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Abstract. Deliberate injection of faults into cryptographic devices is
an effective cryptanalysis technique against symmetric and asymmetric
encryption algorithms. To protect cryptographic implementations (e.g.
of the recent AES which will be our running example) against these
attacks, a number of innovative countermeasures have been proposed,
usually based on the use of space and time redundancies (e.g. error de-
tection/correction techniques, repeated computations). In this paper, we
take the next natural step in engineering studies where alternative meth-
ods exist, namely, we take a comparative perspective. For this purpose,
we use unified security and efficiency metrics to evaluate various recent
protections against fault attacks. The comparative study reveals secu-
rity weaknesses in some of the countermeasures (e.g. intentional mali-
cious fault injection that are unrealistically modelled). The study also
demonstrates that, if fair performance evaluations are performed, many
countermeasures are not better than the naive solutions, namely dupli-
cation or repetition. We finally discuss the security/efficiency tradeoffs
provided by different countermeasures.

1 Introduction

Fault attacks consist of forcing a cryptographic device to perform some erroneous
operations, hoping that the result of that wrong behavior will leak information
about the secret parameters involved. These techniques have been increasingly
studied since the publication of Boneh, Demillo and Lipton in 1996 [9] in the
context of public key cryptosystems, and its extension to the private key setting
by Biham and Shamir [8]. They were improved thereafter by several different
authors in various contexts (e.g. [7, 17, 26]). Two survey papers have recently
described practical and algorithmic issues of these methods [3, 13].

Countermeasures against fault attacks can be deployed in hardware or soft-
ware and generally help circuits to avoid, detect and/or correct faults. Certain
active protections use sensors and detectors to infer abnormal circuit behaviors.
Passive protections such as randomization of the clock cycles or bus and mem-
ory encryption [10, 14] may also be used to increase the difficulty of successfully
attacking a device. However, in practice, most proposed schemes are based on
classical error-detecting techniques using space or time redundancies [5, 6, 16,
20, 19, 21–23,31]. In this paper, we conduct a comparative study regarding these
latest techniques, assessing their security and efficiency. We believe that while



the original investigations are useful and inventive in many ways, the compar-
ative perspective is valuable since it forces a more uniform and perhaps more
realistic view of the effectiveness of the countermeasures, from both security and
cost point of view. In particular, our findings underline that certain published
countermeasures may not be sufficient to counteract fault attacks due to lim-
ited modelling (e.g. intentional malicious fault injection that are unrealistically
modeled as random limited number of faults, more typical in non-malicious envi-
ronments). We also point out that, if fair performance evaluations are conducted,
many countermeasures are not better than the naive solutions, namely duplica-
tion or repetition. Finally, we discuss the resulting security vs. efficiency tradeoff
in the general context of hardware implementations that our study implies.

The rest of this paper is structured as follows. Section 2 investigates error detec-
tion techniques based on the use of space redundancies, including parity checks
and other codes. We discuss limitations of security models in certain counter-
measure designs which lead to attacks and, when overcome, lead to efficiency
overhead. Section 3 similarly discusses techniques based on repetition or dupli-
cation. Our conclusions, outlining the usefulness of our comparative study are
in Section 4.

2 Error detection techniques using space redundancies

2.1 Description of a first scheme

References [23, 31] describe a solution for the low cost concurrent error detec-
tion in substitution-permutation networks. We briefly summarize the proposed
schemes in this section. For clarity purposes, we target the AES Rijndael [11].

A round of an unprotected block cipher implementation is represented in Figure
1. S blocks, representing non-linear substitution boxes (i.e. SubBytes in Rijn-
dael), are followed by a linear diffusion layer (i.e. ShiftRows and MixColumns in
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Fig. 1. Block cipher round without error check.

Rijndael) and a bitwise key addition. The basic purpose of the countermeasure
is to add a parity bit to the scheme in order to track errors during the execution
of the algorithm.



A single block cipher round with concurrent error check is represented in Figure
2 and the different steps of the error check are as follows.
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Fig. 2. Block cipher round with error check.

1. Computing the input parity. The parity of the 128-bit input, denoted as
Pin, is determined by a tree of XOR gates. This parity is computed once at
the beginning of the algorithm.

