285
https://github.com/GMUCERG/Dilithium
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://doi.org/10.46586/TCHES.V2023.I4.58-79
https://doi.org/10.46586/TCHES.V2023.I4.58-79
https://doi.org/10.46586/tches.v2023.i4.58-79
https://doi.org/10.46586/tches.v2023.i4.58-79
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://doi.org/10.1109/ICFPT52863.2021.9609917
https://doi.org/10.1109/ICFPT52863.2021.9609917
https://doi.org/10.1109/ICFPT52863.2021.9609917
https://doi.org/10.1109/ICFPT52863.2021.9609917
https://eprint.iacr.org/2018/526
https://eprint.iacr.org/2021/563
https://hawk-sign.info/hawk-spec.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2016/NIST.IR.8105.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2016/NIST.IR.8105.pdf
https://doi.org/10.1109/ICCD53106.2021.00094
https://doi.org/10.1109/ICCD53106.2021.00094
https://doi.org/10.1109/ICCD53106.2021.00094
https://doi.org/10.1109/ICCD53106.2021.00094
https://doi.org/10.1109/ICCD53106.2021.00094
https://eprint.iacr.org/2021/1527
https://doi.org/10.13154/TCHES.V2018.I1.238-268
https://doi.org/10.13154/TCHES.V2018.I1.238-268
https://doi.org/10.13154/TCHES.V2018.I1.238-268
https://doi.org/10.13154/TCHES.V2018.I1.238-268
https://doi.org/10.13154/tches.v2018.i1.238-268
https://doi.org/10.13154/tches.v2018.i1.238-268

Area Efficient PAU for PQC Digital Signatures and KEMs 23

13. Ducas, L., Postlethwaite, E.W., Pulles, L.N., van Woerden, W.P.J.: Hawk: Mod-
ule LIP makes lattice signatures fast, compact and simple. In: Agrawal, S., Lin,
D. (eds.) Advances in Cryptology - ASIACRYPT 2022 - 28th International Con-
ference on the Theory and Application of Cryptology and Information Security,
Taipei, Taiwan, December 5-9, 2022, Proceedings, Part IV. Lecture Notes in Com-
puter Science, vol. 13794, pp. 65–94. Springer (2022). https://doi.org/10.1007/
978-3-031-22972-5_3, https://doi.org/10.1007/978-3-031-22972-5_3

14. Duval, S., Méaux, P., Momin, C., Standaert, F.: Exploring crypto-physical
dark matter and learning with physical rounding towards secure and efficient
fresh re-keying. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021(1), 373–
401 (2021). https://doi.org/10.46586/TCHES.V2021.I1.373-401, https://doi.
org/10.46586/tches.v2021.i1.373-401

15. Eum, S., Lee, M., Seo, H.: Optimizing hawk signature scheme performance on
armv8. Applied Sciences 14(19) (2024). https://doi.org/10.3390/app14198647,
https://www.mdpi.com/2076-3417/14/19/8647

16. Guerreau, M., Martinelli, A., Ricosset, T., Rossi, M.: The hidden parallelepiped is
back again: Power analysis attacks on falcon. IACR Trans. Cryptogr. Hardw. Em-
bed. Syst. 2022(3), 141–164 (2022). https://doi.org/10.46586/TCHES.V2022.
I3.141-164, https://doi.org/10.46586/tches.v2022.i3.141-164

17. Gupta, N., Jati, A., Chattopadhyay, A., Jha, G.: Lightweight hardware accelerator
for post-quantum digital signature crystals-dilithium. IEEE Trans. Circuits Syst.
I Regul. Pap. 70(8), 3234–3243 (2023). https://doi.org/10.1109/TCSI.2023.
3274599, https://doi.org/10.1109/TCSI.2023.3274599

