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Abstract. The explanations of large language models (e.g., where each
word is assigned a relevance score) have recently been shown to be sen-
sitive to the randomness used during model training, creating a need
to evaluate this sensitivity. While simple visualization tools such as box
plots can provide a qualitative characterization, exploring the design
space of the parameters influencing the explanation’s sensitivity to the
training randomness may benefit from a more quantitative approach.
First attempts in this direction explored simple (word-level univariate,
first-order) explanations and proposed tentative information theoretic
metrics such as the explanation’s signal, noise and Signal-to-Noise Ratio
(SNR). They left the suitability of such metrics as an open question,
which we tackle in this work. For this purpose, we start by identifying
corner cases where they appear unable to capture intuitively desirable
features of explanations corresponding to a different training random-
ness. Namely, the SNR does not reflect well the relative differences of
relevance (between words). We next put forward that the correlation with
a mean explanation provides a better treatment of these corner cases, at
the cost of being unable to reflect absolute differences of relevance (for
single words). We then discuss how to turn these observations into a
consolidated approach for analyzing the explanations’ sensitivity to the
training randomness. While there is no silver bullet that perfectly deals
with the full complexity of this sensitivity problem, we argue that de-
sign space exploration with the correlation metric and individual model
analysis with box plots provides a good tradeoff. Besides, we put forward
additional desirable features of the correlation metric (e.g., unbiased es-
timation thanks to cross-validation and simple confidence intervals).

1 Introduction

In recent years, Large Language Models (LLM) like BERT [8] or GPT [9] have
led to significant performance improvements for a vast amount of Natural Lan-
guage Processing (NLP) tasks [1]. These improvements generally come from more
complex architectures with more parameters, of which the training relies on ran-
domized optimization techniques. As a result, it has been consistently observed
that the explainability of LLMs is a major challenge [14], which is especially
important for applications implying critical (e.g., medical or legal) decisions.
At high level, the explainability of LLMs relates to broad and hard-to-define
concepts like faithfulness [16, 12] and plausibility [11, 12]. Informally, faithfulness
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requires that an explanation accurately reflects the algorithmic reasoning process
behind a model’s predictions, and plausibility requires explanations to be under-
standable and convincing to the target audience. In this paper, we are concerned
with a more specific issue which has connections with both concepts. Namely, the
sensitivity of the explanations to the randomness used to train models, recently
put forward by Bogaert et al. [6,3]. The main observation of this paper is that it
is sometimes possible to produce many models of which the training only differs
by the (indistinguishable) random seeds they use, that are “equivalent” from the
accuracy viewpoint and nevertheless lead to different explanations.! The authors
then argue that this sensitivity to the training randomness must at least be char-
acterized, since in the extreme case where the explanations would be uniformly
distributed, any selection of explanation would be completely arbitrary.

The explanations’ sensitivity to randomness has for now been exhibited in
the case of “simple” explanations, defined in [5] as word-level, univariate (i.e.,
assigning a single relevance value per word) and first-order (i.e., assuming readers
are interested by mean explanations in case of sensitivity to randomness). We
will use Chefer et al.’s Layerwise Relevance Propagation (LRP) method as our
running example [7]. Such simple explanations, next denoted as (1,1,1), are of
course not expected to be perfectly faithful, although we assume they reflect the
models’ reasoning to a sufficient extent. They are not expected to be the only
plausible ones either. Yet, they provide a useful theoretical framework to answer
the question: how stable can the simple explanations of complex models be?

Evaluating the sensitivity to the training randomness of LLMs can be done
qualitatively. For example, visualization tools like box plots provide a good in-
tuitive understanding of single texts. Yet, more quantitative tools become useful
to explore the explanations’ design space. For example, one could be interested
to compare the randomness’ sensitivity of different texts, and for explanations
assigning relevance scores for various number of words. One could also be inter-
ested to compare the randomness’ sensitivity of bigger vs. smaller models, for
various tasks, datasets or languages, or for different explanation methods. First
steps in this direction were made in [5], where the explanations’ signal, noise
and Signal-to-Noise Ratio (SNR) are proposed as tentative explanation stability
metrics. In this paper, we consolidate these investigations in three directions.