2. Parity modification according to the S-boxes. An output bit is added
to the S-boxes in order to implement the XOR of the parity of all S-boxes
input bits with the parity of all S-boxes output bits, denoted as P (X)⊕P (Y ).
The value of this additional output bit can be determined from the truth
table of the original S-box. It is represented as a black box in Figure 2.

3. No parity modification according to the diffusion layer. As detailed
in [23, 31], the linear substitution layer of Rijndael does not involve any
modification of the previously defined parity. It is obvious for ShiftRows
which only permutes the bytes of the state and does not affect their values.
For MixColumn, it is observed that, due to the linearity of the transform, it
does not alter the parity when the 32-bit columns are considered.

4. Parity modification according to the key addition. Since a 128-bit
round key is bitwise XORed with the output of the diffusion layer, the input
parity has to be modified by the parity P (K).

5. Output parity checking. The parity of the actual outputs finally has to
be compared with the modified input parity of the round.

According to the original paper, the proposed step-by-step parity modification
overcomes the high diffusion of faults in block ciphers. Namely, a local fault de-
tected within a processing step by parity checking of this processing step outputs
will also be detected by comparing the modified parity of the round outputs.



As an illustration of the technique, let us consider an input X with correct
parity P (X) and assume that a single bit fault occurs on this value of X , pro-
ducing new intermediate values X∗, Y ∗, Z∗, U∗. First, the parity will be modified
as follows:

Pout = P (X) ⊕ P (X∗) ⊕ P (Y ∗) ⊕ P (K)

Then, computing the output bits parity, we find:

P (U∗) = P (Z∗) ⊕ P (K) = P (Y ∗) ⊕ P (K)

It is clear that the parities will only be equal if P (X) = P (X∗), therefore allow-
ing to detect the fault at the end of the round.

Similarly, a single bit fault introduced after the S-boxes will cause:

Pout = P (X) ⊕ P (X) ⊕ P (Y ) ⊕ P (K) = P (Y ) ⊕ P (K)

This is because the parity P (Y ) is computed independently of the value of Y .
Also, we have:

P (U∗) = P (Z∗) ⊕ P (K) = P (Y ∗) ⊕ P (K)

Again the output parities will allow to detect the fault, and so will be for faults
introduced after each processing unit of the block cipher.

Although it is clear that multiple faults of even order will not be detected by such
a scheme, the authors argue that, according to [25], the probability of 1-bit, 2-
bit, 3-bit and 4-bit errors is respectively approximated by 85%, 10%, 3% and 1%
in combinatorial logic circuits. It is therefore concluded that the error-correcting
scheme allows to prevent most practical attackers, with a low hardware overhead.

2.2 Security of the presented scheme

Before discussing the presented countermeasure, let us first emphasize that, from
an algorithmic point of view, the number of faults necessary to mount a successful
attack has been dramatically reduced during the last years. In particular, it has
been shown in [26] that the AES Rijndael can be corrupted with only two faulty
ciphertexts. As a very straightforward consequence, a protection detecting only
85% of the injected faults is clearly not enough. Moreover, considering single-bit
faults only is certainly not a conservative approach, as multiple-bit faults start
to be a concern in very deep submicron technologies. Recent experiments have
notably shown that high-energy ions can energize two or more adjacent memory
cells in a circuit [15, 27].

Anyway, in practice, it is unlikely that the mentioned experiments (i.e. evalua-
tions of fault occurrences due to radiations effects) correctly model the behavior
of a malicious insider. In particular, there are at least two parameters missing in



the previous analysis, namely time and space localization, that may enhance the
attacker capabilities to much more precision than unintended radiation effects.

Starting with time localization, it is clear that being able to induce a single-
bit fault twice during a round function will simply bypass the previous coun-
termeasure. Choosing the time at which the fault occur can be done by using
side-channel information to monitor the progress of the algorithm. As present
pulse generators allow to deal with high frequencies, it is virtually possible to
insert a fault anytime during a cryptographic computation.

Similarly, being able to induce single faults in different nodes of an implementa-
tion also bypass a single-bit parity check. Choosing the location of the fault can
be done if light [30] or electromagnetic [28] induction are considered. These tech-
niques have been proven very efficient to force low cost faults in cryptographic
devices. More expensive techniques are susceptible to be even more powerful.

As a consequence, the fault detection technique in Section 2.1 is practically
insecure as soon as real attacker capabilities are considered. This discussion also
suggests that resistance against faults attacks involve higher constraints than
usually required for integrated circuits. In particular, multiple bit faults have to
be taken into account, as well as space and time localization.