18. Hoffmann, C., Libert, B., Momin, C., Peters, T., Standaert, F.: POLKA: towards
leakage-resistant post-quantum cca-secure public key encryption. In: Boldyreva,
A., Kolesnikov, V. (eds.) Public-Key Cryptography - PKC 2023 - 26th IACR In-
ternational Conference on Practice and Theory of Public-Key Cryptography, At-
lanta, GA, USA, May 7-10, 2023, Proceedings, Part I. Lecture Notes in Com-
puter Science, vol. 13940, pp. 114–144. Springer (2023). https://doi.org/10.
1007/978-3-031-31368-4_5, https://doi.org/10.1007/978-3-031-31368-4_5

19. Kamel, D., Standaert, F., Bronchain, O.: Information theoretic evaluation of rac-
coon’s side-channel leakage. IACR Commun. Cryptol. 1(3), 44 (2024)

20. Kannwischer, M.J., Genêt, A., Butin, D., Krämer, J., Buchmann, J.: Dif-
ferential power analysis of XMSS and SPHINCS. In: Fan, J., Gierlichs, B.
(eds.) Constructive Side-Channel Analysis and Secure Design - 9th Interna-
tional Workshop, COSADE 2018, Singapore, April 23-24, 2018, Proceedings.
Lecture Notes in Computer Science, vol. 10815, pp. 168–188. Springer (2018).
https://doi.org/10.1007/978-3-319-89641-0_10, https://doi.org/10.1007/
978-3-319-89641-0_10

21. Karabulut, E., Aysu, A.: FALCON down: Breaking FALCON post-quantum sig-
nature scheme through side-channel attacks. In: 58th ACM/IEEE Design Au-
tomation Conference, DAC 2021, San Francisco, CA, USA, December 5-9, 2021.
pp. 691–696. IEEE (2021). https://doi.org/10.1109/DAC18074.2021.9586131,
https://doi.org/10.1109/DAC18074.2021.9586131

22. Kim, S., Lee, K., Cho, W., Cheon, J.H., Rutenbar, R.A.: Fpga-based ac-
celerators of fully pipelined modular multipliers for homomorphic encryption.
In: Andrews, D., Cumplido, R., Feregrino, C., Platzner, M. (eds.) 2019 In-
ternational Conference on ReConFigurable Computing and FPGAs, ReConFig
2019, Cancun, Mexico, December 9-11, 2019. pp. 1–8. IEEE (2019). https:

https://doi.org/10.1007/978-3-031-22972-5_3
https://doi.org/10.1007/978-3-031-22972-5_3
https://doi.org/10.1007/978-3-031-22972-5_3
https://doi.org/10.1007/978-3-031-22972-5_3
https://doi.org/10.1007/978-3-031-22972-5_3
https://doi.org/10.46586/TCHES.V2021.I1.373-401
https://doi.org/10.46586/TCHES.V2021.I1.373-401
https://doi.org/10.46586/tches.v2021.i1.373-401
https://doi.org/10.46586/tches.v2021.i1.373-401
https://doi.org/10.3390/app14198647
https://doi.org/10.3390/app14198647
https://www.mdpi.com/2076-3417/14/19/8647
https://doi.org/10.46586/TCHES.V2022.I3.141-164
https://doi.org/10.46586/TCHES.V2022.I3.141-164
https://doi.org/10.46586/TCHES.V2022.I3.141-164
https://doi.org/10.46586/TCHES.V2022.I3.141-164
https://doi.org/10.46586/tches.v2022.i3.141-164
https://doi.org/10.1109/TCSI.2023.3274599
https://doi.org/10.1109/TCSI.2023.3274599
https://doi.org/10.1109/TCSI.2023.3274599
https://doi.org/10.1109/TCSI.2023.3274599
https://doi.org/10.1109/TCSI.2023.3274599
https://doi.org/10.1007/978-3-031-31368-4_5
https://doi.org/10.1007/978-3-031-31368-4_5
https://doi.org/10.1007/978-3-031-31368-4_5
https://doi.org/10.1007/978-3-031-31368-4_5
https://doi.org/10.1007/978-3-031-31368-4_5
https://doi.org/10.1007/978-3-319-89641-0_10
https://doi.org/10.1007/978-3-319-89641-0_10
https://doi.org/10.1007/978-3-319-89641-0_10
https://doi.org/10.1007/978-3-319-89641-0_10
https://doi.org/10.1109/DAC18074.2021.9586131
https://doi.org/10.1109/DAC18074.2021.9586131
https://doi.org/10.1109/DAC18074.2021.9586131
https://doi.org/10.1109/RECONFIG48160.2019.8994793
https://doi.org/10.1109/RECONFIG48160.2019.8994793