First, we highlight the limited ability of the SNR to reflect the relative dif-
ferences of relevance (between words) in a set of explanations corresponding
to different (random) training seeds. We additionally show that the correlation
with a mean explanation mitigates this issue, as to cost of being unable to reflect
absolute differences of relevance (for single words), which are better captured by
the SNR. Second, we discuss the consequence of these observations and argue
that combining a design space exploration with the correlation metric and a
more qualitative analysis thanks to box plots appears as a good tradeoff. The
first one better captures relative differences within explanations, whereas the

! Equivalent meaning that there is no statistically significant difference in their accu-
racies, implying that there is no “better” model from the accuracy viewpoint.



Consolidating Explanation Stability Metrics 3

second one reflects absolute differences at the individual word level, exhibiting
possibly interesting intuitions that the (quantitative) SNR metric may hide. We
finally put forward additional desirable features of the correlation metric such as
easier interpretation, unbiased estimation thanks to cross-validation and simple
confidence intervals thanks to a well-known statistical distribution.

Related works. The quantitative evaluation of the sensitivity to the training
randomness is quite related to the problem of inter-annotator agreement — see
for example [10, 2|. One difference is that the explanations of LLMs provide con-
tinuous relevance scores (vs. more discretized ones for human annotators). The
other is that, due to the (1,1,1) restriction, we can replace pairwise correlations,
which are frequently used in the inter-annotator agreement literature but can
become expensive as the number of random seeds under investigation increases
in our context, by the correlation with a mean explanation. Our study is also
related to [18] which, among others, performed an experiment to test whether
the words’ relevance obtained thanks to four different types of explanations were
impacted by the random seeds used for model initialization. They used Pearson’s
correlation for this purpose, but only considered two random seeds and did not
ensure model equivalence (nor input compatibility, as we define next).

2 Background

2.1 Dataset, model and explanation method

We run our experiments on the InfOpinion dataset [4], composed of 10,000 french
texts belonging to the information and opinion journalistic genres. This binary
categorization relies solely on the articles’ annotation by their authors as either
information or opinion. The dataset is split in 3 parts: a training set (80%), a
validation set (10%) and a test set (10%). The classes are balanced among each
of these sets. The task is to predict the binary category of a given text.

The model we consider is the French pre-trained transformer model Camem-
BERT [15], in the two different setups presented in [8]. In the first one, that
we denote as fine-tuned, we jointly train all the weights of the encoder blocks
and the classification head during 2 epochs. In the second one, that we denote
as frozen, we only train the classification head while freezing the encoder blocks
(i.e., the model learns to use the embeddings without modifying them). We note
that the model’s training randomness can be controlled via a seed parameter
that rules the initialization of the layers, the order of the training dataset and
the neurons that are deactivated by the dropout layers during the training.

Once our model is trained, we use Chefer et al.’s LRP method to generate
word-level explanations for every text [7]. It back-propagates the relevance from
the last layer of the network using conservation constraints, so that the relevance
of each neuron is redistributed to the neurons of the previous layer based on their
respective gradient. This principle is then followed through the whole network
up to the input layer in order to obtain word-level explanations.?

2 CamemBERT uses the roBERTa tokenization to work with word pieces. We post-
process explanations to get one weight per word instead of one per word piece.
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2.2 Equivalent models’ explanations

In a previous work [6, 3], Bogaert et al. showed that the training randomness of
LLMs can have an impact on their explainability. To do so, and as illustrated
in Figure 1, they trained many models with the same settings and on the same
dataset, but with different random seeds. The accuracy of these models was then
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Fig. 1. Setup for the generation of equivalent models and compatible inputs.

evaluated on a test set, and a subset of m most accurate models was selected,
such that the difference between the best (a) and worst (b) accuracies of the
models in the subset was not statistically significant. For this purpose, one can
computed the z statistic [13], which can detect whether two proportions (here,
the accuracies a and b) are different:

a—1b
b b
(-4t
t

As Bogaert et al., we next consider that z values greater than 1.96 (p < 0.025)
mean that the accuracies of the best and the worst models in a subset are
different. For lower z values, we conclude that these accuracies do not differ
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significantly and therefore, we consider the models in the subset as equivalent
from the performance viewpoint. Starting from 200 models (see Section 2.1), a
restriction to m = 100 was sufficient to reach model equivalence in the subset.
We then selected so-called compatible inputs for which all models predict the
same class, and we computed explanations for each model on such inputs.