2.3 Description of improved schemes

From the previous descriptions, there are two basic reasons making the counter-
measure in [23, 31] susceptible to multiple-bit faults:

1. Only one parity bit is used.
2. Parity codes are linear.

Both reasons involve simple extensions in order to improve the detection ca-
pabilities of the method. In this section, we discuss these improvements of the
original scheme and their additional cost1.

1. Using more parity bits is suggested and implemented in [5] in order to
improve multiple-bit faults detection. Simple arguments allow to evaluate the
effect of such a countermeasure if the faults are uniformly distributed. For ex-
ample, let n be the number of parity bits used, the probability that a double
fault affects twice the same parity bit is proportional to 1/n. [5] proposes one
parity bit per byte for Rijndael.

1 Note that making the parity checks only once a round does not affect the fault
coverage. As suggested in Section 2.1, what is detectable inside the round is also
detectable at its output. As a consequence, the use of more parity checkers only
affects the detection latency and may not be considered as a relevant improvement.



Again, from a simple probabilistic point of view, the proposed improvement
is not sufficient to reject all attackers. Moreover, it is likely that multiple faults
will not be uniformly distributed, as multiple-bit faults usually target adjacent
memory cells. As a consequence, the probability of masked errors (e.g. double
faults occurring in the same byte) will actually be higher than predicted.

Regarding the additional cost for AES implementations, the proposal involves
more hardware overhead as there are more parity bits, but also because the pari-
ties are now affected by MixColumn, which involves the need of parity predictors
for this transform as well. These overheads are summarized in Table 1.

Finally, let us remark that using pipelined implementations (i.e. dealing with
multiple inputs in parallel) is another solution to decrease the probability of
masked errors. For example, double masked errors then have to affect twice the
same parity bit and text.

2. Using non linear robust codes is another solution proposed in [19, 20] to
obtain good resistance against single and multiple fault errors. For this purpose,
the authors use a much more restricting fault model where faults are uniformly
distributed throughout the circuit and the expected number of faults (i.e. fault
multiplicities) is proportional to the number of gates in the circuit. Two propos-
als are actually considered.

In the first one [19], the AES Rijndael is divided into two blocks: linear and
non-linear, where the non-linear block only consists in the multiplicative inverse
of the Rijndael S-box. The non-linear code is simply represented in Figure 3
and computes the product of two inverses X and Y . In order to reduce the area
overheads, it is proposed to check only a few bits (typically 2) of the result.
Then, for the linear-part, every column of the AES is associated with an 8-bit

inverse x

X

Y 01?

Fig. 3. Multiplicative inverse with error check.

parity, namely the XOR between the 4 bytes of the column. It yields a 32-bit
redundancy for the complete algorithm, which is computed independently, as
the S-boxes parities in Section 2.1.

The fault coverage of this scheme is contrasted. On the one hand, the non-linear



part allows good detection of multiple faults, while low-order faults can clearly
be masked because of the 2-bit comparison. On the other hand, the linear part
suffers from the same problems as the previous linear schemes for the detection
of higher-order faults. Globally, it is conjectured that the scheme only provides
good error detection for faults with high multiplicities.

The hardware overheads of the proposal are again summarized in Table 1. Note
that [19] requires the S-box inverters and affine transforms to be implemented
independently, while hardware implementations frequently combine both trans-
forms in one single RAM block.

In the second proposal [20], a robust non-linear code is described, based on
the addition of two cubic networks, computing y(x) = x3 in GF (2)8, to the
previous linear scheme. The method allows to produce r-bit signatures to detect
errors. It is shown that the fraction of undetectable errors is proportional to 2−2r.
Although the proposal offers a good fault coverage, its actual implementation
is a real concern as the ratio throughput/area (a usual estimator of hardware
efficiency) is decreased by a factor of two. As a consequence, the solution cost is
somewhat comparable to duplication, which also has good non-linear properties
and therefore provides good fault coverage.

2.4 Summary of the results

We have investigated 5 recent countermeasures against fault attacks, based on
the use of space redundancies. Those are summarized in Table 1. The first two
ones use an unrealistic fault model, considering single faults only, and may not
be considered as sufficient to protect against a malicious attacker. [5] proposes
to use more parity bits to improve their fault coverage, but faults of even order
may still be masked with non-negligible probability.