24 Dina Kamel� ID and François-Xavier Standaert ID

//doi.org/10.1109/RECONFIG48160.2019.8994793, https://doi.org/10.1109/
ReConFig48160.2019.8994793

23. Land, G., Sasdrich, P., Güneysu, T.: A hard crystal - implementing dilithium
on reconfigurable hardware. In: Grosso, V., Pöppelmann, T. (eds.) Smart Card
Research and Advanced Applications - 20th International Conference, CARDIS
2021, Lübeck, Germany, November 11-12, 2021, Revised Selected Papers. Lec-
ture Notes in Computer Science, vol. 13173, pp. 210–230. Springer (2021).
https://doi.org/10.1007/978-3-030-97348-3_12, https://doi.org/10.1007/
978-3-030-97348-3_12

24. Liu, Y.K., Moody, D.: Post-quantum cryptography, and the quantum future of cy-
bersecurity. https://doi.org/10.1103/PhysRevApplied.21.040501 (Apr 2024),
nathional Institute of Standards and Technology,Physical Review Applied

25. Longa, P., Naehrig, M.: Speeding up the number theoretic transform for faster ideal
lattice-based cryptography. In: Foresti, S., Persiano, G. (eds.) Cryptology and Net-
work Security - 15th International Conference, CANS 2016, Milan, Italy, Novem-
ber 14-16, 2016, Proceedings. Lecture Notes in Computer Science, vol. 10052,
pp. 124–139 (2016). https://doi.org/10.1007/978-3-319-48965-0_8, https:
//doi.org/10.1007/978-3-319-48965-0_8

26. Lyubashevsky, V.: Fiat-shamir with aborts: Applications to lattice and factoring-
based signatures. In: Matsui, M. (ed.) Advances in Cryptology - ASIACRYPT
2009, 15th International Conference on the Theory and Application of Cryp-
tology and Information Security, Tokyo, Japan, December 6-10, 2009. Proceed-
ings. Lecture Notes in Computer Science, vol. 5912, pp. 598–616. Springer (2009).
https://doi.org/10.1007/978-3-642-10366-7_35, https://doi.org/10.1007/
978-3-642-10366-7_35

27. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D., Jo-
hansson, T. (eds.) Advances in Cryptology - EUROCRYPT 2012 - 31st Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Cambridge, UK, April 15-19, 2012. Proceedings. Lecture Notes in Com-
puter Science, vol. 7237, pp. 738–755. Springer (2012). https://doi.org/10.1007/
978-3-642-29011-4_43, https://doi.org/10.1007/978-3-642-29011-4_43

28. Marzougui, S., Ulitzsch, V., Tibouchi, M., Seifert, J.: Profiling side-channel attacks
on dilithium: A small bit-fiddling leak breaks it all. IACR Cryptol. ePrint Arch.
p. 106 (2022), https://eprint.iacr.org/2022/106

29. National Institute of Standards and Technology: Module-lattice-based digital sig-
nature standard. Tech. Rep. Federal Information Processing Standards Publica-
tions (FIPS PUBS) 204, U.S. Department of Commerce, Washington, D.C. (2024).
https://doi.org/10.6028/NIST.FIPS.204

30. National Institute of Standards and Technology: Module-lattice-based key-
encapsulation mechanism standard. Tech. Rep. Federal Information Processing
Standards Publications (FIPS PUBS) 203, U.S. Department of Commerce, Wash-
ington, D.C. (2024). https://doi.org/10.6028/NIST.FIPS.203