2.3 Explanation stability

The main observation in [6, 3] is that the explanations of equivalent models on
compatible inputs can differ, raising a need to characterize their sensitivity to
the training randomness. For this purpose, one can construct an explanation
matrix of m rows (corresponding to different random seeds) and n columns (cor-
responding to different words), where each as,, corresponds to the relevance
value assigned by the s-th model (seed) to the word at the w-th position, as
showed in Figure 2. The left part of the figure additionally shows the average
curve which corresponds to the “simple” (word-level, univariate and first-order)
explanations introduced in [5]. Word-level means that all m explanations of an
n-word text display a weight for each word independently. Univariate means that
each of these weights is a single value. First-order means that variable explana-
tions are summarized by their mean (i.e., a first-order statistical moment).

n words
S . ai,1 ai2 * Ain
3
n &9 a2,1 G2,2
S g
g
- —Q
I love machine learning o Am,1 " Am,n

Fig. 2. Explanations of n = 4-word texts for m = 3 seeds and mean (dotted).

2.4 k-words explanations

To capture the possibility that shorter explanations are more plausible, we can
evaluate so-called k-word explanations, obtained by keeping only the 0 < k <n
highest relevance values of each explanation. To further simplify the individual
explanations, one can also use k-word binary explanations, where only the k top
words are considered relevant, without any distinction among them:

S aswifasy € TOPy(as,.), [ 1lif asw € TOPy(as,),
sw =910 oth. @sw = 0 oth.

2.5 Signal, noise and SNR

Simple (word-level, univariate and first-order) explanations naturally suggest
simple quantities to capture their sensitivity to randomness. In [5], the explana-
tions’ signal (S), noise (N) and Signal-to-Noise Ratio (SN R) were suggested as
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tentative metrics for this purpose. Intuitively, the signal reflects the flatness of
the average explanation, the noise reflects the variation of the relevance scores
for each word (averaged) and the SNR is simply the ratio between both:

S= Var < E (as,w)), N= E <v5r (aw)), SNR:%

n words \ ' m seeds n models \ m seeds

3 Metrics’ corner cases

We next discuss the adequacy of the SNR metric to reflect the stability of expla-
nations in the setting of Figure 2. For this purpose, we use illustrative hand-made
examples and compare how the stability of some explanations is captured by the
SNR and by an alternative simple metric, namely the (average) correlation with
a mean explanation. We are in particular interested in the ability of these metrics
to reflect the relative differences of relevance between words and the absolute
differences of relevance for single words in a set of variable explanations.

3.1 Relative differences (between words)

Figure 3 illustrates two pairs of explanations such that the relevance of some
words are swapped when moving from the left to the right plots. As a result, these
left and right plots show quite disparate relative differences of relevance between
words. Interestingly, the SNR metric is unable to reflect these relative differences.
This is because the swaps do not affect the mean explanations (which are the
same on the left and right plots, leading to the same signal) nor the absolute
difference between words (hence the noise). By contrast, the correlation metric
captures these relative differences: the explanations of the left plot are highly
correlated with the mean explanation; the ones of the right plot are not.
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- — 9 - —Q

| love machine learning o | love machine learning o

Fig. 3. Two pairs of explanations (A and (), with the same absolute differences and
different relative differences, with the mean explanation in dotted line.

3.2 Absolute differences (for single words)

A complementary situation is illustrated in Figure 4, in which an offset § was
added to all the relevance values of one explanation and subtracted for the other.
As aresult, the left and right plots show disparate absolute differences. This time,
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Fig. 4. Two pairs of explanations (A and (), with the same relative differences and
different absolute differences, with the mean explanation in dotted line.

the correlation metric is unable to reflect the discrepancy between the left and
right plots (because the correlation is invariant to the § offset). By contrast, the
SNR reflects it because the noise of the left and right plots differs.

3.3 Discussion

The two examples above suggest a quite natural tradeoff between the SNR and
correlation metrics: the first one better captures absolute differences, the sec-
ond one better captures relative differences. While this may encourage using
both metrics in parallel, Figure 5 highlights additional limitations of the (noise
component of the) SNR metric. Namely, it illustrates that the noise metric is
averaged over (possibly dependent) words, which may hide important intuition
regarding which word is causing the noise. (By contrast, the correlation can be
averaged over independent seeds). As a result, we suggest using the correlation
metric for design space exploration and box plots for a qualitative analysis of the
noise. As will be experimented next, this appears as a relevant combination to
characterize the explanations’ sensitivity to the training randomness, capturing

both the absolute and relative differences within these explanations.?
o o
/A — —
o o
o o
love machine learning S love machine learning o

Fig. 5. Two pairs of explanations (A and (), with the same (average) relative differ-
ences but distributing these differences differently among the words of a sentence.

