Template Attacks in Principal Subspaces

C. Archambeau, E. Peeters, F.-X. Standaert*, and J.-J. Quisquater

UCL Crypto Group - Université catholique de Louvain
Place du Levant 3, B-1348 Louvain-la-Neuve, Belgium
{fstandae, jjq@uclouvain.be}

Abstract. Side-channel attacks are a serious threat to implementations
of cryptographic algorithms. Secret information is recovered based on
power consumption, electromagnetic emanations or any other form of
physical information leakage. Template attacks are probabilistic side-
channel attacks, which assume a Gaussian noise model. Using the max-
imum likelihood principle enables us to reveal (part of) a device’s secret
data for each set of recordings (i.e. leakage trace). In practice, however,
the major concerns are (i) how to select the points of interest of the
traces, (i) how to choose the minimal distance between these points,
and (iii) how many points of interest are needed for attacking. So far,
only heuristics were provided. In this work, we propose to perform tem-
plate attacks in the principal subspace of the traces. This new type of
attack addresses all practical issues in principled way and automatically.
The approach is validated by attacking stream ciphers such as RC4. We
also report analysis results of template style attacks against an FPGA
implementation of the AES Rijndael. Roughly, the template attack we
carried out requires five time less encrypted messages than the best re-
ported correlation attack against similar block cipher implementations.

1 Introduction

Since their first public appearance in 1996 [6], side-channel attacks have been
intensively studied by the cryptographic community. The basic principle is to
monitor one (or more) unintentional channels that leak from a device such as a
smart card and to match these observations with a key-dependent leakage pre-
diction. This channel is usually monitored thanks to an oscilloscope that samples
a continuous analog signal and turns it into a discrete digitalized sequence. This
sequence is often referred to as a trace. Recently, a probabilistic side-channel
attack, called the Template Attack (TA), was introduced [2]. This attack was
originally mounted to target stream ciphers implementations. In this context, the
attacker can only observe a single use of the key, usually during the initialization
step of the cipher. As it is not possible to generate different leakages from the
same secret key (e.g. corresponding to different plaintexts), TAs were purposed
for a more efficient way of retrieving information from side-channel traces.

* Postdoctoral researcher of the Belgian Fund for Scientific Research (FNRS).

There are three main reasons that make TAs more efficient than previous
approaches to exploit side-channel leakages. First, TAs usually require a pro-
filing step, in order to build a (probabilistic) noise model of the side-channel
that can be used to capture the secret information leaked by a running device.
Second, TAs usually exploit multivariate statistics to characterize the dependen-
cies between the different time instant in the traces. Finally, TAs use maximum
likelihood as similarity measure, that can capture any type of dependency (if
the probabilistic model is found to be adequate), whereas, for example correla-
tion analysis only captures linear dependencies [1]. In general, the cost of these
improvements is a reduction of the adversarial flexibility. For example, Ham-
ming weight leakage models can generally be used for any CMOS devices while
template attacks profile the leakage function for one particular device.

Actual TAs generally rely on the hypothesis that the leakage information is
located in the variability of the leakage traces. In order to recover the secret
data hidden in a cryptographic device, one has thus to focus at the time instants
where the variability is maximal. However, in practice it is not clear how many
and which moments exactly are important. The attacks are therefore based on
heuristics, which specify these quantities according to some prior belief. For ex-
ample, it is common to force the successive, relevant time instants to be one clock
cycle distant. The main contribution of this work is that we take TAs a step fur-
ther. Instead of applying TA directly, we first transform the leakage traces such
that we are able to select the relevant features (i.e. transformed time instants)
and their number automatically. Meanwhile, we do not need to determine a spe-
cific feature interdistance and when performing TAs after transformation, we
still take the correlations between the features into account. In order to find a
suitable transformation, we assume that the secret information leakage is mainly
hidden in the local variability of the mean traces. Then, we take the optimal lin-
ear combination of the relevant time samples and perform TAs in the principal
subspace of the mean traces. We call this approach principal subspace-based TA
(PSTA). A principal subspace can be viewed as a lower dimensional subspace
embedded in the data space! where each coordinate axis successively indicates
the direction in which the data have maximal variability (or variance).

