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Abstract. Polka is a post-quantum public-key encryption scheme from
PKC 2023, designed in order to be efficiently protected against side-
channel attacks. Its motivation arises from the acknowledged difficulty
of protecting Kyber against such attacks. Concretely, the structure of
Polka aims to allow so-called leveled implementations, so that protect-
ing its long-term key requires strong and expensive countermeasures (like
masking) for a part of its operations only. This contrasts with Kyber, for
which preventing side-channel attacks requires to uniformly protect all
its operations. The good leakage-resilience features of Polka neverthe-
less come with performance overheads in an unprotected implementation
context. Since no concrete implementations of Polka were proposed so
far, it left the question of the number of shares for which it can be-
come an interesting alternative to Kyber open. We bridge this gap by
proposing a leveled software implementation of Polka and show that,
already for two shares, it leads to significant performance gains over the
state-of-the-art uniformly masked implementations of Kyber (Bos et
al., TCHES 2021, Bronchain and Cassiers, TCHES 2022).

1 Introduction

CRYSTALS-Kyber (short: Kyber) is a new standard for key encapsulation
and public-key encryption [1]. While it is expected to provide strong security
even in the presence of quantum computers, securing its implementations against
side-channel attacks has been shown to be very challenging. Informally, one of
the main reasons of this difficulty is that the security of Kyber against Chosen-
Ciphertext Attacks (CCA) relies on the so-called Fujisaki-Okamoto (FO) trans-
form [17], which essentially checks that ciphertexts are well formatted by de-
crypting and re-encrypting them. As a result, a side-channel adversary can per-
form a chosen-ciphertext attack against the part of Kyber that is only secure
against Chosen-Plaintext Attacks (CPA), by observing the leakage of a decryp-
tion before the re-encryption step [27,31,32,35,36,38]. This is a severe weakness
since exploiting it only requires to target the confidentiality of the re-encrypted
message with a distinguishing attack, a task that is considerably easier than
performing a key-recovery [34]. Informally, this is because message distinguish-
ing attacks can directly exploit the leakage of all the target operations of a
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leaking implementation, without key guessing. As a result, the traditional intu-
itions prevailing when analyzing the implementation of symmetric cryptographic
primitives against leakage may not extend to the post-quantum asymmetric set-
ting. For example, the aforementioned message distinguishing attack is a Simple
Power Analysis (SPA) exploiting the measurement of a single manipulation of an
ephemeral secret. Yet, it frequently turns out to be more powerful (hence, harder
to prevent) than a Differential Power Analysis (DPA) attacks against Kyber’s
decryption, which exploits multiple manipulations of the long-term secret [2].

Given the anticipated cost to secure Kyber with standard countermeasures
like masking [6,7,11,13,14], Polka was introduced as an alternative CCA-secure
post-quantum public-key encryption scheme [20]. It embeds a number of features
aimed at simplifying secure implementation. First, Polka is designed in such a
way that CCA security is obtained without relying on the FO transform. Sec-
ond, its decryption process is randomized in order to remove adversarial control
on intermediate computations that can facilitate side-channel attacks. Third, it
leverages key-homomorphic computations that are easy to mask. Finally, it can
rely on hard physical learning problems to argue about the security of some
(unmasked) operations [16,21]. As a result, Polka is expected to enable leveled
implementations, as popular in symmetric cryptography [5]. That is, it aims to
be implemented securely without uniformly masking all its operations.

It is important to emphasize that a leveled implementation of Polka and
a uniformly masked implementation of Kyber lead to different security guar-
antees. Borrowing the terminology used in symmetric cryptography [19], a lev-
eled implementation of Polka is leakage-resilient : its ephemeral secrets may be
compromised in the presence of leakage, but security is restored once leakage
is removed from the adversary’s view. In other words, a leveled implementa-
tion of Polka only protects its long-term secret key. By contrast, a uniformly
protected implementation of Kyber is leakage-resistant and also protects its
ephemeral secrets. In this work, we are therefore concerned with the situation
where implementers want to efficiently ensure leakage-resilience. This is a natu-
ral first step since, for example, all the aforementioned attacks against Kyber’s
FO-transform target its long-term secret key. But if implementers want leakage-
resistance guarantees, the interest of Polka over Kyber currently vanishes.

