
A Tutorial on Physical Security and

Side-Channel Attacks

François Koeune12 and François-Xavier Standaert1

1 UCL Crypto Group
Place du Levant, 3. 1348 Louvain-la-Neuve, Belgium

fstandae@dice.ucl.ac.be − http://www.dice.ucl.ac.be/crypto/
2 K2Crypt

Place Verte 60 box 2. 1348 Louvain-la-Neuve, Belgium
fkoeune@k2crypt.com − http://www.k2crypt.com/

Abstract. A recent branch of cryptography focuses on the physical con-
straints that a real-life cryptographic device must face, and attempts
to exploit these constraints (running time, power consumption, . . . ) to
expose the device’s secrets. This gave birth to implementation-specific
attacks, which often turned out to be much more efficient than the best
known cryptanalytic attacks against the underlying primitive as an ide-
alized object. This paper aims at providing a tutorial on the subject,
overviewing the main kinds of attacks and highlighting their underlying
principles.

1 Introduction and objectives

A cryptographic primitive can be considered from two points of view: on the one
hand, it can be viewed as an abstract mathematical object or black box (i.e. a
transformation, possibly parameterized by a key, turning some input into some
output); on the other hand, this primitive will in fine have to be implemented in
a program that will run on a given processor, in a given environment, and will
therefore present specific characteristics.

The first point of view is that of “classical” cryptanalysis; the second one is that
of physical security. Physical attacks on cryptographic devices take advantage of
implementation-specific characteristics to recover the secret parameters involved
in the computation. They are therefore much less general – since it is specific to a
given implementation – but often much more powerful than classical cryptanaly-
sis, and are considered very seriously by cryptographic devices’ implementors.

The goal of this paper is to provide the reader with a first tutorial on physical
security. The paper will explore certain of the most important kinds of physical
attacks, from direct data probing to electromagnetic analysis. However, the in-
tention is not to make an exhaustive review of existing techniques, but rather
to highlight the philosophy underlying the main attacks. So, this is not to be
viewed a security manual, but as an introductory course in a specific branch of
cryptography.



The authors did their best to keep the paper easy to read, giving a good un-
derstanding of the general principle of physical attacks. Strict formalism was
sometimes sacrificed to the benefit of intuition, whereas many references were
provided to guide the interested reader during his first steps in that fascinating
and emerging subject.

Physical attacks usually proceed in two steps: an interaction phase, during which
an attacker exploits some physical characteristic of a device (e.g. measures run-
ning time or current flow, inserts faults, . . . ) and an exploitation phase, analyzing
this information in order to recover secret information. Although we will discuss
the first phase, we will mostly focus on the second: once a “signal” has been
obtained, how can we exploit this signal to expose a device’s secrets?

1.1 Model

The context of a physical attack is the following: we consider a device capable
of performing cryptographic operations (e.g. encryptions, signatures, . . . ) based
on a secret key. This key is stored inside the device, and protected from external
access. We assume that an attacker has the device at his disposal, and will be
able to run it a number of times, possibly with input values of his choice. In
addition, during the device’s processing, he will be able to act on or measure
some parameters related to the environment, the exact nature of which depends
on the attack’s context. This can for example be the device’s running time, the
surrounding electromagnetic field, or some way of inducing errors during the
computation. The attacker has of course no direct access to the secret key.

Note that the expression “at disposal” might have various meanings: in some
cases, it can be a complete gain of control, like for example by stealing an
employee’s identification badge during his lunch break, attacking it and then
putting it back in place to go unnoticed. As another example, we would like to
point out that there are situations where the owner of the device himself might
be interested in attacking it, e.g. in the case of a pay-TV decoder chip. On
the other hand, the control of the attacker on the device might be much more
limited: he could for example be hidden behind the corner of the street when the
genuine user is using his device, and monitoring electromagnetic radiations from
a distance, or interrogating the device through a web interface, and monitoring
the delay between request and answer.

Modern cryptography is driven by the well-known Kerckhoffs’ assumption, which
basically states that all the secret needed to ensure a system’s security must be
entirely gathered in the secret keys. In other words, we must assume that an
attacker has perfect knowledge of the cryptographic algorithm, implementation
details, . . . The only thing that he does not know – and which is sufficient to
guarantee security – is the value of the secret keys. We will adopt this point
of view here, and consider that the attacker is familiar with the device under
attack, and that recovering the secret keys is sufficient to allow him to build a
pirated device with the same power and privileges as the original one.



1.2 Principle of divide-and-conquer attacks

Most of the attacks we will discuss here are divide-and-conquer attacks. As the
name says, divide and conquer attacks attempt to recover a secret key by parts.
The idea is to find an observable characteristic that can be correlated with a
partial key, small enough to make exhaustive search possible. The characteristic
is used to validate the partial key, which can be established independently of the
rest of the key. The process is then repeated with a characteristic that can be
correlated to another part of the key, and so on until the full key is found, or the
remaining unknown part is small enough to be in turn exhaustively searchable.

The word characteristic is intentionally imprecise. Such a characteristic can for
example be a power consumption profile during a given time interval, a specific
output structure after a fault, a probabilistic distribution of running times for
an input subset, . . .

Divide and conquer attacks can be iterative (that is, a part of the key must be
discovered in order to be able to attack subsequent parts) or not (in which case
all parts of the key can be guessed independently). Clearly, an iterative attack
will be much more sensible to errors, as a wrong conclusion at some point will
make subsequent guesses meaningless. This factor can sometimes be mitigated
using an error detection/correction strategy [63].

2 Targets

For the sake of concreteness, principles will be illustrated in two contexts: smart
cards (typically representing general purpose microprocessors with a fixed bus
length) and FPGAs (typically representing application specific devices with par-
allel computing opportunities).

2.1 Smart card

One of the most typical targets of side-channel attacks (and one often chosen
in the literature) is the smart card. There are several reasons for this. First,
these are devices dedicated to performing secure operations. They are also easy
to get hold on: usually carried around in many places, small-sized, and an easy
target for a pickpocket. In addition, smart cards are pretty easy to scrutinize: as
a smart card depends on the reader it is inserted in in many ways (see below),
running time, current, . . . are easy to monitor. Finally, they are quite simple de-
vice, typically running one process at a time, and with a much simpler processor
than a desktop PC or mainframe.

Basically, a smart card is a computer embedded in a safe. It consists of a (typ-
ically, 8-bit or 32-bit) processor, together with ROM, EEPROM, and a small
amount of RAM, which is therefore capable of performing computations. The
main goal of a smart card is to allow the execution of cryptographic operations,
involving some secret parameter (the key), while not revealing this parameter to
the outside world.



Vcc GND

VPP

I/O

RST

CLK

Fig. 1. Smart card chip and its connection points: supply voltage (VCC), reset signal
(RST ), clock (CLK), ground connection (GND), input/output (I/O) and external
voltage for programming (VPP , generally not used).

This processor is embedded in a chip and connected to the outside world through
eight wires, the role, use, position, . . . of which is normalized (Fig. 1). In addition
to the input/output wires, the parts we will be the most interested in are the
following.

Power supply: smart cards do not have an internal battery. The current they
need is provided by the smart card reader. This will make the smart card’s
power consumption pretty easy to measure for an attacker with a rogue
reader.

Clock: similarly, smart cards do not dispose of an internal clock either. The
clock ticks must also be provided from the outside world. As a consequence,
this will allow the attacker to measure the card’s running time with very
good precision.

Smart cards are usually equipped with protection mechanisms composed of
a shield (the passivation layer), whose goal is to hide the internal behavior of the
chip, and possibly sensors that react when the shield is removed, by destroying
all sensitive data and preventing the card from functioning properly. This will
be discussed further below.

We refer the interested reader to several very good books (e.g. [60]) for a deeper
discussion of smart cards.

2.2 FPGA

In opposition to smart cards that are typical standardized general purpose cir-
cuits, FPGAs are a good example of circuits allowing application specific imple-
mentations. Fundamentally, both smart cards and FPGAs (and most processors
and ASICs) share the same leakage sources and are consequently similar in terms
of susceptibility against physical attacks. However, it is interesting to consider
these two contexts for two reasons:

1. They are generally used for completely different applications: smart cards
have limited computational power while FPGAs and ASICs are usually re-
quired for their ability to deal with high throughput.

2. FPGAs and ASICs allow parallel computing and have a more flexible archi-
tecture (as it is under control of the designer). This may affect their resistance
against certain attacks.



More philosophically, we used these two contexts as an illustration (among oth-
ers) that physical attacks are both general and specific: general because they rely
on physical principles that can be applied to any kind of device; specific because
when it comes to their practical implementation, their efficiency depends on how
well we can adapt these general principles to a particular target.