31. Nguyen, T.H., Dam, D.T., Duong, P.P., Kieu-Do-Nguyen, B., Pham, C.K., Hoang,
T.T.: Efficient hardware implementation of the lightweight crystals-kyber. IEEE
Transactions on Circuits and Systems I: Regular Papers pp. 1–13 (2024). https:
//doi.org/10.1109/TCSI.2024.3443238

32. Nguyen, T., Kieu-Do-Nguyen, B., Pham, C., Hoang, T.: High-speed NTT ac-
celerator for crystal-kyber and crystal-dilithium. IEEE Access 12, 34918–34930
(2024). https://doi.org/10.1109/ACCESS.2024.3371581, https://doi.org/10.
1109/ACCESS.2024.3371581

https://doi.org/10.1109/RECONFIG48160.2019.8994793
https://doi.org/10.1109/RECONFIG48160.2019.8994793
https://doi.org/10.1109/RECONFIG48160.2019.8994793
https://doi.org/10.1109/RECONFIG48160.2019.8994793
https://orcid.org/0000-0002-7238-9567
https://orcid.org/0000-0001-7444-0285
https://doi.org/10.1109/RECONFIG48160.2019.8994793
https://doi.org/10.1109/RECONFIG48160.2019.8994793
https://doi.org/10.1109/ReConFig48160.2019.8994793
https://doi.org/10.1109/ReConFig48160.2019.8994793
https://doi.org/10.1007/978-3-030-97348-3_12
https://doi.org/10.1007/978-3-030-97348-3_12
https://doi.org/10.1007/978-3-030-97348-3_12
https://doi.org/10.1007/978-3-030-97348-3_12
https://doi.org/10.1103/PhysRevApplied.21.040501
https://doi.org/10.1007/978-3-319-48965-0_8
https://doi.org/10.1007/978-3-319-48965-0_8
https://doi.org/10.1007/978-3-319-48965-0_8
https://doi.org/10.1007/978-3-319-48965-0_8
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-29011-4_43
https://doi.org/10.1007/978-3-642-29011-4_43
https://doi.org/10.1007/978-3-642-29011-4_43
https://doi.org/10.1007/978-3-642-29011-4_43
https://doi.org/10.1007/978-3-642-29011-4_43
https://eprint.iacr.org/2022/106
https://doi.org/10.6028/NIST.FIPS.204
https://doi.org/10.6028/NIST.FIPS.204
https://doi.org/10.6028/NIST.FIPS.203
https://doi.org/10.6028/NIST.FIPS.203
https://doi.org/10.1109/TCSI.2024.3443238
https://doi.org/10.1109/TCSI.2024.3443238
https://doi.org/10.1109/TCSI.2024.3443238
https://doi.org/10.1109/TCSI.2024.3443238
https://doi.org/10.1109/ACCESS.2024.3371581
https://doi.org/10.1109/ACCESS.2024.3371581
https://doi.org/10.1109/ACCESS.2024.3371581
https://doi.org/10.1109/ACCESS.2024.3371581

Area Efficient PAU for PQC Digital Signatures and KEMs 25

33. Ni, Z., Khalid, A., Liu, W., O’Neill, M.: Towards a lightweight crystals-kyber in
fpgas: an ultra-lightweight bram-free NTT core. In: IEEE International Symposium
on Circuits and Systems, ISCAS 2023, Monterey, CA, USA, May 21-25, 2023. pp. 1–
5. IEEE (2023). https://doi.org/10.1109/ISCAS46773.2023.10181340, https:
//doi.org/10.1109/ISCAS46773.2023.10181340

34. Pham, T.X., Duong-Ngoc, P., Lee, H.: An efficient unified polynomial arithmetic
unit for crystals-dilithium. IEEE Transactions on Circuits and Systems I: Regular
Papers 70(12), 4854–4864 (2023). https://doi.org/10.1109/TCSI.2023.3316393