Ref. Method Sin. fault Mul. fault Area Delay Thr. Thr./Area
detection detection overhead overhead overhead overhead

[23, 31] single yes no +7.4% +6.4% - -
parity bit

[5] multiple yes double faults +20% - - -
parity bits masked with
(n = 16) P ∝

1

n

[19] linear + weak good +35%∗ - - -
non-linear

codes

[20] non-linear good, good, +77% +15% -13% -51%
r-bit codes missed with missed with
(r = 28) P ∝ 2−2r P ∝ 2−2r

Table 1. Space redundancy based techniques.



The last two ones use a much more restrictive fault model, but only [20] pro-
vides good error detection properties against faults of all multiplicities. For this
last scheme, the hardware overhead is comparable to duplication, as the ratio
throughput/area has been divided by two.

Remark that the objective of this table is only to summarize the results, not
to provide fair comparisons between the different proposals. As a matter of fact,
the area overhead is a function of the hardware cost of the unprotected primitive
and, for example, [19, 20] are low cost architectures compared to the ones used
in the parity code papers. As a consequence, their overhead in % are higher.

3 Error detection using repetition and duplication

The previous section underlined that error-detection techniques based on space
redundancies become as expensive as duplication if realistic attackers are consid-
ered. As a consequence, it is natural to investigate how codes based on repetition
or duplication can be used to improve the security of cryptographic devices. For
this purpose, we start with some precisions about our model.

1. We consider a n-bit block cipher, with q rounds independently implemented.

2. We assume that the error detection can be performed at three different levels:
algorithm-level, round-level or operation level. Working at one level involves that
the observed level is performed in at least one clock cycle, as its result has to be
stored and compared.

3. In operation level detection schemes, we denote the number of operations con-
sidered per round as p.

4. The error detection latency only depends on the detection level.

5. Depending on the detection level, the codes have different non-linearity prop-
erties. However, as we perform n-bit comparisons, we assume that the error miss
rate is 2−n, independently of the detection level.

In general, the performance reduction in repetition or duplication schemes has
two parts. One corresponds to the comparators required to check the validity
of intermediate values. It is inversely proportional to the detection latency, as
illustrated in Table 2, where τ denotes the timing function2. The other one
corresponds to the repetition or duplication itself and directly affects the im-
plementation throughput or area. Namely, repetition codes will cause a -50%
reduction of the throughput while duplication will require +100% additional
hardware. Regarding their detection properties, both solutions are not equiv-
alent, as repetition codes only allow to detect temporary (or soft) faults while
duplication also allows to detect permanent (or hard) faults.

2 Remark that the registers needed to store intermediate values are not considered as
hardware overhead. We show in the next section that, if well chosen, they can be
combined with the original implementation registers.



Latency Additional 1-bit comparators

τ (Algorithm) n

τ (Round) nq

τ (Operation) npq

Table 2. Latency vs. additional resources tradeoff.

While these solution may be straightforwardly implemented, the next sections
show that certain particular contexts allow to obtain the effects of repetition or
duplication for less than their usual cost.

3.1 Description of a first scheme

Reference [16] describes a solution for the low cost concurrent error detection
in involutional block ciphers, exploiting the involution property to check if the
condition f(f(x)) = x is respected through the cipher. The authors argue that
the scheme achieves close to 0% time overhead. In this section, we show that:

1. The proposal is actually a kind of repetition code.
2. The proposal can be extended to non-involutional ciphers.

mux

f

=?

in

out

error

Fig. 4. Concurrent error detection for involutional functions [16].

Let us first investigate the time overhead of the countermeasure. By looking at
Figure 4, one can see that the countermeasure essentially spends one every two
clock cycles to check the correctness of the computation. So it could be seen as a
pipelined implementation, where only half the registers are used to speed up the
computations, the other half being used for error detection. As a consequence,
the proposed countermeasure will cause a -50% throughput overhead.

We show that the proposed countermeasure is actually a repetition code, by
extending it to non-involutional ciphers, as illustrated in Figure 5. Looking at
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Fig. 5. Similar concurrent error detection for non involutional ciphers.

the light grey boxes, the round is divided into two operations and pipelined. Let
us imagine an encryption mode where the same plaintext is encrypted twice and
we add the comparison boxes. We can then detect errors as in Figure 4. The
repetition is now obvious. The only differences between schemes 4 and 5 is that
the involutional scheme allows to detect permanent errors.