FPGAs usually contain an array of computational elements whose function-
ality is determined through multiple programmable configuration bits. These
elements, sometimes known as logic blocks, are connected using a set of rout-
ing resources that are also programmable (see Figure 2). They can be used to

L C

SC

L

C

L C L

C

S

L

C

C L

L C L C L

SC C S C

I/O BUFFERS

I/O
 B

U
F

F
E

R
S

L

C

C L LC

C

I/O
 B

U
F

F
E

R
S

I/O BUFFERS

L : logic blocks
C : connection blocks

S : switch blocks

routing
channels

Fig. 2. FPGA: high level view.

implement a variety of digital processing tasks. FPGAs allow the designer to
determine the allocation and scheduling of the tasks in the circuit (e.g. to trade
surface for speed), which is typically out of control of the smart card programmer.

Compared to ASICs, FPGAs present similar design opportunities, although some
parts of reconfigurable circuits are not dedicated to the applications but to the
reconfigurability management. In brief, FPGAs trade a little bit of the ASICs
efficiency for more flexibility. Structural details on FPGAs are not necessary
for the understanding of this survey, but can be useful for mounting attacks in
practice. A good reference is [23].



2.3 Differences between platforms

Differences between platforms may affect the physical security at two distinct
levels. First and practically, the devices may be based on different technologies
and consequently have different physical behaviors. For example, certain side-
channel attacks require to make predictions of the leakage. The prediction model
may be different for different devices. Similarly, fault insertion techniques may
have different effects on different technologies. In order to keep our discussions
general, we will make abstraction of these possible technological differences and
assume in the following that:
(1) Knowing the data handled by a device, it is possible to predict its leakage3.
(2) Faults can be inserted in the device.

Second, as already mentioned, different platforms may have different architec-
tures, leading to different computational paradigms. For example, smart cards
are small processors where the data is managed sequentially. FPGA designs (i.e.
the hardware counterpart of smart card programs) have a more flexible archi-
tecture and allow parallel computation. Such differences will be emphasized in
the following sections.

3 Physical attacks classification

Physical attacks can be classified in many ways. The literature usually sorts
them along two orthogonal axes.

Invasive vs. non-invasive: invasive attacks require depackaging the chip to
get direct access to its inside components; a typical example of this is the
connection of a wire on a data bus to see the data transfers. A non-invasive
attack only exploits externally available information (the emission of which is
however often unintentional) such as running time, power consumption, . . .
One can go further along this axis by distinguishing local and distant at-
tacks: a local attack requires close – but external, i.e. non-invasive – prox-
imity to the device under concern, for example by a direct connection to its
power supply. As opposed, a distant attack can operate at a larger distance,
for example by measuring electromagnetic field several meters (or hundreds
of meters) away, or by interacting with the device through an internet con-
nection.

3 Remark that most present devices are CMOS-based and their leakages are relatively
simple and similar to predict. Typically, models based on the Hamming weight or
the Hamming distance of the data processed were successfully applied to target
respectively smart cards [50] and FPGAs [67]. On the other hand, technological so-
lutions may also be considered to make the attacks harder. Such possibilities will be
discussed in Section 9.



Active vs. passive: active attacks try to tamper with the device’s proper func-
tioning; for example, fault-induction attacks will try to induce errors in the
computation. As opposed, passive attacks will simply observe the device’s
behavior during its processing, without disturbing it.

Note that these two axes are well orthogonal: an invasive attack may completely
avoid disturbing the device’s behavior, and a passive attack may require a pre-
liminary depackaging for the required information to be observable.

These attacks are of course not mutually exclusive: an invasive attack may for
example serve as a preliminary step for a non-invasive one, by giving a detailed
description of the chip’s architecture that helps to find out where to put external
probes.

As said in section 2.1, smart cards are usually equipped with protection mech-
anisms that are supposed to react to invasive attacks (although several invasive
attacks are nonetheless capable of defeating these mechanisms). On the other
hand, it is worth pointing out that a non-invasive attack is completely unde-
tectable: there is for example no way for a smart card to figure out that its
running time is currently being measured. Other countermeasures will therefore
be necessary.

The attacks we will consider belong to five major groups.

Probing attacks consist in opening a device in order to directly observe its
internal parameters. These are thus invasive, passive attacks.

Fault induction attacks try to influence a device’s behavior, in a way that
will leak its secrets. The difficulty lies not so much in inducing a fault than
in being able to recover secret parameters from the faulty result, and this
is the question that will retain most of our attention. These attacks are by
essence active, and can be either invasive or non-invasive.

The three last groups are usually denoted as side-channel attacks. Their ba-
sic idea is to passively observe some physical characteristic during the device’s
processing, and to use this “side-channel” to derive more information about the
processed secret. They are thus passive, and typically non-invasive, although
some exceptions exist.

Timing attacks exploit the device’s running time.
Power analysis attacks focus on the device’s electric consumption.
Electromagnetic analysis attacks measure the electromagnetic field surround-

ing the device during its processing.

In some sense, timing, power and electromagnetic analysis attacks can be viewed
as an evolution in the dimension of the leakage space. Timing attacks exploit a
single, scalar information (the running time) for each run. Power attacks pro-
vide a one-dimensional view of the device’s behavior, namely instant power con-
sumption at each time unit. With the possibility to move the sensor around the



attacked device (or to use several sensors), electromagnetic analysis provide a 4-
dimensional view: spatial position and time. This allows for example to separate
the contributions of various components of the chip, and therefore to study them
separately. Moreover, we will see that EM emanations consist of a multiplicity
of signals, which can lead to even more information.

Finally, we believe there is a substantial difference between timing or Simple
Power Analysis attacks and subsequent side-channel attacks (this will appear
clearly in the next sections): timing attacks and Simple Power Analysis provide
an indirect access to the data processed, via the observation of the operations
performed. As opposed, power or electromagnetic analysis offer direct access to
the data processed.

3.1 About the cost. . .

From an economical point of view, invasive attacks are usually more expensive to
deploy on a large scale, since they require individual processing of each attacked
device. In this sense, non-invasive attacks constitute therefore a bigger menace for
the smart card industry. According to [66], “until now, invasive attacks involved
a relatively high capital investment for lab equipment plus a moderate investment
of effort for each individual chip attacked. Non-invasive attacks require only a
moderate capital investment, plus a moderate investment of effort in designing
an attack on a particular type of device; thereafter the cost per device attacked
is low. [...] semi-invasive attacks can be carried out using very cheap and simple
equipment.”

4 Probing

One natural idea when trying to attack a security device is to attempt to depack-
age it and observe its behavior by branching wires to data buses or observing
memory cells with a microscope. These attacks are called probing attacks.

4.1 Measuring phase

The most difficult part of probing attacks lies in managing to penetrate the de-
vice and access its internals. An useful tool for this purpose is a probing station.
Probing stations consist of microscopes with micromanipulators attached for
landing fine probes on the surface of the chip. They are widely used in the semi-
conductor manufacturing industry for manual testing of production-line samples,
and can be obtained second-hand for under US$ 10000.

To make observation easier, the attacker may try to slow down the clock provided
to the chip, so that successive states are easily observable. An introduction on
probing attacks can be found in [7], and a good overview of ways to depackage
a card and probe its content is given in [44].



As we said before, smart cards are usually protected by a passivation layer, which
is basically a shield covering the chip, in order to prevent from observing its be-
havior. In addition, some smart cards are equipped with detectors, for example
in the form of additional metallization layers that form a sensor mesh above the
actual circuit and that do not carry any critical signals. All paths of this mesh
need to be continuously monitored for interruptions and short-circuits, and the
smart card has to refuse processing and destroy sensitive data when an alarm
occurs. Similarly, monitoring clock frequency and refusing to operate under ab-
normally low (or high) frequency should be done to protect the chip. Additional
sensors (UV, light, . . . ) may also be placed.

Security is a permanent fight between attackers and countermeasure designers,
and these protection means are not invulnerable. According to Anderson [7], “the
appropriate tool to defeat them is the Focused Ion Beam Workstation (FIB). This
is a device similar to a scanning electron microscope, but it uses a beam of ions
instead of electrons. By varying the beam current, it is possible to use it as a mi-
croscope or as a milling machine. By introducing a suitable gas, which is broken
down by the ion beam, it is possible to lay down either conductors or insulators
with a precision of a few tens of nanometers. Given a FIB, it is straightforward
to attack a sensor mesh that is not powered up. One simply drills a hole through
the mesh to the metal line that carries the desired signal, fills it up with insula-
tor, drills another hole through the center of the insulator, fills it with metal, and
plates a contact on top, which is easy to contact with a needle from the probing
station”.

Better protection techniques, such as stronger passivation layers, that will make
it difficult for the attacker to remove them without damaging the chip itself, are
also developed. They complicate the attacker’s task, but do not make it impossi-
ble yet. An interesting example, discussing how such a stronger passivation layer
was defeated, can be found in [56].