35. del Pino, R., Prest, T., Rossi, M., Saarinen, M.O.: High-order masking of lat-
tice signatures in quasilinear time. In: 44th IEEE Symposium on Security and
Privacy, SP 2023, San Francisco, CA, USA, May 21-25, 2023. pp. 1168–1185.
IEEE (2023). https://doi.org/10.1109/SP46215.2023.10179342, https://doi.
org/10.1109/SP46215.2023.10179342

36. Pöppelmann, T., Oder, T., Güneysu, T.: High-performance ideal lattice-based
cryptography on 8-bit atxmega microcontrollers. In: Lauter, K.E., Rodríguez-
Henríquez, F. (eds.) Progress in Cryptology - LATINCRYPT 2015 - 4th Inter-
national Conference on Cryptology and Information Security in Latin America,
Guadalajara, Mexico, August 23-26, 2015, Proceedings. Lecture Notes in Com-
puter Science, vol. 9230, pp. 346–365. Springer (2015). https://doi.org/10.1007/
978-3-319-22174-8_19, https://doi.org/10.1007/978-3-319-22174-8_19

37. Shor, P.: Algorithms for quantum computation: discrete logarithms and factoring.
In: Proceedings 35th Annual Symposium on Foundations of Computer Science. pp.
124–134 (1994). https://doi.org/10.1109/SFCS.1994.365700

38. Wang, T., Zhang, C., Cao, P., Gu, D.: Efficient implementation of dilithium signa-
ture scheme on fpga soc platform. IEEE Transactions on Very Large Scale Integra-
tion (VLSI) Systems 30(9), 1158–1171 (2022). https://doi.org/10.1109/TVLSI.
2022.3179459

39. Xing, Y., Li, S.: A compact hardware implementation of cca-secure key exchange
mechanism CRYSTALS-KYBER on FPGA. IACR Trans. Cryptogr. Hardw. Em-
bed. Syst. 2021(2), 328–356 (2021). https://doi.org/10.46586/TCHES.V2021.
I2.328-356, https://doi.org/10.46586/tches.v2021.i2.328-356

40. Yaman, F., Mert, A.C., Öztürk, E., Savas, E.: A hardware accelerator for poly-
nomial multiplication operation of CRYSTALS-KYBER PQC scheme. In: Design,
Automation & Test in Europe Conference & Exhibition, DATE 2021, Grenoble,
France, February 1-5, 2021. pp. 1020–1025. IEEE (2021). https://doi.org/10.
23919/DATE51398.2021.9474139, https://doi.org/10.23919/DATE51398.2021.
9474139

41. Zhang, C., Liu, D., Liu, X., Zou, X., Niu, G., Liu, B., Jiang, Q.: Towards efficient
hardware implementation of ntt for kyber on fpgas. In: 2021 IEEE International
Symposium on Circuits and Systems (ISCAS). pp. 1–5 (2021). https://doi.org/
10.1109/ISCAS51556.2021.9401170

42. Zhang, N., Yang, B., Chen, C., Yin, S., Wei, S., Liu, L.: Highly efficient architecture
of newhope-nist on FPGA using low-complexity NTT/INTT. IACR Trans. Cryp-
togr. Hardw. Embed. Syst. 2020(2), 49–72 (2020). https://doi.org/10.13154/
TCHES.V2020.I2.49-72, https://doi.org/10.13154/tches.v2020.i2.49-72