Besides, the SNR is also slightly less convenient to manipulate from the sta-
tistical viewpoint. First, it is a biased metric since small estimation errors in the
mean explanations are considered as signal by definition. Second, its interpreta-
tion in case of small noise levels is not always intuitive (e.g., the SNR tends to
infinity when the noise tends to zero). Despite these drawbacks do not lead to

3 In Appendix A, we give additional arguments why the noise metric alone cannot be
used for design space exploration. In appendix B, we give additional arguments why
the signal metric alone is making undesirable implicit plausibility assumptions.
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fundamental issues (i.e., the SNR bias decreases with the amount of seeds and can
be corrected, intuition is just less direct), we show next that the correlation co-
efficient also comes with advantages in this respect. It can be estimated without
bias thanks to cross-validation, benefits from a well-known sample distribution
leading to easy-to-obtain confidence intervals and its interpretation is direct.

4 Application to case studies

We now apply the methodology proposed above to the classification case study
described in Section 2. First, we detail how to estimate the correlation metric
in Section 4.1. Next, we show how it can be used for design space exploration
in Section 4.2. Finally, we illustrate how such a quantitative analysis is nicely
combined with a more qualitative one using box plots in Section 4.3.

4.1 Estimation and confidence interval

The examples of Section 3 suggest using the correlation of different explanations
with their mean as a good way to quantify the explanations’ sensitivity to the
training randomness.* We next detail how correlation samples can be estimated
without bias thanks to 10-fold cross validation, and possibly averaged.

For this purpose, the average explanation is first repeatedly computed using
90% of the explanation matrix’s rows and the remaining 10% of the rows are
repeatedly compared to these means in order to compute correlation samples
(one per explanation). Figure 6 shows a scatter plot of all the correlations to the
mean (i.e., one per trained model, so 100 in our case study), highlighting the
high disparity of the results depending of the training randomness.

Different quantities of the correlation distribution could then be considered
to summarize the explanations’ stability. In the following, and for simplicity
purposes, we suggest to use the average correlation. We note that while it is
in general better to estimate the correlation between two variables based on a
large set of samples than averaging correlations estimated from several smaller
sets of samples, this approach can serve as a useful heuristic in our context, if
interpreted carefully. Namely, as a way to capture a global tendency for many
explanations, possibly leading to different correlation values. For this purpose,
we follow [17] and first use the following “Fisher Z transformation”:

Lo 1+
F(p) = 5%

) = arctanh(p),

which projects the correlation samples in a space where they are normally dis-
tributed. We can then compute the average Fisher value F, as well as its sample
variance 62. A confidence interval on the estimation of F' (e.g., 96%) is obtained

4 Under the assumption of simple explanations formalized in [5] as (1,1,1) explana-
tions, computing the average correlation to a mean explanation rather than the
average pairwise correlation allows significant speedups without intuition loss.
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Fig. 6. Scatter plot of the correlation to the mean for LRP explanations correspond-
ing to the frozen (top) and fine-tuned (bottom) models in function of the number of
words used per explanation, illustrated for a short (left) and a long (right) text. For
readability, only the values k = 10, 20, 30, ... are displayed for the long text.

by adding or removing 2\/% to F. Applying the inverse function p = tanh(F(p))
finally leads to 96% confidence interval for the average correlation:

_ 26 _ 26
[tanh (F — \/Z’n) . tanh <F n \/%ﬂ .
This interval indicates that the average correlation is better estimated with more
models (i.e., large m values). By contrast, longer texts (i.e., large n values) lead

to better estimated correlation samples, but do not necessarily decrease the
variance &, since the correlations of different explanations may differ.