Given this cautionary note, the interesting consequence of Polka’s design,
that we want to investigate, is that the asymptotic performances of its leveled
implementation scale linearly in the number of shares used for its masked com-
putations. By contrast, the performances of a uniformly masked Kyber scale
quadratically in the number of shares. Since this trend comes at the cost of
some overheads for Polka’s unprotected implementation, it raises the question
of when (i.e., for which number of shares) can Polka become an interesting
alternative to Kyber (assuming that only leakage-resilience is required)?

In order to answer this question, we describe a leveled software implementa-
tion of Polka taking advantage of standard optimization techniques for post-
quantum cryptography. Doing so, we also instantiate the few components that its
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authors left unspecified and slightly tweak the proposal of [20] in order to further
reduce the side-channel attack surface. As a result, we put forward that despite
the overheads of its unprotected implementation, a leveled implementation of
Polka leads to better performances than a uniformly masked implementation
of Kyber on an ARM Cortex-M4 device, already with d = 2 shares.

We then wrap up the paper by discussing the remaining challenges in order to
turn this improved but qualitative “performances vs. number of shares tradeoff”
into an improved quantitative “performances vs. side-channel security tradeoff”.
Conjecturing that key recovery attacks against Polka should be significantly
more difficult to perform than message distinguishing attacks against Kyber,
we conclude that Polka, or more generally alternative encryption schemes tai-
lored for improved side-channel security, have a strong potential to considerably
improve this tradeoff for post-quantum public-key encryption schemes. We com-
plete this discussion with a number of interesting open problems.

2 Background

We start with some preliminaries needed for the understanding of the paper.
Namely, we give more details about the Polka algorithm that we will fully
instantiate and implement in subsection 2.1, and about the NTT that will be
the main tool for the polynomial arithmetic operations of our implementation
in subsection 2.2. We do not provide details about Kyber that we do not re-
implement and for which various comprehensive descriptions can be found online.
The most relevant references for our purposes are the masked implementations
in [6, 7], of which we will extract performance tables for our comparisons.

2.1 Polka

Polka is a CCA-secure post-quantum public-key encryption scheme tailored
for efficiency when implemented with side-channel security guarantees [20]. Its
black-box security relies on the Ring Learning With Errors (RLWE) assump-
tion [24] in the Quantum Random Oracle Model (QROM), while its side-channel
efficiency stems from heuristic design tweaks aimed at lowering the overheads
of countermeasures. The scheme comes with two noise distribution variants over
the coefficients of the polynomials: either centered Gaussian or centered binomial
distributions. Here, we focus on the latter version, like Kyber.

While the structure of Polka follows the KEM-DEM paradigm by deriv-
ing an ephemeral secret key from an asymmetric key encapsulation part (KEM)
to encrypt the message with a symmetric deterministic encryption (DEM), the
way its decryption rejects ill-formed ciphertexts differs from most post-quantum
public-key encryption schemes designed for practical use. Polka rejects cipher-
texts through norm checks on re-extracted noises to confer a rigidity property
without relying on the FO transform [17]. This eliminates Kyber’s critical re-
encryption step and the associated attacks listed in introduction.
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Polka also includes additional tricks in its black-box design to ease side-
channel countermeasures. For example, its KEM part leverages the bounded
additive homomorphy of RLWE ciphertexts to randomize the intermediate val-
ues in the decryption step, and ensures that the long-term key is only used in
linear operations that can be masked with linear overheads. Besides, Polka can
leverage a structured version of the Learning With Physical Rounding (LWPR)
problem [16, 21], a physical learning problem of which the heuristic hardness is
used to further increase its opportunities of leveled implementation.

Algorithmic description. We define a noise distribution, to be used over in-
teger vector coefficients, as {∑2

i=1(ui − vi) mod 3 | ui, vi ← {0, 1}}, where mod
3 means the integer representative over {−1, 0, 1}. The resulting ternary distri-
bution over R = Zq[X]/(Xn + 1) is denoted as Dcoeff

n,B , where B = 1. For any
r ← Dcoeff

n,B , we have ∥r∥ ≤ B for the infinity norm over the vector of coefficients.
We refer to [20] for the key generation, which produces b = p(as+ e) ∈ R∗ from
s, e ← Dcoeff

n,B and p ≥ 2B + 1 ∈ Z, and defines the secret key as s. Next, we
describe the encryption and decryption steps of Polka:

Encrypt: Given a public key (n, q, p, a, b) and a message M ∈ {0, 1}ℓm :

1. Sample r, e1, e2 ← Dcoeff
n,B and compute the KEM part

c1 = a · r + e1 ∈ R, c2 = b · r + e2 ∈ R

together with K = H(r, e1, e2) ∈ {0, 1}κ.