A standard statistical tool for finding the principal subspace of a data set is
principal component analysis (PCA) [5]. PCA performs an eigendecomposition
of the empirical data covariance matrix in order to identify both the principal
directions (eigenvectors) and the variance (eigenvalues) associated to each one
of them. However, practical issues may arise in the context of PSTAs, as the
dimension of the traces is much larger (typically O(10°)) than the number of
traces (typically O(10%)). Therefore, we propose to use a variant of PCA that is
more suitable in this situation (see Section 3.1 for further details). An attractive
feature of PSTAs is that the projected traces are aligned with the directions of
maximal variance. These directions are nothing else than a weighted sum of all
the time instants, the weights being determined such that the data variability is

! Here, the data space is the space in which the leakage traces live.

preserved after projection. So, in contrast to TAs, which selects a relevant subset
of time instants according to a heuristic, PSTAs determines first the optimal (in
terms of maximal variance) linear combination of these time instants. In other
words, there is no need to determine an interdistance between the time samples
anymore as the irrelevant ones will be assigned a small weight. Furthermore,
based on the value of the eigenvalues, one can determine which (the largest) and
how many directions are relevant. In order to validate our approach, we finally
apply the described techniques to two implementation cases. First we target
an implementation of RC4, similar to the one in [3] as a typical context where
template attacks are necessary. Then, we target an FPGA implementation of the
AES Rijndael. For this purpose, we suggest an adaptation of template attacks
that allow characterizing the leakage traces of block ciphers. We finally compare
the obtained results with previously reported ones and observe a significant
improvement of the attacks efficiency (again to be traded with less flexibility).

2 Template Attacks

In this section, the underlying principle of Template Attacks (TAs) is first pre-
sented. Next, we introduce principal subspace TAs (PSTAs). In this approach,
(linear) dimensionality reduction techniques are used to select automatically
the most relevant features and their number. In this context, features can be
understood as weighted sums of the most relevant trace samples. In addition,
both the computational requirements as well as the prohibitive memory usage
of standard TAs are reduced in a principled way. In our descriptions, we con-
sider a divide-and-conquer adversarial strategy in which different small parts of
a cryptographic key are recovered independently. We denote these small parts
of secret information as key classes s (they typically correspond to one or two
bytes of information). Additionally, we define a leakage vector 1; = [l1,12, ..., (]
containing the leakage traces corresponding to ¢ queries to a target device. In
template attacks, an adversary typically gains access to a number of traces in
order to build a tailored model for the leakages (i.e. templates) and then uses
this model to perform an online attack against a given target device.

2.1 Templates

Suppose that an adversary is provided with N; traces for a given operation, e.g.
the encryption of ¢ messages with a key class s. In template attacks, a Gaussian
noise model is considered, meaning that these traces {IZ’Z}f-Vz‘l are assumed to be

drawn from the multivariate Gaussian distribution N (1§’i|us, X):

s 1 s, — S,1
N g, Xs) = —s() 2y —ug} (1)

1
— = exp
(2m) % |X.|2 { 2

Note that the mean p, and the covariance matrix X specify completely the

noise distribution associated to each key class s. Constructing the templates
S|

consists then in estimating the sets of parameters {us}‘.f:ll and {Zs}ls:r

A standard approach is to use the maximum likelihood principle. In this
approach, we seek for the parameters that maximize the likelihood of the ob-
servations (traces) under the chosen noise model. Maximizing the likelihood is
equivalent to maximizing the log-likelihood, which is given by:

Ny Ny
log £, = 1ogHPr[12’Z|ES] = Z log N (15" | s,), (2)
i=1 i=1

where Pr[lZ’i|Es] is the probability density of observing a trace 12,1‘ if we assume
that an encryption operation Es using the class s was carried out on the device.
Direct maximization of (2) is straightforward and leads to the following estimates
(corresponding to the empirical mean and covariance matrix associated to the

observations {lZ’i PN

2.2 Attack

Assume that there are |S| possible secret key classes. In order to determine by
which secret signal a new trace l,.w was generated, we apply Bayes’ rule. This
leads to the following classification rule:

S = argmax P;r[s*“ncw]

= argmax Pr[lyey|s*] Pr[s*], (5)

s*

where PrLyew|s*] =N (Lnew|ft,- , s+) and Pr[s*] is the prior probability of the key
class candidate s*. The classification rule assigns 1,y to the candidate s* with
the highest posterior probability. When the secret key classes are equiprobable

(which is generally assumed), we have that Pr[s*]:ﬁ.