4.2 Exploitation phase

The most obvious target is of course the part of memory where secret keys are
stored; similarly, in a software-based device, the attacker can also tape the data
buses connecting memory to processor, as he knows that the secret key will
of course be processed during the signature (or decryption), and hence transit
through that wire. From our pedagogical point of view, this kind of attack is
not extremely interesting: being able to access smart card internals might be a
strong technical challenge (which is out of our scope), but exploiting this infor-
mation is straightforward.

Things might get more difficult (and interesting) when only part of the infor-
mation can be read (for example because technical constraints allow only to
tape a part of the data bus, providing two bits of each transferred word), or
when countermeasures are at stake, for example bus scrambling, which can be



thought as some sort of lightweight encryption used for internal transfer and
storage. However, we will not discuss these topics more in the detail here. We
refer the interested reader to [31, 27, 32] for further information.

5 Fault induction attacks

When an electronic device stops working correctly, the most natural reaction
is to get rid of it. This apparently insignificant habit may have deep impact in
cryptography, where faulty computations are sometimes the easiest way to dis-
cover a secret key.

As a matter of fact, a recent and powerful cryptanalysis technique consists in
tampering with a device in order to have it perform some erroneous operations,
hoping that the result of that erroneous behavior will leak information about
the secret parameters involved. This is the field of fault induction attacks.

5.1 Types of faults

The faults can be characterized from several aspects.

Permanent vs. transient: as the name says, a permanent fault damages the
cryptographic device in a permanent way, so that it will behave incorrectly
in all future computations; such damage includes freezing a memory cell to
a constant value, cutting a data bus wire, . . . As opposed, with a transient
fault, the device is disturbed during its processing, so that it will only per-
form fault(s) during that specific computation; examples of such disturbances
are radioactive bombing, abnormally high or low clock frequency, abnormal
voltage in power supply, . . .

Error location: some attacks require the ability to induce the fault in a very
specific location (memory cell); others allow much more flexibility;

Time of occurrence: similarly, some attacks require to be able to induce the
fault at a specific time during the computation, while others do not;

Error type: many types of error may be considered, for example:
– flip the value of some bit or some byte,
– permanently freeze a memory cell to 0 or 1,
– induce (with some probability) flips in memory, but only in one direction

(e.g. a bit can be flipped from 1 to 0, but not the opposite),
– prevent a jump from being executed,
– disable instruction decoder,
– . . .

As can be guessed, the fault model has much importance regarding the feasibility
of an attack. In fact, two types of papers can be found in the literature: the first
type deals with the way to induce errors of a given type in current devices; the
second basically assumes a (more or less realistic) fault model and deals with
the way this model can be exploited to break a cryptosystem, without bothering



with the way such faults can be induced in practice. These two types are of
course complementary to determine the realism of a new attack and the potential
weaknesses induced by a new fault induction method. From the viewpoint we
took in this tutorial, we are mostly interested in the second aspect, i.e. how we
can exploit faulty computations to recover secret parameters. However, let us
first briefly consider the other aspect: fault induction methods.

5.2 Fault induction techniques

Faults are induced by acting on the device’s environment and putting it in ab-
normal conditions. Many channels are available to the attacker. Let us review
some of them.

Voltage: Unappropriate voltage might of course affect a device’s behavior. For
example, smart card voltages are defined by ISO standards: a smart card
must be able to tolerate on the contact VCC a supply voltage between 4, 5V
and 5, 5V, where the standard voltage is specified at 5V. Within this range
the smart card must be able to work properly. However, a deviation of the
external power supply, called spike, of much more than the specified 10%
tolerance might cause problems for a proper functionality of the smart card.
Indeed, it will most probably lead to a wrong computation result, provided
that the smart card is still able to finish its computation completely.

Clock: Similarly, standards define a reference clock frequency and a tolerance
around which a smart card must keep working correctly. Applying an abnor-
mally high or low frequency may of course induce errors in the processing.
Blömer and Seifert [10] note that “a finely tuned clock glitch is able to com-
pletely change a CPU’s execution behavior including the omitting of instruc-
tions during the executions of programs”. Note that, as opposed to the clock
slowing down described in section 4, whose goal was to make internal state
easier to observe, this clock variation may be very brief, in order to induce
a single faulty instruction or to try to fool clock change detectors.

Temperature: Having the device process in extreme temperature conditions
is also a potential way to induce faults, although it does not seem to be a
frequent choice in nowadays attacks.

Radiations: Folklore often presents fault induction attacks as “microwave at-
tacks” (the attacker puts the smart card into a microwave oven to have it
perform erroneous computations). Although this is oversimplified, it is clear
that correctly focused radiations can harm the device’s behavior.

Light: Recently, Skorobogatov and Anderson [66] observed that illumination
of a transistor causes it to conduct, thereby inducing a transient fault. By
applying an intense light source (produced using a photoflash lamp mag-
nified with a microscope), they were able to change individual bit values
in an SRAM. By the same technique, they could also interfere with jump
instructions, causing conditional branches to be taken wrongly.



Eddy current: Quisquater and Samyde [56] showed that eddy currents induced
by the magnetic field produced by an alternating current in a coil could in-
duce various effects inside a chip as for example inducing a fault in a mem-
ory cell, being RAM, EPROM, EEPROM or Flash (they could for example
change the value of a pin code in a mobile phone card).

Several papers and books address the issue of fault induction techniques. We
refer the reader to [7, 5, 6, 29, 30, 46] and, for the last two techniques, to [66]
and [56].

5.3 Cryptanalyses based on fault

Attack on RSA with CRT Fault induction attack on RSA4 with Chinese Re-
maindering Theorem (CRT) [12, 37] is probably the most exemplary instance of
fault induction attack: first, it is very easy to explain, even to a non-cryptologist;
second, it is also easy to deploy, since only one fault induction somewhere in the
computation – even with no precise knowledge of that fault’s position – is enough
to have it work; third, it is extremely powerful, as having one faulty computation
performed is sufficient to completely break a signature device.

Implementations of RSA exponentiation often make use of the Chinese Remain-
dering Theorem to improve performance. Let m be the message to sign, n = pq

the secret modulus, d and e the secret and public exponents. Exponentiation
process is described in Alg. 1. Of course several values involved in this algorithm
are constant and need not be recomputed every time.

Algorithm 1 Chinese Remaindering Theorem

mp = m mod p
mq = m mod q
dp = d mod (p − 1)
dq = d mod (q − 1)

xp = m
dp

p mod p

xq = m
dq

q mod q
s = chinese(xp, xq) = q(q−1 mod p)xp + p(p−1 mod q)xq mod n
return s

Suppose an error occurs during the computation of either xp or xq (say xp, to
fix ideas, and denote by x′

p the incorrect result)5. It is easy to see that, with
overwhelming probability, the faulty signature s′ derived from x′

p and xq will be
such that

4 A short description of RSA can be found in Appendix A.
5 Note that, since these two computations are by far the most complex part of the full

signature process, inducing a transient fault at random time during the computation
has great chance to actually affect one of these.



s′e ≡ m mod q,

s′e 6≡ m mod p.

Consequently, computing

gcd(s′e − m mod n, n)

will give the secret factor q with overwhelming probability. With this factoriza-
tion of n, it is straightforward to recover the secret exponent d from e. As we
see, having the cryptographic device perform one single faulty signature (with-
out even the need to compare it to correct computations) is sufficient to be able
to forge any number of signatures. Moreover, the type of fault is very general,
and should therefore be fairly easy to induce.

Differential fault analysis Shortly after the appearing of the fault attack
against RSA, Biham and Shamir [9] showed that such attacks could be applied
against block ciphers as well, by introducing the concept of differential fault
analysis (DFA).

They demonstrated their attack against the Data Encryption Standard6. The
fault model they assume is that of transient faults in registers, with some small
probability of occurrence for each bit, so that during each encryption/decryption
there appears a small number of faults (typically one) during the computation,
and that each such fault inverts the value of one of the bits7.

The basic principle of their attack is that of a divide and conquer attack: suppose
that we dispose of two results, one correct and one faulty, for the same input
value. Suppose further that a (unique) fault has occurred, and that that fault
affected one bit of R15 (that is, the right part of the input to the last round of
DES – see Fig. 3(a), with i = 15). This bit will follow two paths through this
last round. First, R15 will be copied into L16, which will also have exactly one
wrong bit. Second, it will be part of the input to one8 S-box (Fig. 3(b)) and,
being faulty, will induce a 4-bit error in this S-box output. This in turn will
affect 4 bits of R16. Noting that all further operations (IP−1, P , . . . ) are deter-
ministic and do not depend on unknown values, we can, from the final outputs
(the right and the wrong) of DES, identify which bit of R15 was incorrect. We

6 A description of DES can be found in Appendix B.
7 The authors claim that their model is the same as that of [12, 37] but, in our opinion,

this claim is misleading: whereas RSA’s fault induction works provided any error
occurs during the computation, DES’s DFA requires that only one (or a very small
number of) bit(s) is (are) affected by the error. This model is therefore much less
general.