2. Compute c0 = EK(M) as the DEM part.

Output the ciphertext C = (c0, c1, c2).

Decrypt: Given a secret key s ∈ R and C = (c0, c1, c2), do the following:

1. Sample r′, e′1, e
′
2 ← Dcoeff

n,B and compute c′1 = a · r′ + e′1 and c′2 = b · r′ + e′2.
2. Compute c̄1 = c1 + c′1 and c̄2 = c2 + c′2.
3. Compute µ̄ = c̄2 − p · c̄1 · s over R.
4. Compute ē2 = µ̄ mod p ∈ {−p−1

2 , . . . , p−1
2 }. If ∥ē2∥ > 2B, return ⊥.

5. Compute r̄ = (c̄2 − ē2) · b−1 ∈ R. If ∥r̄∥ > 2B, return ⊥.
6. Compute ē1 = c̄1 − a · r̄ ∈ R. If ∥ē1∥ > 2B, return ⊥.
7. Compute r = r̄− r′, e1 = ē1− e′1 and e2 = ē2− e′2. If ∥r∥ > B, or ∥e1∥ > B,

or ∥e2∥ > B, then return ⊥.
8. Compute K = H(r, e1, e2) ∈ {0, 1}κ and return

M = DK(c0) ∈ {0, 1}ℓm ∪ {⊥}.

As suggested in [20], we choose to pre-compute the inverse of b and store it in
the public key to avoid computing it on the decryption step.
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Fig. 1: Leveled implementation of Polka, from [20].

Leveled implementation. We now describe the protected implementation of
Polka’s decryption proposed in [20], for which we re-use the visual description of
Figure 1. The color codes indicate the type of side-channel attacks that must be
prevented by implementers. Light green means SPA security for randomized val-
ues, dark green means “SPA with repetition” security for non-randomized values
(i.e., SPA with repeated measurements of the same value), light blue means DPA
security for key-homomorphic operations manipulating unknown (randomized)
inputs and dark blue is for standard DPA security. As discussed in introduction,
our focus in this paper is on the leakage-resilience guarantees of Polka (i.e.,
the upper part of the figure, where the long-term secret is manipulated).

The general structure of Polka, that rejects ill-formed ciphertexts without
FO transform thanks to norm checks, directly removes one critical attack vector
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that severely affects the side-channel security of Kyber. We next describe the
other design features that support the leveled implementation of Polka.

Dummy ciphertexts. When many traces of the same operation with identical
inputs are collected, adversaries can combine them in order to reduce the noise
in the leakage measurements (e.g., thanks to averaging). In Polka, intermediate
values are expressed as RLWE samples of the form c = a ·r+e, where a is public,
and r and e are small secret values that the adversary aims to retrieve. To prevent
such an averaging, Polka introduces randomized dummy ciphertexts of the form
c′ = a · r′+e′, where r′ and e′ are small random polynomial, and combines them
with the original ciphertext as a pseudorandom c = c + c′, which is unknown
to the adversary. The security proofs are then adjusted in order to account for
the new norms of these randomized intermediate values. While this approach
incurs some mild overheads for generating the dummy ciphertexts, it effectively
transforms a SPA with repetition attack path into a regular SPA attack path,
significantly simplifying the task of protecting the operations concerned.

Key-homomorphic operations and (Ring-)LWPR. Despite having a DPA attack
path seems unavoidable in any decryption scheme that must manipulate a long-
term secret key, Polka is designed in such a way that the main operation ma-
nipulating this long-term secret (i.e., s in step 2 of Figure 1) is key-homomorphic.
As a result, it can be efficiently performed share by share (i.e., with overheads
that scale linearly in the number of shares). Furthermore, under the LWPR as-
sumption, it is possible to unmask the value of t so that all the norm checks of
steps 3 and 4 can be performed on unshared values. The LWPR assumption is a
physical learning problem that has been heuristically shown to be computation-
ally hard [16, 21]. Standard LWPR samples have the form (r, L(r · s)), where r
is a random public vector, s is a secret vector, and the leakage function L acts
as an injective rounding function. In Polka, the polynomial product involving
the long-term secret naturally suggests a ring variant of the LWPR problem.