43. Zhao, C., Zhang, N., Wang, H., Yang, B., Zhu, W., Li, Z., Zhu, M., Yin, S.,
Wei, S., Liu, L.: A compact and high-performance hardware architecture for
crystals-dilithium. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022(1), 270–
295 (2022). https://doi.org/10.46586/TCHES.V2022.I1.270-295, https://doi.
org/10.46586/tches.v2022.i1.270-295

https://doi.org/10.1109/ISCAS46773.2023.10181340
https://doi.org/10.1109/ISCAS46773.2023.10181340
https://doi.org/10.1109/ISCAS46773.2023.10181340
https://doi.org/10.1109/ISCAS46773.2023.10181340
https://doi.org/10.1109/TCSI.2023.3316393
https://doi.org/10.1109/TCSI.2023.3316393
https://doi.org/10.1109/SP46215.2023.10179342
https://doi.org/10.1109/SP46215.2023.10179342
https://doi.org/10.1109/SP46215.2023.10179342
https://doi.org/10.1109/SP46215.2023.10179342
https://doi.org/10.1007/978-3-319-22174-8_19
https://doi.org/10.1007/978-3-319-22174-8_19
https://doi.org/10.1007/978-3-319-22174-8_19
https://doi.org/10.1007/978-3-319-22174-8_19
https://doi.org/10.1007/978-3-319-22174-8_19
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/TVLSI.2022.3179459
https://doi.org/10.1109/TVLSI.2022.3179459
https://doi.org/10.1109/TVLSI.2022.3179459
https://doi.org/10.1109/TVLSI.2022.3179459
https://doi.org/10.46586/TCHES.V2021.I2.328-356
https://doi.org/10.46586/TCHES.V2021.I2.328-356
https://doi.org/10.46586/TCHES.V2021.I2.328-356
https://doi.org/10.46586/TCHES.V2021.I2.328-356
https://doi.org/10.46586/tches.v2021.i2.328-356
https://doi.org/10.23919/DATE51398.2021.9474139
https://doi.org/10.23919/DATE51398.2021.9474139
https://doi.org/10.23919/DATE51398.2021.9474139
https://doi.org/10.23919/DATE51398.2021.9474139
https://doi.org/10.23919/DATE51398.2021.9474139
https://doi.org/10.23919/DATE51398.2021.9474139
https://doi.org/10.1109/ISCAS51556.2021.9401170
https://doi.org/10.1109/ISCAS51556.2021.9401170
https://doi.org/10.1109/ISCAS51556.2021.9401170
https://doi.org/10.1109/ISCAS51556.2021.9401170
https://doi.org/10.13154/TCHES.V2020.I2.49-72
https://doi.org/10.13154/TCHES.V2020.I2.49-72
https://doi.org/10.13154/TCHES.V2020.I2.49-72
https://doi.org/10.13154/TCHES.V2020.I2.49-72
https://doi.org/10.13154/tches.v2020.i2.49-72
https://doi.org/10.46586/TCHES.V2022.I1.270-295
https://doi.org/10.46586/TCHES.V2022.I1.270-295
https://doi.org/10.46586/tches.v2022.i1.270-295
https://doi.org/10.46586/tches.v2022.i1.270-295

26 Dina Kamel� ID and François-Xavier Standaert ID

44. Zhou, S., Xue, H., Zhang, D., Wang, K., Lu, X., Li, B., He, J.: Preprocess-
then-ntt technique and its applications to kyber and newhope. In: Guo, F.,
Huang, X., Yung, M. (eds.) Information Security and Cryptology - 14th Inter-
national Conference, Inscrypt 2018, Fuzhou, China, December 14-17, 2018, Re-
vised Selected Papers. Lecture Notes in Computer Science, vol. 11449, pp. 117–
137. Springer (2018). https://doi.org/10.1007/978-3-030-14234-6_7, https:
//doi.org/10.1007/978-3-030-14234-6_7

https://orcid.org/0000-0002-7238-9567
https://orcid.org/0000-0001-7444-0285
https://doi.org/10.1007/978-3-030-14234-6_7
https://doi.org/10.1007/978-3-030-14234-6_7
https://doi.org/10.1007/978-3-030-14234-6_7
https://doi.org/10.1007/978-3-030-14234-6_7

	Area Efficient Polynomial Arithmetic Accelerator for Post-Quantum Digital Signatures and KEMs