3 Principal Component Analysis

In practice, the number of samples N per trace is very large, typically O(10%)
as it depends on the sampling rate of the recording device. A high sampling
rate is usually mandatory in order to retain the frequency content of the side-
channel. This leads to excessive computational loads and a prohibitively large
memory usage. Furthermore, it is expected that only a limited number of time
samples are relevant for template attacks. Therefore, several attempts were made
in the past to address these practical issues. Chari, et al. [2] select time samples

showing the largest difference between the mean traces {ﬂS}LS:‘l. Rechberger and
Oswald [8] used a similar method. Their selection rule is based on the cumulative
difference between the mean traces. In addition, the traces are pre-processed
by a Fast Fourier Transform (FFT) in order to remove high frequency noise.
Another, simple rule is to select the points (after pre-processing) where the the
largest variance of the mean traces occur. All these approaches assume that the
relevant samples are the ones with the highest variability. However, they only
provide heuristics and are therefore not optimal. Furthermore, they require to
chose an arbitrary minimum distance between successive points (for example
the clock cycle) in order to avoid redundancy and there is no satisfactory rule
to determine how many such samples are needed to attack optimally.

Another, more systematic approach is to select the relevant points based
on Principal Component Analysis (PCA) (see for example [4,5]). PCA is a
standard statistical tool for dimensionality reduction. It looks for a linear
transformation that projects high-dimensional data into a low-dimensional
subspace while preserving the data variance (i.e. it minimizes the mean squared
reconstruction error). In order to minimize the loss of relevant information,
PCA works in two steps. First, it looks for a rotation of the original axes such
that the new coordinate system indicates the successive directions in which the
data have maximal variance. Second, it only retains the NN, most important
directions in order to reduce the dimensionality. It therefore assumes that the
variability in the discarded directions corresponds to noise.

An example is shown in Appendix A, Figure 6.

3.1 Traces Principal Subspaces

In the following, we aim to apply PCA in order to find a single linear transform
that maximizes the inter-class distance (or inter-class variance) between the dif-
ferent empirical mean traces {ﬂs}‘s‘ill associated to the set of keys [1,2,...,s].
PCA looks for the first principal directions {Wm}%czl such that N > N, and
which form an orthonormal basis of the N .-dimensional subspace capturing max-
imal variance of {ﬂS}LS:‘l It can be shown [5] that the principal directions are
the eigenvectors of the empirical covariance matrix, given by:

5= %st —), —)T (6)

The quantity g = Fll Z‘f:ll ft, is the average of the mean traces. In template

attacks, N is typically very large, meaning that S € R™*" is beyond compu-

tation capabilities. Furthermore, the total number of mean traces |S| is much
smaller than N. The matrix S is of rank |S| — 1 (or less) and has therefore only
|S] — 1 eigenvectors. Fortunately, one can compute the first |S| — 1 eigenvectors
without having to compute the complete covariance matrix S [4].

Let T = (ﬂl — B s — ﬂ) € RY*ISI be the matrix of the centered

empirical mean traces. By definition the empirical covariance matrix is given by
FllTTT' Let us denote the matrix of eigenvectors and eigenvalues of ﬁTTT by

respectively U and A, the latter being diagonal. We have (ﬁTTT)U =UA.
Left multiplying both sides by T and rearranging directly leads to:

S(TU) = (TU)A. (7)

We see that TU is the matrix of the |S| eigenvectors of S. In order to form
an orthonormal basis, they need to be normalized. The normalized principal
directions are given by:

V- (TUujat. (8)

VIS

The principal directions {Wm}f\[n;1 are the columns of V corresponding to the N,
largest eigenvalues of A. We denote these eigenvalues by the diagonal matrix A €
RY<*Ne and the corresponding matrix of principal directions by W e IR *Ne,
As discussed above, PCA can be performed when the number of data vectors
is (much) lower than their dimension. Still, one may question the pertinence of
the solution, as a subspace of dimensionality |S| — 1 goes exactly through |S|
points. The solution found by PCA only makes sense if the intrinsic dimension
of the data manifold is much lower than number of observations. In other words,
the solution is valid if most of the relevant information can be summarized
in very few principal directions. Fortunately, this is generally the case in the
context of practical template attacks. Note that the same problematic arises in
computer vision in the context of automatic face recognition. Here, the very high
dimensional vectors are the face images. The principal characteristics are then
found by following a similar approach, known as eigenfaces [12].