2.2 NTT

Let ΦN be the N -th cyclotomic polynomial and q be a prime number. Since Φ(X)
has integer coefficients, we can consider the polynomial ring R = Zq[X]/(Φ(X)),
where Zq is the field of integers with addition and multiplication modulo q, i.e.,
Z/(q). As Φ(X) factors into coprime irreducible polynomials fi(X) of degree δ
in R if the order of q modulo N is δ, the well-known Chinese Reminder Theorem
ensures that we have the ring isomorphism R ≈ R1×· · ·×Rφ(N)/δ, where Ri =
Zq[X]/(fi(X)) with R → Ri; a → a mod fi(X). The naive multiplication in R
has an asymptotic cost of n2 multiplications in Zq, where n = φ(N) is the degree
of ΦN . Assuming that q is chosen given N so that δ is constant, the corresponding
multiplication can be carried out using only around δ2 multiplications modulo
q in each Ri, leading to O(n) such multiplications. For well-chosen N values,
typically a power of 2, the Number Theoretic Transform (NTT) then allows
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applying the above isomorphism back and forth in O(n log n) operations in Zq,
with the same complexity to perform multiplications over R.

For Kyber, we have N = 512 and the prime q = 3329 of order 2 modulo N .
For Polka, we have N = 2048 and the prime q = 59393 of order 1, thus a fully
splitting ring R. In both cases, we have 2n = N and ΦN (X) = Xn + 1.

3 Instantiation and tweaks

In this section, we first complete the specifications of Polka by instantiating
the few components that were left open by its authors in subsection 3.1. We
next bring relevant clarifications to the leveled implementation of Figure 1 and
slightly tweak it in order to further reduce the side-channel attack surface.

3.1 Choice of symmetric primitives

Step 5 of Polka requires a hash function. As standard in post-quantum cryp-
tography, we use SHA-3 for this purpose.1 As a new standard, it benefits from
various open implementations. It is also natural given our goal to compare the
performances of Polka with the ones of Kyber (which relies on SHA-3).

Besides, Step 5 of Polka requires an Authenticated Encryption (AE) scheme.
The authors of [20] proposed an instantiation based on a key-homomorphic
MAC, which may be interesting in order to upgrade the leakage-resilience guar-
antees of Polka towards leakage-resistance ones. Yet, as is, this solution is spe-
cialized to fixed-length messages which makes Polka less comparable to Kyber.
It is also not sufficient to make Polka leakage-resistant (since DPA can anyway
target its hash function). Given our restricted goal of leakage-resilient implemen-
tation, we therefore stepped back to a more standard choice, which is to select
an AE from the NIST lightweight cryptography competition. Among the candi-
dates, Saturnin appeared as a natural choice, due to its focus on post-quantum
security which we also target [9]. Our implementations rely on the (unprotected)
C implementation made available with its submission to the NIST.

3.2 Clarifications and improvements

Despite Figure 1 highlights the security requirements of a leveled implementa-
tion of Polka, it does not directly clarify which parts of the computations are
masked, nor which operations are performed in the NTT domain. The updated
Figure 2 provides such clarifications. First, we use the “widehat” notation for all
the operations that are performed in the NTT domain. Changes from hatted to
non-hatted variables (and vice-versa) therefore indicate where NTTs and inverse
NTTs must be computed. Second, we use subscripts in Step 2 of the figure in
order to clarify the operations that are computed per share due to masking.

1 https://csrc.nist.gov/pubs/fips/202/final.

https://csrc.nist.gov/pubs/fips/202/final
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Fig. 2: Tweaked leveled implementation of Polka.

We note that while the impact of masking and unmasking on side-channel
vulnerability is evident, NTT conversions can also have an impact in this respect.
Specifically, the result of the product in Step 2 must not remain in its NTT
representation when unmasked. The hardness analysis of LWPR indeed relies on
classical polynomial multiplication [16, 21], as the algebraic structure of point-
wise multiplication in the NTT domain offers weaker key mixing. For efficiency,
the product can still be computed in the NTT domain. However, the result must
undergo a masked inverse NTT before unmasking. In Polka, this constraint
aligns naturally with the subsequent operation (i.e., a modular reduction) which
cannot be performed in the NTT domain anyway. Interestingly, this observation
suggests a slight improvement of Polka’s leveled implementation that is also
reflected in Figure 2. Namely, since we need to exit the NTT domain before
unmasking, we can perform the subsequent subtraction operation in the masked
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domain. Such a change comes at no additional cost (since the subtraction applies
to a single share) and further minimizes the exposition of sensitive values.