8 In fact, due to the expansion function, a single bit could affect two S-boxes. The
argument is the same in this case, and we omit it for simplicity.



f

Li Ri
Ki

Ri

Expansion

Ki

S0 S1 S2 S3 S4 S5 S6 S7

Permutation

(a) DES round (b) f function

Li+1 Ri+1

Fig. 3. Data Encryption Standard.

can also trace back the error as close as possible to the involved S-box. Taking
the exclusive-or of the two outputs, we end up with a relationship of the form

S(R ⊕ K) ⊕ S(R ⊕ F ⊕ K) = X,

where S denotes the S-box under concern, R the part of interest of R15 (that we
can reconstruct from the output), K the corresponding part of the key, and F

the one-bit fault. Note that we do not know the S-box output, nor, of course, the
key. The non-linearity of the S-box will help us: as a matter of fact, not all input
pairs could have produced this output difference. So, we will simply perform an
exhaustive search over all possible (that is, 26) key values, and discard all values
which do not yield the expected difference. According to Biham and Shamir,
only four possibilities remain on the average. Repeating the experiment, it is
possible to confirm the correct 6-bit value, and then to attack other key parts.

To induce an error with the expected form and location, the attacker will repeat
encryptions with device put under extreme conditions, and with same plaintext
as input, until he observes a difference between ciphertexts with the expected
pattern (one wrong bit in the output corresponding of L16 and four wrong bits
in R16). Choosing the time at which error is triggered to target the last rounds
will of course be helpful.

Similar arguments can be used if the fault occurred in rounds 14 or 15. Using
this technique, Biham and Shamir could recover a full DES key using between
50 and 200 messages. Note that triple-DES can be attacked in the same way.

It is important to remark at this point that fault induction significantly de-
pends on the target device. While, due to the simplicity of the processor, it may
be relatively easy to insert of fault during a specified computation in a smart
card, large parallel designs (e.g. block ciphers implemented on FPGAs) may be
more challenging.



Other results Others fault models have also been considered, which allow
pretty trivial attacks. Some authors, for example, consider a model in which
memory cells can be flipped from one to zero (or from zero to one), but not the
opposite. An obvious way to exploit this is to repeatedly induce faults on the key,
until all its bits have been forced to zero (and producing some ciphertexts be-
tween each fault induction). The chain is then explored backwards, starting from
the known (null) key, and guessing at each step which bits have been flipped;
correct guesses are identified by comparison with the ciphertexts. An even sim-
pler attack is that of [10], that additionally assumes that it is possible to choose
the location of the flipped bit. In this case, the attack simply consists in forcing
a key bit to zero and checking if the result is different from the one obtained
without fault induction. If this is the case, conclude the key bit was 1, otherwise
conclude 0.

Finally, several obvious ways to exploit very specific faults can easily be devised:
for example, a fault that would affect a loop counter so that only two or three
rounds of DES are executed would of course allow to break the scheme. Similarly,
disabling the instruction decoder could have the effect that all instructions act
as a NOP so the program counter cycles through the whole memory.

6 Timing attack

6.1 Introduction

Usually the running time of a program is merely considered as a constraint,
some parameter that must be reduced as much as possible by the programmer.
More surprising is the fact that the running time of a cryptographic device can
also constitute an information channel, providing the attacker with invaluable
information on the secret parameters involved. This is the idea of timing attack.
This idea was first introduced by Kocher [42].

In a timing attack, the information at the disposal of the attacker is a set of
messages that have been processed by the cryptographic device and, for each of
them, the corresponding running time. The attacker’s goal is to recover the secret
parameters (fig. 4). Remember that, as was said in section 2.1, the clock ticks
are provided to the smart card by the terminal. Precise timing measurements
are therefore easy to obtain.

6.2 Timing attack against RSA with Montgomery reduction

The ideas suggested by Kocher were first practically applied by Dhem et al.
against the RSA algorithm, implemented using Montgomery multiplication [25].
Although this attack is not optimal, its idea is pretty intuitive, and fits our tu-
torial purpose, so we will sketch it in this section.



difference
Time

Protocol, smartcard, ...

Implementation
Question

Answer

Secret

Fig. 4. The timing attack principle.

The context is that of an RSA signature, and the goal of the attacker is to
recover the secret exponent d. A common method to perform a modular expo-
nentiation is the square and multiply algorithm (Alg. 2 9). This algorithm is
mainly a sequence of modular multiplications and squares (which we will view
as simple multiplications of a value by itself). When implemented in a scholar
way, modular multiplications are time-consuming operations. Montgomery [52]
proposed a clever way to speed-up these operations, by transferring them to a
modulus which is better suited to the machine’s internal structure.

Algorithm 2 Square and multiply
x = m
for i = ω − 2 downto 0 do

x = x2 mod n
if di == 1 then

x = x · m mod n
end if

end for

return x

For simplicity, we will not describe Montgomery’s algorithm in the detail here.
For our purpose, it is sufficient to know that, for fixed modulus, the time for
a Montgomery multiplication is constant, independently of the factors, except
that, if the intermediary result of the multiplication is greater than the modu-
lus, an additional subtraction (called a reduction) has to be performed. In other
words, this means that, depending on the input, the running time of a Mont-
gomery multiplication can take two values, a “short one” (no final reduction) or
a “long one” (final reduction needed). Of course, for given input values, we can
predict whether the multiplication will be long or short.

The attack is an iterative divide and conquer attack: we will start by attacking
the first unknown bit dω−2, and, at each step of the attack, assume we know bits
dω−1 . . . di+1 and recover bit di.

9 Here, dω−1 denotes the most significant bit of d (which we assume to be equal to 1)
and d0 denotes the lsb.



Let us begin by dω−2. If this bit is equal to 1, the first loop pass in Alg 2 will
involve a multiplication by m (line 5). As we have seen, this multiplication can
be either long or short and, since no secret value is involved before this step,
we can, for a given message m, determine whether this multiplication would be
long or short. What we will do is partition our set of messages according to this
criterion: all messages for which that first multiplication would be long will be
put in subset A, and all messages for which that multiplication will be short will
be put in subset B.

What is the influence of this step on the total running time? For all messages of
subset A, the first pass in the loop has taken slightly more time than for all mes-
sages of subset B. What we expect is that this first pass will on average have a
noticeable influence on the total running time, so that actual total running times
for messages from subset A will be slightly longer. We cannot simulate further
passes in the loop, since their behavior (and hence the evolution of x) depend on
secret parameters bω−3 . . . b0. So we will simply consider them as noise, hoping
that their influence on messages from subset A will globally be the same than
on subset B.

An important point in the attack is that the simulation and partition are based
on the assumption that the first bit of the secret exponent is equal to 1. If this
is not the case, then the conditional step we are targeting is not executed. Thus,
our predictions of long or short operations will not correspond to any reality10.
Our partition in sets A and B should then be roughly random, and there is
no reason why we should observe any difference between the running times of
subset A and B.

To conduct the attack, we will simply revert that argument: assuming dω−2 = 1,
we build a partition as described above, and compare the average running times
of the two subsets. If the running times are significantly different, we conclude
that our assumption that dω−2 = 1 was true, otherwise, we conclude dω−2 = 0.

Once this bit has been determined, we have enough information to simulate
the square and multiply until the second pass, and hence attack the next bit.
Note that this does not require a new measurement set: we simply build a new
partition of the same set.

10 This argument is a bit too simplistic: in fact, the successive Montgomery multiplica-
tions of a square and multiply are not independent. Characterizing this fact allowed
to greatly improve the attack’s efficiency, but this falls outside the scope of this
tutorial.



6.3 General idea

The above argument can be generalized as follows. For a given algorithm involv-
ing a secret parameter, we view the global running time as a sum of random
variables T =

∑N

i=1
Ti corresponding to the various steps of the algorithm, and

each individual execution of the algorithm as a realization of this random vari-
able.

If we can – based on a key guess – simulate the computation and its associ-
ated running time up to step k, we can filter the measured running times by
subtracting the parts corresponding to these steps. So, if input value mj yielded
a measured running time tj and a simulated computation time tEST

j , we estimate

the remaining running time as tREM
j = tj − tEST

j , corresponding to a realization

of the random variable T k =
∑N

i=k+1
Ti. If our key guess is correct, this filtering

should reduce the variance (and the correct guess corresponds to the one that
reduces variance the most).

We can generalize this further by characterizing the probabilities for an ob-
servation under the admissible hypotheses and the a priori distribution of these
hypotheses, and deriving a decision strategy. The appropriate statistical tools
for this purpose is maximum likelihood estimation or, better, optimal decision
strategy. Schindler [62, 63] applied an optimal decision strategy to the above sce-
nario (square and multiply with Montgomery multiplication), and showed that
this led to a drastic improvement in the attack’s efficiency.