At this point, it is not clear how the proposal can achieve a 0% time over-
head and actually, this assumption is not generally true. However, considering
the context of feedback encryption modes, the countermeasure of [16] becomes
particularly interesting, as the pipeline cannot be used to deal with different
plaintexts3 but still allows to ensure error-proofness. Compared to a non-pipeline
loop architecture, as usually required in feedback modes, we still require twice
more clock cycles for one encryption, but it is likely that the clock frequency will
be improved proportionally, so that the throughput will only slightly be affected.
Note that this latter point is not a particular quality of the proposed technique,
but a general rule in hardware design. A fair comparison of architectures for
feedback encryption modes is represented in Figure 6, where we can clearly ob-
serve the tradeoff between the number of cycles increase for one encryption and
the expected increase of clock frequency (because the critical path is reduced).

Remark also that the statement that certain round operations are only busy
during certain clock cycles is definitely not true in hardware designs. This is the
main reason why comparisons are not accurate in [16], e.g. in Section 3.3.

3.2 Another proposal equivalent to repetition/duplication

A very similar scheme has been presented in [21] for the concurrent error detec-
tion in symmetric block ciphers. It is based on exactly the same ideas as [16], in
the more general context of non-involutional ciphers.

3 It is mandatory to complete one plaintext encryption before starting the next one.
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Fig. 6. Encryption with feedback, without and with error detection.
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Fig. 7. Concurrent error detection using encryption/decryption designs.

Basically, as the involutional property is not available, it is replaced by a design
allowing to perform encryption and decryption. The error-detection principle is
illustrated in Figure 7 and can be viewed as (1) duplication if the encryption
and decryption blocks are independently implemented, or (2) repetition if the
same hardware resources are used for encryption and decryption4.

However, as in the previous section, the proposal gain particular interest in
certain specific contexts. For example, if the cost of a decryption design is less
than the one for encryption5, the solution has a lower cost than duplication.
Also, in applications where encryption and decryption are necessary, but not
concurrently, the actual performances will not be harmed by using the (other-
wise unused) reverse operation for error detection.

4 Note that, for most algorithms, only a part of the resources can be shared between
encryption and decryption. A perfect repetition scheme is only possible for involu-
tional ciphers

5 This is very rarely the case in practice.



4 Discussion and Conclusions

In this paper, we reviewed a certain number of countermeasures against fault
attacks based on the use of space or time redundancies. It is shown that most
of these countermeasures are either insecure, due to an unrealistic fault model,
or their cost is close to duplication or repetition, excepted in certain particular
implementation contexts (e.g. encryption with feedback, encryption/decryption
designs). From an information theoretic point of view, this conclusion is close to
the one in [24], stating that most of efficient concurrent error detection schemes
exceed the cost of duplication. In general, improvements of these protections are
possible in two different directions.

First, restricting the fault model could allow to design more efficient solutions,
but it requires to consider the behavior of a malicious insider. Presently, only
a few works have been published about actual methods for fault injections and
more practical experiments are a preliminary step for such improvements. In
particular, it is not clear that attacker capabilities could reasonably be reduced
in terms of fault multiplicities or any other parameter. A conservative approach
therefore requires to provide an equal security for faults of any multiplicity, with
possible space and time localization.

Second, considering probabilistic fault detection is another usual alternative to
design schemes less expensive than duplication. However, regarding the require-
ments of present attacks (e.g. in [26], Rijndael is corrupted with only two faulty
ciphertexts), fault detection in cryptographic devices has particularly strong con-
straints. Therefore, this proposal has to be taken with care as faults have to be
detected with high probability.

More specifically, this work:

1. Points out the unrealistic fault model used in certain recently proposed coun-
termeasures [23, 31].

2. Suggests that the actual cost of other countermeasures [19, 20] are close to
duplication if fair comparisons are performed.

3. Observes that countermeasures proposed in [16, 21] are actual repetition
codes used in a specific context.

As a consequence of these observations, theoretical solutions to the problem of
fault attacks, as suggested in [12], no more appear as completely unpractical.
Also, due to their good detection properties, non-linear robust codes, such as
the ones in [19, 20], would deserve further analysis to improve their hardware
cost and see how better they can compare with duplication.

Acknowledgements: Certain comments in the paper were already pointed out
during the presentation of the original countermeasures, in different conferences.
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