4 Implementation choices

In this section, we outline the implementation choices made for Polka, focusing
on polynomial multiplication and modular arithmetic techniques.

4.1 Polynomial multiplication

As with all RLWE-based schemes, Polka’s computations rely heavily on poly-
nomial multiplications in rings. This operation constitutes a significant portion
of the overall computation cost. When performed using a naive method, the com-
plexity is in O(n2), where n is the polynomial degree. Fortunately, Polka’s ring
structure is chosen to allow the use of the NTT (described in subsection 2.2).
The NTT converts polynomials to their image in the NTT domain. The naive
implementation of the NTT runs in O(n2) but using the Cooley-Tukey butter-
fly algorithm [10] (and the Gentleman-Sande one for the inverse NTT [18]) this
complexity becomes O(n log n). Once in the NTT domain, polynomial multipli-
cations can be performed point-wise, reducing the complexity to O(n).

4.2 Switches between representations

The polynomial operations in Polka include additions, multiplications, norm
checks, and small modular reductions. Additions can be performed in either rep-
resentation, as long as all terms share the same domain. However, for efficiency
reasons, multiplications must be carried out in the NTT representation, whereas
norm checks and modular reductions require the polynomials to be in their nat-
ural representation. In order to minimize the number of representation switches,
the polynomials in the public and secret keys are stored directly in their NTT
representations. From Figure 2, we can then directly count that Polka’s de-
cryption requires 4 NTT and 3 + d inverse NTT operations, where d represents
the number of shares used for the masked computations of Step 2.

4.3 Modular arithmetic

Most of Polka’s operations ultimately reduce to perform modular arithmetic
over the integers. However, the default implementation of modular operations
in C neither runs in constant time nor achieves optimal performance. In order
to address these inefficiencies, we employ Montgomery’s and Barrett’s reduction
algorithms, both widely used in cryptographic implementations.

Montgomery’s reduction. Montgomery’s reduction is an efficient algorithm
for modular multiplication [26]. Its key insight is that performing divisions and
modular operations with powers of two is significantly faster than with arbitrary
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values. To leverage this, we first compute the number m of multiples of q that
need to be added to an input T to make it divisible by R = 232. We then effi-
ciently divide (T +m ·q) by R to obtain a result in the range [0, 2q). The original
algorithm includes a final step to subtract q if necessary, ensuring that the out-
put strictly lies within [0, q). However, depending on subsequent operations in
Polka, this step can often be skipped, allowing the result to remain in [0, 2q).
This procedure yields the value TR−1 (mod q) instead of T (mod q). To recover
the desired result, we pre-multiply T by R (mod q), which comes for free if T
arises from a product between a value and a constant, as in the NTT.

Barrett’s reduction. While Montgomery reduction is highly efficient, it has
two drawbacks: it performs poorly when reducing overflowed values (e.g., sums),
and its output can exceed q. In cases where these issues are problematic, we
use Barrett’s reduction [4] instead. Barrett’s reduction replaces division by the
modulus q with a cheaper multiplication and bit-shift operation. Although it is
slower than Montgomery’s reduction, it guarantees the output remains in the
range [0, q), making it preferable when strict modular bounds are required.

Both for Montgomery’s and Barret’s reductions, we actually rely on improved
versions that are able to deal with signed inputs, proposed by Seiler [33].

4.4 Small hash function input

A naive approach to organize the hash function input in Step 5 of Figure 2 would
be to concatenate the coefficients of r, e1 and e2 in a big array. However, this
approach would make the input of this hash function quite large (about 100
kilobits) and therefore long to process. A better way to organize this input is to
stack several coefficients per register. Indeed, r, e1 and e2 are guaranteed to be
small polynomials with coefficients among three values. Therefore, it is possible
to represent every of those coefficients with only two bits and to construct our
hash input by storing chunks of coefficients in single variables. This technique
allows us to reduce the size of the hash input to roughly 6 kilobits.

5 Results and discussions

In this section, we finally benchmark both Polka and Kyber, analyze Polka ’s
performances per decryption step and operation and compare the performances
of the two algorithms, in the unprotected and protected settings.