7 Power analysis attacks

In addition to its running time, the power consumption of a cryptographic device
may provide much information about the operations that take place and the in-
volved parameters. This is the idea of power analysis, first introduced by Kocher
et al. in [43], that we describe in the context of a smart card implementation.

7.1 Measuring phase

Measuring the power consumption of a smart card is a pretty easy task: as the
clock ticks, the card’s energy is also provided by the terminal, and can therefore
easily be obtained. Basically, to measure a circuit’s power consumption, a small
(e.g., 50 ohm) resistor is inserted in series with the power or ground input. The
voltage difference across the resistor divided by the resistance yields the current.
Well-equipped electronics labs have equipment that can digitally sample voltage
differences at extraordinarily high rates (over 1GHz) with excellent accuracy (less
than 1% error). Devices capable of sampling at 20MHz or faster and transferring
the data to a PC can be bought for less than US$ 400.



7.2 Simple power analysis

Simple Power Analysis (SPA) attempts to interpret the power consumption of a
device and deduce information about the performed operations or involved para-
meters. This is better illustrated by an example. Fig. 5, taken from the original
description of power analysis, shows the consumption curve (named a trace) of
a device performing a DES operation. It clearly shows a pattern that is repeated
16 times and corresponds to the 16 rounds of DES. The lower part of the figure
is a detailed view of two rounds, providing more information about the round’s
substeps.

Fig. 5. SPA monitoring from a single DES operation performed by a typical smart
card [43]. The upper trace shows the entire encryption operation, including the initial
permutation, the 16 DES rounds, and the final permutation. The lower trace is a
detailed view of the second and third rounds.

Of course, this information is not an attack in itself. Everybody knows that DES
has 16 rounds, and knowing that a device is performing a DES encryption does
not expose its secrets at all. According to our Kerckhoffs assumption, the crypto-
graphic algorithm is known to the attacker anyway. However, there are cases in
which this sequence of operations can provide useful information, mainly when
the instruction flow depends on the data. For example, let us come back to expo-
nentiation through the square and multiply algorithm. If the square operation
is implemented differently than the multiply – a tempting choice, as this will
allow specific optimizations for the square operation, resulting in faster code –
and provided this difference results in different consumption patterns, then the
power trace of an exponentiator directly yields the exponent’s value. Similarly,
some hardware multipliers behave differently when one of their operands is zero,
which allows immediate return of the result, but exposes this input value. Gen-
erally speaking, all programs involving conditional branch operations depending
on secret parameters are at risk.

However, power consumption may also depend on the data manipulated. This
leads to a more general class of attacks that is investigated in the next section.
So, SPA typically targets variable instruction flow, whereas Differential Power
Analysis and its variants target data-dependence.



In practice, instruction flow exposing is a point where the security of smart
cards and FPGAs may differ. On the one hand, sequential computing in smart
cards involves that at one specific instant, only one of the operations is running,
e.g. either square or multiply in our previous example. This makes it possible
to distinguish operations by a simple visual inspection of the power traces. On
the other hand, in FPGAs, parallel computation (if used in the design) prevents
this visual inspection, as the power consumption will not only be the one of the
targeted operation.

7.3 Differential Power Analysis

As we said, the idea of a divide and conquer attack is to compare some charac-
teristic to the values being manipulated. One of the simplest comparison tools
we can imagine is mean comparison, used in the original power analysis attack:
Differential Power Analysis (DPA) [43]. As it is pretty intuitive, we will begin
by studying it, in the context of DES encryption.

Here, the characteristic we will focus on is an arbitrary output bit b of an ar-
bitrary S-box at the 16th round (say the first bit of S1’s output), and we will
observe this characteristic through its associated power consumption. In fact,
we have no idea of when this value is actually computed by the cryptographic
device, nor do we know what its associated power consumption may look like.
The only thing we know for sure is that, at some point in time, that value will be
manipulated (computed, stored, . . . ) by the cryptographic device and that the
power consumption of the device depends on this data. To expose that value, we
will use a method very similar to the one we used for timing attack: partitioning
and averaging.

Let us first summarize the idea. We will perform a large number of encryp-
tions with variable inputs and record the corresponding consumption curves.
Then, we will partition our set in two subsets: one, A, for which the target bit
was equal to 0, the other, B for which the target bit was 1. In order to do this
partitioning, we need to be able to estimate the value of bit b. We have access
to the value R15 that entered the last round function, since it is equal to L16

(Fig. 3(a)). Looking at the round function in more detail (Fig. 3(b)), we see
that six specific11 bits of R15 will be XORed with six specific bits of the key,
before entering the S-box. So, doing a guess on a 6-bit key value, we are able
to predict the value of b. This means that we actually have 26 partitions of our
measurements, one for each possible key.

We will then compute the average power consumption for messages in subset
A, and subtract it from the average power consumption for messages in subset
B (for each possible partition). Since all computations for subset A involved

11 By specific we mean that they are chosen according to fixed permutation functions,
so we can identify them independently of any key value.



manipulating a 0 at a point where all computations for subset B involved ma-
nipulating a 1, we should observe notable differences at points in time where
this value was actually manipulated, whereas we expect other points, which are
unrelated to b, to behave as noise and be cancelled in subtraction. Of course, this
will only be true provided our initial key guess is correct, and we will in fact use
our observation as an oracle to validate this key guess: only the correct key guess
(corresponding to the correct partition) should lead to significant differences.

Fig. 6. DPA traces from [43]

Figure 6, taken from the original paper describing DPA, shows traces corre-
sponding to correct and incorrect key guesses: the top trace is the average power
consumption among the whole sample; the curve below shows the differential
trace corresponding to the right key guess (and hence right partition), and the
two bottom curves show differential traces for wrong key guesses. The spikes are
clearly visible.

According to Messerges, such a difference of mean test is relevant because, at
some point during a software DES implementation, the microprocessor needs to
compute b. When this occurs or any time data containing this selection bit is
manipulated, there will be a slight difference in the amount of power dissipated,
depending on the values of these bits. What we just did is in fact building a
model of the smart card behavior. The model is, in this case, pretty elementary,
but this modelling phase is nonetheless an indispensable part of the attack.



Finally, once this 6-bit subkey has been determined, the attack goes on by fo-
cusing on other S-boxes and target bits.

7.4 Correlation attack

Looking at the previous descriptions, it is easy to see that a DPA is far from
making an optimal use of the sampled measurements. In this section, we describe
two possible improvements.

A first improvement, usually denoted as the “multiple bit” DPA, comes when
observing that the key guess performed in a DPA does not only allow to predict
the bit b, but all the four output bits of S1. As a consequence, one may separate
the measurements in two sets according to these multiple bit values: one set
corresponding to “all zeroes”, the other one to “all ones”. This improves the
attack signal to noise ratio. However, as multiple bit attacks only consider the
texts that give rise to “all something” values, it is suboptimal and a lot of texts
(measurements) are actually not used. The correlation analysis allows solving
this problem and constitutes a second improvement. Correlation Power Analysis
usually hold in three steps.

– First, the attacker predicts the power consumption of the running device, at
one specific instant, in function of certain secret key bits. For example, let
us assume that the power consumption of the DES implementation depends
of the Hamming weight of the data processed12. Then, the attacker could
easily predict the value of S1’s output Hamming weight, for the 26 possible
values of the key guess and N different input texts. This gives 26 possible
predictions of the device power consumption and the result of this prediction
is stored in a prediction matrix.

– Secondly, the attacker measures the power consumption of the running de-
vice, at the specific time where it processes the same input texts as during
the prediction phase. The result of this measurement is stored in a con-

sumption vector.
– Finally, the attacker compares the different predictions with the real, mea-

sured power consumption, using the correlation coefficient13. That is, he
computes the correlation between the consumption vector and all the columns
of the prediction matrix (corresponding to all the 26 key guesses). If the at-
tack is successful, it is expected that only one value, corresponding to the
correct key guess, leads to a high correlation coefficient.

12 As already mentioned, this is a typical model for the power consumed in smart cards.
13 Let M(i) denote the ith measurement data (i.e. the ith trace) and M the set of

traces. Let P (i) denote the prediction of the model for the ith trace and P the set
of such predictions. Then we calculate:

C(M, P ) =
µ(M × P ) − µ(M) × µ(P )

√

σ2(M) × σ2(P )
(1)

where µ(M) denotes the mean of the set of traces M and σ2(M) its variance.



Such an attack has been successfully applied to a variety of algorithms and im-
plementations, e.g. in [13, 55, 67]. As an illustration, Figure 7 shows the result

200 400 600 800 1000 1200 1400 1600 1800 2000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

number of plaintexts

co
rr

el
at

io
n

the right 6 MSBs of the key 

Fig. 7. A correlation attack against the Data Encryption Standard.

of a correlation attack against an implementation of the DES [68]. It is clearly
observed that the correct key is distinguishable after 500 measurements.