4.2 Quantitative analysis

Figure 7 shows the average correlation to the mean for k-word explanations.
Positing that shorter and more aligned explanations are more plausible, such an
exploration can lead to identify relevant parameters to investigate more quali-
tatively. For example, we can see on the left plot that the average correlation
to the mean increases up to kK = 7 and then reaches a plateau . Hence, larger
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Fig. 7. Average correlation to the mean (with confidence intervals) for LRP explana-
tions corresponding to the frozen and fine-tuned models in function of the number of
words used per explanation, illustrated for a short (left) and a long (right) text.

values of k (i.e., longer explanations) may not lead to a reduced sensitivity to
the training randomness. We next complete this observation with a qualitative
analysis for the explanations obtained for £ = 7 and the maximum k = 51.

4.3 Qualitative analysis

Starting with the box plot for k = 7 displayed on Figure 8, we can observe that,
qualitatively as well, the LRP explanations of the frozen model are significantly
less sensitive to the training randomness than the ones of the fine-tuned model.
This is quite expected since the amount of network weights that are trained
in these two models vastly differ. What is maybe less expected is that the the
variability per word is also distributed very differently for both models. Namely,
7-word explanations across the 100 seeds only consider 10 different words in
the frozen case, while most words are considered by the fine-tuned models. This
tends to justify our proposed methodology, where we do not analyze the absolute
difference with the noise metric (which is averaged over the words).
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Fig. 8. Box plot for k = 7 and the frozen (top) and fine-tuned (bottom) models.

More interestingly, Figure 9 shows the box plots obtained for the same mod-
els and k = 51. Its upper part is particularly relevant: it confirms that increasing
the explanations’ length beyond k& = 7 is not only discouraged by the correla-
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Fig. 9. Box plot for k = 51 and the frozen (top) and fine-tuned (bottom) models.

tion metric, it actually also leads to harder to interpret first-order explanations
assigning non-zero relevance scores to most words, as the fine-tuned model.

5 Conclusions

Our results provide consolidated tools for analyzing the sensitivity of the expla-
nations of LLMs to the training randomness, hopefully opening a path to their
better understanding and leading to various interesting open problems.

First, and maybe most importantly, the extent to which the stability of the
explanations of LLMs is a requirement for their plausibility remains unknown.
While we posit in the paper that shorter and more aligned explanations are easier
to understand, it could also be that human explanations show variations that
are similar to the ones observed in this paper. Designing a real-world experiment
with human annotators would be interesting to contribute to this question.

Second, even if explanations appear unstable when considering their average
correlation to a mean explanation as in this paper, it is possible that some clus-
ters exist within these explanations. This would mimic a situation where a few
groups of human annotators share very similar explanations within the groups
and have very different ones between the groups. In order to stimulate research
in this direction, Figure 10 shows a TSNE visualization of 100 explanations used
in our experiments. It would be interesting to investigate whether clusters an be
extracted from such plots and lead to more stable/aligned explanations.
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Fig.10. TSNE for k = 51 and the frozen (left) and fine-tuned (right) models.
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Third, it would be interesting to investigate whether more complex explana-
tions (e.g., assigning relevance scores to tuples of words) or more complex models
(e.g., generative ones) may lead to different outcomes, and whether a sensitivity
to the training randomness is observed for other tasks or data sets.

Finally, our conclusion may also differ for other modalities than texts. For
example, image explanations may be more stable due to the more correlated
nature of adjacent pixels (compared to consecurive words in a text).
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A The noise is not good for design space exploration

As illustrated in Figure 11, we cannot use the signal or the noise alone to explore
our design space, as their range is directly impacted by the amount of top words
k. This is the case even for deterministic/random explanations, which lead to
an hypothesis that selecting a certain ratio of word leads to more stable expla-
nations, even if all the models perfectly agree on the relevance of every token.
This is not the case for the correlation metric that is always at its maximum for
the deterministic model, and at its minimum for the random one.
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Fig. 11. Signal (left), noise (middle) and correlation (right) of deterministic (-) and
random () explanations, for the binary variant of k-word explanations.
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B Implicit assumption of the signal metric

As illustrated in Figure 12, it is possible to obtain explanations such that their
absolute and relative differences are identical, but their signal differs, because
the signal is focused on the flatness of the mean explanation. It implicitly sug-
gests that more relative differences within this mean explanation lead to better
explainability, which may not be connected to a definition of plausibility.
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Fig. 12. Two pairs of explanations (A and (), with the same absolute and relative
differences and different signal, with the mean explanation in dotted line.