5.1 Experimental setup

In order to perform our measurements, we ran our code on the NUCLEO-
L4R5ZI board with an ARM Cortex-M4 32-bit micro-controller as required by
the framework pqm4 [23], and more specifically the fork pqm4_masked [7]. The
measurements of Kyber were done using the code from [7] for Kyber768. The
pqm4_masked framework allows defining personalized bench cases. In addition to
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the bench cases related to Encrypt and Decrypt, we defined one bench case per
decryption step, one per polynomial operator (addition, substraction, multipli-
cation, scalar product, randomization, NTTs, inverse NTTs, norm computation,
mask refreshing, modular reduction), one for Saturnin and one for Keccak.

5.2 Analysis of Polka’ performances

We first focus on Polka’s decryption step, which is the most sensitive from the
side-channel analysis viewpoint. We therefore observe the cycle counts and their
evolution as the number of shares increases, first per step in Decrypt and then
per type of operation in Decrypt, in Figure 3 and Figure 4, respectively.2
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Step 1

Step 2

Step 3

Step 4

Step 5

Fig. 3: Cycle counts for each decryption step in Polka

Figure 3 leads to the expected observation that the performances of a leveled
implementation of Polka’s decryption scale linearly with the number of shares
used to protect its long-term key, which is a direct outcome of key-homomorphic
computations. For the rest, we note that when the number of shares is low
(d < 4), most of the computation time is spent in the first and third steps,

2 Our implementations are not perfectly constant time, mostly due to the randomness
generation and the implementation of Saturnin not being constant time. Yet, the
standard deviations observed are three orders of magnitude smaller than the mean
values we report, so they do not affect our conclusions regarding the performance
trends of Polka implementations when their number of shares increases.
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which are the steps dealing with dummy ciphers. We observe that the cost of
those steps is constant, since they are performed on unmasked data. Beyond 4
shares, the time spent in the second step (i.e., the masked multiplication) starts
to dominate as it is the only step performed on masked data.
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Decrypt

Keccak

Inverse NTT
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Random polynomial generation

Polynomial product

Polynomial subtraction

Mask refresh

Others

Fig. 4: Cycle counts for the main operations in Polka’s decryption.

Figure 4 offers a complementary view. It highlights that most of the compu-
tation time is spent on the NTTs and inverse NTTs. It also shows that only the
cycles spent to perform the inverse NTT, refreshing, multiplication and subtrac-
tion operations (i.e., the operations of Step 2 in Figure 2) increase linearly with
the number of shares. We note that the refresh step is increasing faster than
the other routines. This is due to the fact that refreshing a mask requires d− 1
polynomial randomizations, d− 1 additions and d− 1 subtractions.

5.3 Comparison with Kyber

We finally compare the performances of Polka and Kyber, first for unprotected
implementations in Table 1, then for their protected decryption in function of
the number of shares, in Figure 5. We recall that the physical security guaran-
tees targeted by both implementations are different: leakage-resistance for the
uniformly masked Kyber, leakage-resilience for the leveled Polka.

Table 1 shows that, as expected, the leakage-resilience features of Polka
come with overheads in the unprotected setting: its decryption is about four
times slower than the one of Kyber. We note that the Polka’s encryption is
slightly faster, which we assume is due to Kyber’s compression step.

Figure 5 shows that these overheads are rapidly compensated when side-
channel protections are needed. Already for d = 2 shares, Polka is twice faster
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Kyber Polka

Encrypt 957, 176 880, 201

Decrypt 707, 827 2, 571, 178

Table 1: Cycle counts for Kyber and Polka’s unprotected implementation.
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Fig. 5: Cycle counts for Kyber and Polka’s protected decryption.

than Kyber. This factor grows with d and improves to 8 for 8 shares. We discuss
the expected quantitative impact of these figures in the next conclusions.

6 Conclusion and open problems

Our results essentially confirm the conjecture from [20] that leveled implemen-
tations of schemes like Polka can rapidly lead to better performances than a
uniformly masked implementation of Kyber. It turns out this is already true
for d = 2 shares. It also raises interesting open problems that we now detail.

First, both the uniformly masked implementations of Kyber in [6,7] and the
leveled implementation of Polka in this paper focus on masking the necessary
operations. While this is an important first step, it remains that SPA attack
paths need to be prevented (at the share level for Kyber, both at the share
level and after Step 2 for Polka). Such SPA protections are expected to be
cheap. We nevertheless list the operations that should require special care.