To conclude this section, a number of points are important to notice:

– Correlation power analysis (as any power analysis attack targeting data de-
pendencies) requires a power consumption model. The quality of this model
has a strong influence on the attack efficiency. However, this leakage model
does not mandatorily have to be known a priori by the attacker and can be
built from measurements. This is the context of template attacks.

– Next to the leakage model, the synchronization of measurements is another
typical issue in side-channel attacks. Fundamentally, the easiest synchroniza-
tion is to perform the statistical test on the complete sampled data (this is
typically done in DPA). However, when the statistical test becomes compu-
tationally intensive, such a technique may become cumbersome to deal with
in practice. Some knowledge about the design or more advanced synchro-
nization techniques (e.g. FFT-based) usually solve the problem.

– As SPA, DPA-like attacks are affected by parallel computing. This is easily
seen when observing the DES design in Appendix B. Say we observe an 8-
bit smart card implementation. When S1’s output is computed, the sampled
power consumption relates to the four predicted S-box output bits and 4
other (unknown) bits. These unknown bits basically add some algorithmic
noise to the measurements. Say we observe an FPGA implementation with all
the S-boxes computed in parallel. Then, only 4 bits are predicted out of the



32 actually computed in the device. This means that the power consumption
will be affected by more algorithmic noise. In general, as already mentioned
in the context of fault insertion attacks, parallel computing improves security
against certain physical attacks.

– Remark finally that the described correlation power analysis is still not op-
timal. Techniques based on a maximum likelihood detection of the correct
key offer even better results. However, as the power consumption models
in use (i.e. based on the Hamming weight, distance of the data processed)
have a linear dependence, correlation provides a simple and efficient tool for
attacking devices in practice.

8 EMA

Any movement of electric charges is accompanied by an electromagnetic field.
Electromagnetic attacks, first introduced by Quisquater and Samyde [58], and
further developed in [59, 26] exploit this side channel by placing coils in the
neighborhood of the chip and studying the measured electromagnetic field.

The information measured can be analyzed in the same way as power consump-
tion (simple and differential electromagnetic analysis – SEMA and DEMA – or
more advanced correlation attacks), but may also provide much more informa-
tion and are therefore very useful, even when power consumption is available14.
As a matter of fact, 3D positioning of coils might allow to obtain much more
information from the device’s components. Moreover, Agrawal et al. [2] showed
that EM emanations consist of a multiplicity of signals, each leaking somewhat
different information about the underlying computation. They sort the EM em-
anations in two main categories: direct emanations, i.e. emanations that result
from intentional current flow, and unintentional emanations, caused by coupling
effects between components in close proximity. According to them, unintentional
emanations can prove much more useful that direct emanations. Moreover, some
of them have substantially better propagation than direct emanations, which
enables them to be observed without resorting to invasive attacks (and even, in
some cases, to be carried out at pretty large distances - 15 feet! - which brings
it to the field of tempest-like attacks [1]).

To summarize, EMA measurement phase is much more flexible and challeng-
ing that power measurement phase, and the provided information offers a wide
spectrum of potential information. On the other hand, this information may be
exploited using the same basic or advanced techniques as for power analysis,
even if optimal decision models can be adapted to the specificities of EMA.

14 One can of course imagine contexts in which power consumption cannot be obtained,
but where it is possible to measure the radiated field, for example from a short
distance.



In essence, EMA is a non-invasive attack, as it consists in measuring the near
field. However, this attack is made much more efficient by depackaging the chip
first, to allow nearer measurements and to avoid perturbations due to the pas-
sivation layer.

9 Countermeasures

Countermeasures against physical attacks range among a large variety of solu-
tions. However, in the present state of the art, no single technique allows to
provide perfect security, even considering a particular attack only. Protecting
implementations against physical attacks consequently intends to make the at-
tacks harder. In this context, the implementation cost of a countermeasure is
of primary importance and must be evaluated with respect to the additional
security obtained. The exhaustive list of all possible solutions to protect crypto-
graphic implementations from physical opponents would deserve a long survey
in itself. In this section, we will only suggest a few exemplary proposals in order
to illustrate that security can be added at different levels. We refer the reader
to [57] for a more comprehensive (although slightly outdated) review of existing
countermeasures.

The most direct way to prevent physical opponents is obviously to act at the
physical/hardware level. A typical example related to probing is the addition
of shields, conforming glues, or any process that makes the physical tempering
of a device more complex. Detectors that react to any abnormal circuit behav-
iors (light detectors, supply voltage detectors, ...) may also be used to prevent
probing and fault attacks [69]. With respect to side-channel attacks, simple ex-
amples of hardware protection are noise addition, or the use of detachable power
supplies [65]. However, as detailed in [22, 47], none of these methods provide a
perfect solution.

Close to the physical level, technological solutions can also be considered. There
exist circuit technologies that offer inherently better resistance against fault at-
tacks (e.g. dual rail logic [72]) or side-channel attacks (e.g. any dynamic and
differential logic style [45, 70]). While these solutions may be very interesting
in practice, because they can be combined with good performance, they do not
offer any theoretical guarantee of security either. For example, dynamic and
differential logic styles usually make the modelling of the power consumption
more difficult (no simple prediction, smaller data dependencies of the leakage)
but theoretically, such a model can always be obtained by the mean of template
attacks (see next section).

Finally, most of the proposed techniques aim to counteract fault and side-channel
attacks at the algorithmic level. Certain solutions, such as the randomization of
the clock cycles, use of random process interrupts [48] or bus and memory en-
cryption [14, 27], may be used to increase the difficulty of successfully attacking



a device, whatever physical attack is concerned. Most solutions however relate to
one particular attack. With respect to faults, they mainly include different kinds
of error detection/correction methods based on the addition of space or time re-
dundancies [64, 41, 35, 40]. The issue regarding these techniques is that their cost
is frequently close to naive solutions such as duplication or repetition. Regarding
side-channel attacks, a lot of countermeasures intend to hide (or mask) the leak-
age or to make it unpredictable. One could for example think about performing
a “square and multiply always” algorithm (i.e. always perform a multiplication
and discard the result if the operation was not necessary) for exponentiation,
and using a similar “reduce always” method for Montgomery multiplication in
order to counter timing attacks15. Another countermeasure consists in prevent-
ing the attacker from being able to make predictions about intermediary values,
a simple example of which is Kocher’s blinding [42]. Other typical examples are
in [4, 19, 28]. Once again, such protections are not perfect and, in the case of
block ciphers, for example, have been shown to be susceptible to higher-order
side-channel attacks. Moreover, their implementation cost is also an issue.

In general, good security may nevertheless be obtained by a sound combina-
tion of these countermeasures. However, it is more an engineering process than
a scientific derivation of provably secure schemes. Theoretical security against
physical attacks is a large scope for further research.

10 More advanced attacks and further readings

Most advanced scenarios generally aim to improve the attacks’ efficiency (i.e. to
reduce the number of physical interactions required), to make them more gen-
eral or to defeat certain countermeasures. We give here typical examples of such
improvements that are also good directions for further readings.

For power and Electromagnetic analysis: (1) Multi-channel attacks [3] basically
aim to improve the attacks’ efficiency by making an optimal use of different
available leakages, based on a maximum likelihood approach. (2) Template at-
tacks [20] intend to remove the need for a leakage model and consequently make
power and electromagnetic analysis more general. For this purpose, they act in
two separate steps: (a) build a model based on sampled data, using a template
of the target device (b) use maximum likelihood to determine the key whose
leakage profile matches the best the one of the device under attack. Remark
that templates inherently allow to defeat a large number of countermeasures.
(3) Second-order attacks [51, 71] finally target implementations in which the
leakage has been masked. Contrary to first order attacks that aim to predict
the power consumption of one specific operation at one specific instant during
a cryptographic computations, higher-order techniques take advantage of cor-
relations existing between multiple operations, possibly performed at different

15 These are of course naive methods, which have been widely improved in the litera-
ture.



instants.
Another research lead is to explore the feasibility of an attack in a different
context. For example, some authors demonstrated that timing attacks can also
be conducted against a classical desktop computer, or even against a server ac-
cessed through a network connection [15, 8]. Moreover, Bernstein argues that
the complexity of a general-purpose CPU (multiple cache levels, pipelining, . . . )
might make timing attacks extremely difficult to prevent on such platforms.

Elliptic curve cryptography has been the field of a large number of publications
regarding physical attacks. As elliptic curve operations are basically transpo-
sitions of classical operations in another mathematical structure, many of the
aforementioned attacks can be transposed to this context too. On the other hand,
this structure offers a degree of flexibility that allows several specific counter-
measures to be designed in an efficient way (see [36, 34, 33, 24, 21], to only name
a few).

11 Conclusion

In this paper, we presented a number of practical concerns for the security of
cryptographic devices, from an intuitive point of view. It led us to cover recently
proposed attacks and discuss their respective characteristics as well as possible
countermeasures. The discussion clearly underlines that probing, side-channel or
fault attacks constitute a very significant threat for actual designers. The gen-
erality of these attacks was suggested in the tutorial, as we mainly investigated
algorithmic issues. However, it must be noted that the actual implementation
of physical attacks (and more specifically, their efficiency) may be significantly
platform-dependent. Moreover, the presented techniques usually require a cer-
tain level of practical knowledge, somewhat hidden in our abstract descriptions.

From an operational point of view, the present state of the art suggests that
good actual security may be obtained by the sound combination of counter-
measures. However, significant progresses are still required both in the practical
setups for physical interactions with actual devices and in the theoretical un-
derstanding of the underlying phenomenons. The development of a theory of
provable security is therefore a long term goal.

12 Acknowledgements

The authors are grateful to W. Schindler for useful comments.



References

1. NSA tempest series, Available at http://cryptome.org/#NSA--TS.

2. D. Agrawal, B. Archambeault, J.R. Rao, and P. Rohatgi, The EM side channel, in
Kaliski et al. [38].

3. D. Agrawal, J. R. Rao, and P. Rohatgi, Multi-channel attacks, Proceedings of the
5th International Workshop on Cryptographic Hardware and Embedded Systems
(CHES) (Cologne, Germany) (C. Walter, Ç. K. Koç, and C. Paar, eds.), Lecture
Notes in Computer Science, vol. 2779, Springer-Verlag, September 7-10 2003, pp. 2–
16.

4. M.-L. Akkar and C. Giraud, An implementation of DES and AES, secure against
some attacks, in Çetin K. Koç et al. [16].

5. R. Anderson and M. Kuhn, Tamper resistance – a cautionary note, Proc. of the
second USENIX workshop on electronic commerce (Oakland, California), Nov. 18-
21 1996, pp. 1–11.

6. , Low cost attacks on tamper resistant devices, Proc. of 1997 Security Proto-
cols Workshop, Lectures Notes in Computer Science (LNCS), vol. 1361, Springer,
1997, pp. 125–136.

7. R.J. Anderson, Security engineering, Wiley & Sons, New York, 2001.

8. Daniel J. Bernstein, Cache-timing attacks on AES, Available at http://cr.yp.

to/antiforgery/cachetiming-20050414.pdf, November 2004.

9. E. Biham and A. Shamir, Differential fault analysis of secret key cryptosystems,
Proc. of Advances in Cryptology – Crypto ’97 (Berlin) (Burt Kaliski, ed.), vol.
1294, Springer-Verlag, 1997, Lecture Notes in Computer Science Volume 1294,
pp. 513–525.

10. J. Blömer and J.P. Seifert, Fault based cryptanalysis of the advanced encryption
standard (AES), Cryptology ePrint Archive: Report 2002/075. Available at http:
//eprint.iacr.org.

11. D. Boneh (ed.), Advances in cryptology - CRYPTO ’03, Lectures Notes in Com-
puter Science (LNCS), vol. 2729, Springer-Verlag, 2003.

12. D. Boneh, R.A. DeMillo, and R.J. Lipton, On the importance of checking crypto-
graphic protocols for faults, Advances in Cryptology - EUROCRYPT ’97, Konstanz,
Germany (W. Fumy, ed.), LNCS, vol. 1233, Springer, 1997, pp. 37–51.

13. E. Brier, C. Clavier, and F. Olivier, Correlation power analysis with a leakage
model, proceedings of CHES, Lectures Notes in Computer Science (LNCS), vol.
3156, Springer, 2004, pp. 16–29.

14. E. Brier, H. Handschuh, and C. Tymen, Fast primitives for internal data scrambling
in tamper resistant hardware, in Çetin K. Koç et al. [16], pp. 16–27.

15. B. Canvel, A. Hiltgen, S. Vaudenay, and M. Vuagnoux, Password interception in
a SSL/TLS channel, in Boneh [11].

16. Çetin K. Koç, David Naccache, and Christof Paar (eds.), Cryptographic Hardware
and Embedded Systems - CHES 2001, Lectures Notes in Computer Science (LNCS),
vol. 2162, Springer-Verlag, August 2001.

17. Çetin K. Koç and Christof Paar (eds.), Cryptographic Hardware and Embedded
Systems - CHES ’99, Lectures Notes in Computer Science (LNCS), vol. 1717,
Springer-Verlag, August 1999.

18. Çetin K. Koç and Christof Paar (eds.), Cryptographic Hardware and Embedded
Systems - CHES 2000, Lectures Notes in Computer Science (LNCS), vol. 1965,
Springer-Verlag, August 2000.



19. S. Chari, C. Jutla, J. Rao, and P. Rohatgi, Towards sound approaches to counteract
power-analysis attacks, Advances in Cryptology - CRYPTO ’99 (M. Wiener, ed.),
Lectures Notes in Computer Science (LNCS), vol. 1666, Springer-Verlag, 1999.

20. S. Chari, J.R. Rao, and P. Rohatgi, Template attacks, in Kaliski et al. [38].
21. Benôıt Chevallier-Mames, Mathieu Ciet, and Marc Joye, Low-cost solutions for pre-

venting simple side-channel analysis: Side-channel atomicity, IEEE Transactions
on Computers 53 (2004), no. 6.

22. C. Clavier, J.S. Coron, and N. Dabbous, Differential power analysis in the presence
of hardware countermeasures, in Kaliski et al. [39].

23. K. Compton and S. Hauck, Reconfigurable computing: A survey of systems and
software, ACM Computing Surveys 34 (2002), no. 2.

24. J.-S. Coron, Resistance against differential power analysis for elliptic curves cryp-
tosystems, in Çetin K. Koç and Paar [17].

25. J.-F. Dhem, F. Koeune, P.-A. Leroux, P. Mestré, J.-J. Quisquater, and J.-
L. Willems, A practical implementation of the timing attack, Proc. CARDIS
1998, Smart Card Research and Advanced Applications (J.-J. Quisquater and
B. Schneier, eds.), LNCS, Springer, 1998.

26. K. Gandolfi, C. Mourtel, and F. Olivier, Electromagnetic analysis: Concrete results,
Proc. of Cryptographic Hardware and Embedded Systems (CHES 2001) (Çetin
Kaya Koç, David Naccache, and Christof Paar, eds.), Lecture Notes in Computer
Science, vol. 2162, Springer, 2001, pp. 251–261.

27. Jovan D. Golic, DeKaRT: A new paradigm for key-dependent reversible circuits, in
Kaliski et al. [39], pp. 98–112.

28. L. Goubin and J. Patarin, DES and differential power analysis: the duplication
method, in Çetin K. Koç and Paar [17].

29. P. Gutmann, Secure deletion of data from magnetic and solid-state memory, Proc.
of 6th USENIX Security Symposium, 1997, pp. 77–89.

30. , Data remanence in semiconductor devices, Proc. of 7th USENIX Security
Symposium, 1998.

31. Helena Handschuh, Pascal Paillier, and Jacques Stern, Probing attacks on tamper-
resistant devices, in Çetin K. Koç and Paar [17].

32. Yuval Ishai, Amit Sahai, and David Wagner, Private circuits: Securing hardware
against probing attacks, in Boneh [11].

33. K. Itoh, J. Yajima, M. Takenaka, and N. Torii, DPA countermeasures by improving
the window method, in Kaliski et al. [38].

34. T. Izu and T. Takagi, Fast parallel elliptic curve multiplications resistant to side
channel attacks, Proc. of PKC ’2002 (David Naccache and Pascal Paillier, eds.),
Lecture Notes in Computer Science, vol. 2274, Springer, 2002, pp. 335–345.

35. N. Joshi, K. Wu, and R. Karry, Concurrent error detection schemes for involution
ciphers, in Çetin K. Koç and Paar [18], pp. 400–412.

36. M. Joye and J.-J. Quisquater, Hessian elliptic curves and side-channel attacks, in
Çetin K. Koç et al. [16].

37. Marc Joye, Arjen K. Lenstra, and Jean-Jacques Quisquater, Chinese remaindering
based cryptosystems in the presence of faults, Journal of cryptology 12 (1999),
no. 4, 241–245.

38. Burton S. Kaliski, Çetin K. Koç, and Christof Paar (eds.), Cryptographic Hardware
and Embedded Systems - CHES 2002, Lectures Notes in Computer Science (LNCS),
vol. 2523, Springer-Verlag, August 2002.

39. Burton S. Kaliski, Çetin K. Koç, and Christof Paar (eds.), Cryptographic Hardware
and Embedded Systems - CHES 2003, Lectures Notes in Computer Science (LNCS),
vol. 2779, Springer-Verlag, September 2003.