14 T. Schoenauen, C. Hoffmann, C. Momin, T. Peters, F.-X. Standaert

Starting with Kyber, it is for example well-known that single-trace (SPA)
attacks against the (share by share implementation of the) NTT may be a
threat [29, 30]. If successful, such attacks indeed cancel the impact of mask-
ing. A natural option to prevent this issue is to rely on a hardware coprocessor.
Alternatively, shuffling can be used as a surrogate to emulate parallelism [37].

A similar issue pops up in Polka. In particular, it is important that the
inverse NTT operations in Step 2 of Figure 2 are secure against SPA (which,
again, is calling for parallelism or shuffling). Besides, the security of the LWPR
assumption that we leverage in order to unmask the computations after this
Step 2 also requires that the operations in Step 3 do not leak “too much” about
t [16,21]. Once more, parallelism and shuffling appear as natural options. Yet, it is
also worth noticing that Polka embeds design features to minimize this leakage.
Namely, the LWPR assumption was so far studied for a public vector multiplied
with a secret key (as it is usually the case for hard learning problems). But the
leveled implementation of Figure 2 multiplies a secret (randomized) vector, of
which the adversary only sees the leakage with a shared key. Hence, studying how
much this hardens the problem is an interesting open problem. Second, Step 3 in
the same figure starts with a modular reduction which turns 16-bit values into
3-bit values, substantially reducing the leakage on t that subsequent operations
can provide. Finally, LWPR was so far studied in a conservative setting where
leakages are assumed to be noise-free. So it is another interesting open problem
to find out whether there is a gap to exploit between the LWPR assumption and
a more realistic “learning with physical rounding and noise” assumption.

Next, the “security vs. performance” tradeoff that we study is so far qualita-
tive. Again, this appears to be a necessary first step and, for example, a similar
tradeoff was also first studied for masked implementations of Kyber. But it
also suggests investigating how this qualitative analysis can be translated into
a quantitative one as an important extension. This will likely be a non-trivial
task, since it implies understanding in depth how to assess the worst-case (quan-
titative) security guarantees of Kyber and Polka, which both have multiple
(SPA and DPA) attack paths. There are nevertheless reasons to believe that the
turn to a quantitative analysis will further amplify the impact of Polka. First,
and as already mentioned, the absence of FO transform removes the possibility
of a message distinguishing attack which is, in many cases, the most critical
one for Kyber [2]. Concretely, it leads implementations with large number of
shares to be breakable [15]. Second, it is already well documented that key-
homomorphic primitives bring significant advantages in terms of dealing with
physical defaults [8, 16]. So it is expected that translating the number of shares
into a “statistical security order” will be easier for Polka than Kyber: both in
software, due to transitions [3, 12], and in hardware due to glitches [25,28].

In order to stimulate research in these directions, we make our baseline im-
plementation of Polka available at the following address:

https://github.com/uclcrypto/pqm4_polka.

https://github.com/uclcrypto/pqm4_polka
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While such an implementation is not expected to directly satisfy the aforemen-
tioned security requirements, we believe it is relevant to assess the severity of
different attack paths given the randomized nature of Polka’s decryption.

As mentioned in the introduction, the leveled implementation of Polka in
this paper provides security for its long-term secret key (i.e., leakage-resilience).
While this is a practically-relevant guarantee given that the most critical side-
channel attacks against Kyber target its long-term key, finding out whether
leakage-resistance could be obtained in a more efficient manner than by masking
Step 5 in Figure 2 instantiated with standard hash functions and authenticated
encryption schemes is a natural next step. The original description of [20] sug-
gests that key-homomorphic primitives could be used for a part of this final step.
Yet, for now, it does not remove the need to securely mask a cryptographic hash
function, which would incur quadratic overheads. So it is yet another promising
scope for further research efforts to improve Polka on this front.

Besides, the recent work of Hövelmanns et al. introduced an alternative
framework to proving the security of post-quantum encryption schemes ensuring
rigidity via norm checks [22]. It would be interesting to study whether it applies
to Polka (or variations thereof), and whether it can lead to prove the security
of its KEM component rather than encryption scheme as a whole.

Eventually, the physical security guarantees of Polka remain heuristic so
far. So a comprehensive proof of leakage-resilience or leakage-resistance, under
weak and falsifiable physical assumptions is a challenging long-term goal.
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