40. M. Karpovsky, K.J. Kulikowski, and A. Taubin, Differential fault analysis attack re-
sistant architectures for the advanced encryption standard, proceedings of CARDIS
2004.

41. R. Karri, G. Kuznetsov, and M. Gössel, Parity-based concurrent error detection of
substitution-permutation network block ciphers, in Kaliski et al. [39].

42. P. Kocher, Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and
other systems, Advances in Cryptology - CRYPTO ’96, Santa Barbara, California
(N. Koblitz, ed.), LNCS, vol. 1109, Springer, 1996, pp. 104–113.

43. P. Kocher, Jaffe J., and B. Jub, Differential power analysis, Proc. of Advances in
Cryptology – CRYPTO ’99 (M. Wiener, ed.), LNCS, vol. 1666, Springer-Verlag,
1999, pp. 388–397.

44. Olivier Kömmerling and Markus G. Kuhn, Design principles for tamper-resistant
smartcard processors, Proc. of USENIX Workshop on Smartcard Technology
(Smartcard ’99), 1999.

45. F. Mace, F.-X. Standaert, I. Hassoune, J.-D. Legat, and J.-J. Quisquater, A dy-
namic current mode logic to counteract power analysis attacks, proceedings of
DCIS, 2004.

46. D.P. Maher, Fault induction attacks, tamper resistance, and hostile reverse engi-
neering in perspective, Financial Cryptography: First International Conference (FC
’97) (R. Hirschfeld, ed.), Lectures Notes in Computer Science (LNCS), vol. 1318,
Springer-Verlag, 1997.

47. S. Mangard, Hardware countermeasures against DPA - a statistical analysis of
their effectiveness, proceedings of CT-RSA, Lecture Notes in Computer Science,
vol. 2964, Springer-Verlag, 2004, pp. 222–235.

48. D. May, H. Muller, and N. Smart, Randomized register renaming to foil DPA, in
Çetin K. Koç et al. [16].

49. A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone, Handbook of applied cryp-
tography, CRC Press, 1997.

50. T. S. Messerges, E. A. Dabbish, and R. H. Sloan, Investigations of power analysis
attacks on smartcards, Proc. USENIX Workshop on Smartcard Technology, 1999.

51. Th.S. Messerges, Using second-order power analysis to attack DPA resistant soft-
ware, in Çetin K. Koç and Paar [18].

52. P.L. Montgomery, Modular multiplication without trial division, Mathematics of
Computation 44 (1985), no. 170, 519–521.

53. National Bureau of Standards, FIPS 197, Advanced Encryption Standard, Federal
Information Processing Standard, NIST, U.S. Dept. of Commerce,November 2001.

54. , FIPS PUB 46, The Data Encryption Standard, Federal Information
Processing Standard, NIST, U.S. Dept. of Commerce, Jan 1977.

55. S.B. Ors, F. Gurkaynak, E. Oswald, and B. Preneel, Power-analysis attack on an
asic aes implementation, proceedings of ITCC, 2004.

56. J.-J. Quisquater and D. Samyde, Eddy current for magnetic analysis with active
sensor, Proc. of Esmart 2002, 2002.

57. Jean-Jacques Quisquater and François Koeune, Side-channel attacks: state-
of-the-art, CRYPTREC project deliverable, available at http://www.ipa.go.

jp/security/enc/CRYPTREC/fy15/doc/1047 Side Channel report.pdf, October
2002.

58. Jean-Jacques Quisquater and David Samyde, A new tool for non-intrusive analy-
sis of smart cards based on electro-magnetic emissions: the SEMA and DEMA
methods, Eurocrypt rump session, 2000.



59. , Electromagnetic analysis (EMA): measures and countermeasures for smart
cards, Smart cards programming and security (e-Smart 2001), Lectures Notes in
Computer Science (LNCS), vol. 2140, Springer, 2001, pp. 200–210.

60. W. Rankl and W. Effing, Smart card handbook, John Wiley & Sons, 1997.
61. R. Rivest, A. Shamir, and L. Adleman, A method for obtaining digital signatures

and public key cryptosystems, 21 (1978).
62. W. Schindler, Optimized timing attacks against public key cryptosystems, Statistics

& Decisions (2000), to appear.
63. W. Schindler, J.-J. Quisquater, and F. Koeune, Improving divide and conquer at-

tacks against cryptosystems by better error detection correction strategies, Proc.
of 8th IMA International Conference on Cryptography and Coding (Berlin)
(B. Honary, ed.), Springer, December 2001, Lecture Notes in Computer Science
Volume 2260, pp. 245–267.

64. A. Shamir, How to check modular exponentiation, Presented at the rump session
of EUROCRYPT ’97, Konstanz, Germany.

65. A. Shamir, Protecting smart cards from passive power analysis with detached power
supplies, in Çetin K. Koç and Paar [18].

66. S. Skorobogatov and R. Anderson, Optical fault induction attacks, in Kaliski et al.
[38].

67. F.-X. Standaert, S.B. Ors, and B. Preneel, Power analysis of an fpga implementa-
tion of rijndael: is pipelining a dpa countermeasure?, proceedings of CHES, Lec-
tures Notes in Computer Science (LNCS), vol. 3156, Springer, 2004, pp. 30–44.

68. F.-X. Standaert, S.B. Ors, J.-J. Quisquater, and B. Preneel, Power analysis attacks
against FPGA implementations of the DES, proceedings of FPL, Lecture Notes in
Computer Science, vol. 3203, Springer-Verlag, 2004, pp. 84–94.

69. H. Bar-El et al., The sorcerer’s apprentice guide to fault attacks, Tech. Report
2004/100, IACR eprint archive, 2004, Available at http://eprint.iacr.org.

70. K. Tiri, M. Akmal, and I. Verbauwhede, A dynamic and differential CMOS logic
with signal independent power consumption to withstand differential power analysis
on smart cards, proceedings of ESSCIRC, 2003.

71. J. Waddle and D. Wagner, Towards efficient second-order power analysis, pro-
ceedings of CHES, Lecture Notes in Computer Science, vol. 3156, Springer-Verlag,
2004, pp. 1–15.

72. J.D. Waddle and D.A. Wagner, Fault attacks on dual-rail encoded systems, Tech
report UCB//CSD-04-1347, UC Berkeley, August 23, 2004.



A RSA

RSA, named after the initials of its authors, Rivest, Shamir and Adleman [61]
is probably the most famous asymmetric encryption (and signature) primitive.
It basically goes as follows:

1. Alice chooses two large prime numbers p and q and computes their product
n = pq and φ(n) = (p − 1)(q − 1).

2. She also chooses a value e that has no common factor with φ(n) and computes
d = e−1 mod φ(n).

3. Alice publishes (n, e) as her public key, and keeps d as her private key.
4. To send her a message m (with 0 ≤ m < n), Bob computes c = me mod n.
5. Alice decrypts c by computing cd mod n. By Euler’s theorem, it can easily

be shown that the result is equal to m.

We refer the reader to [49] for more information on RSA.

B The Data Encryption Standard : a case study

In 1977, the DES algorithm [54] was adopted as a Federal Information Process-
ing Standard (FIPS) for unclassified government communication. Although a
new Advanced Encryption Standard was selected in October 2000 [53], DES is
still widely used, particularly in the financial sector. DES encrypts 64-bit blocks
with a 56-bit key and processes data with permutations, substitutions and XOR

operations. It is a good example of Feistel cipher and its structure allows very
efficient hardware implementations.

Basically, the plaintext is first permuted by a fixed permutation IP. Next the
result is split into two 32-bit halves, denoted with L (left) and R (right) to which
a round function is applied 16 times. The ciphertext is calculated by applying
the inverse of the initial permutation IP to the result of the 16th round.

The secret key is expanded by the key schedule algorithm to sixteen 48-bit
round keys Ki and in each round, a 48-bit round key is XORed to the text.
The key schedule consists of known bit permutations and shift operations. As a
consequence, finding any round key bit directly involves that the secret key is
corrupted.

The round function is represented in Figure 8 (a) and is easily described by:

Li+1 = Ri

Ri+1 = Li ⊕ f(Ri, Ki)

where f is a nonlinear function detailed in Figure 8 (b): the Ri part is first ex-
panded to 48 bits with the E box, by doubling some Ri bits. Then, it performs a
bitwise modulo 2 sum of the expanded Ri part and the 48-bit round key Ki. The



f

Li Ri
Ki

Ri

Expansion

Ki

S0 S1 S2 S3 S4 S5 S6 S7

Permutation

(a) DES round (b) f function

Li+1 Ri+1

Fig. 8. Data Encryption Standard.

output of the XOR function is sent to eight non-linear S-boxes. Each of them
has six input bits and four output bits. The resulting 32 bits are permuted by
the bit permutation P.

Finally, DES decryption consists of the encryption algorithm with the same
round keys but in reversed order.