3.2 Principal Subspace based Template Attacks

In the previous section, we showed how standard PCA can be modified in order to
be used with very high-dimensional vectors such as side-channel leakage traces.
This provides us with the projection matrix W, which identifies successively the
directions with maximal variance between the empirical mean traces {ﬂs}‘s‘ill
Now, in order to built principal subspace templates, we estimate the projected
means {I/S}ISS:‘1 and the covariance matrices of the projected traces along the

(retained) principal directions {AS}IS‘Sz‘l. These parameters are given by:

ve=W' i, A, =W I .W. (9)

ER)
As in standard template attacks, the noise model is given by a multivariate
Gaussian distribution. However, the number of principal directions N, is much
smaller than N. Note that a direction can be considered as not being principal
when the associated eigenvalue is small compared to the largest one. This will

be further discussed in Section 4. Finally, in order to classify a new trace le,
we apply Bayes’ rule. This leads to the following classification rule:

5 = argmax Pr[W " 1,q,|s*] Pr[s*], (10)
with Pr(W T Lyew|s*) = N (W T Lyew|Ver, Age).

4 Experimental results

In the experiments, the recorded traces are power leakages. We validate PSTAs
both on stream ciphers (RC4) and block ciphers (AES Rijndael). Two exam-
ples of leakage traces for each encryption algorithm are shown in the Figures
of Appendix B. From a practical point of view, considering a very small num-
ber |S| of different operations/keys can lead to a degenerate solution as only
very few principal directions can be identified. This in turn may lead to poorly
performing attacks. Therefore, it is convenient to augment the number of mean
traces artificially in this case. For example, one can compute for each operation
a pre-defined number of mean traces by picking several traces at random in the
training set. Another approach is to use resampling techniques (e.g. see [3]).

4.1 RC4

The first experiments were carried out on a PIC 16F877 8-bit RISC-based mi-
croprocessor [7]. The microchip was clocked at a frequency around 4 MHz. This
microprocessor requires four clock cycles to process an instruction. Each instruc-
tion is divided into four steps: (i) fetch (update of the address bus), (ii) decode
and operands fetch (driven by the bus), (iii) execute and (iv) write back. We
monitored the power consumption of a device by inserting a small resistor at
its ground pin or power pin. The resistor value is chosen such that it disrupts
the voltage supply by at most 5% from its reference?. The 1-Ohm method?® was
used to attack the device at the ground pin and a differential probe in the case
of targeting the power pin. RC4 is a stream cipher working on a 256-byte state
table denoted T hereafter. It generates a pseudo-random stream of bits which is
mixed with the plaintext using a XOR function to yield a ciphertext. The state
T is initialized with a variable key length (typically between 40 and 256 bytes)
using the following key-scheduling algorithm:

2 This is advised in IEC 61967-3: Integrated circuits - Measurement of electromagnetic
emissions, 150kHz to 1GHz Part 3: Measurement of radiated emissions, surface scan
method (10kHz to 3GHz), 47A/620/NP, New Work Item Proposal (July 2001).

3 See IEC 61967-4: Integrated circuits - Measurement of electromagnetic emissions,
150 kHz to 1 GHz - Part 4: Measurement of conducted emissions 12 / 15042. Direct
coupling method, 47A/636/FDIS, Final Draft International Standard, 2002-01-18.

for i from O to 255
T[i] := i

j =0

for i from O to 255
j = (j + T[i] + key[i mod keylength]) mod 256
swap(T[il,T[j1)

The power consumption of the first iteration was monitored; the dependence
on the first byte of the key is here obvious. The 256-byte state was placed in
the data memory by allocating 64 bytes per bank. Therefore, it is expected to
be easier to distinguish the keys located in different banks even if they have the
same Hamming weight. In the RC4 experiments, 10 keys that are believed to be
“close” are considered. For each one, 500 traces are used to construct the models
and 300 to validate them. In other words, 500 traces are used to estimate the
parameters and 300 to assess the performance. For each trace, there are 300,000
time samples. Figure 1 shows the eigenvalues in decreasing order. Clearly, most
of the variance is located in very few components. In practice, 7 components
are sufficient to ensure an average rate of correct classification of 93.3% (see
Figure 2), meaning that most of the test traces are correctly classified at once.

By contrast, in [2] 42 test samples were selected according to some heuristic.
The noise model was chosen to be multivariate Gaussian as in Equation (1).
When considering a diagonal covariance matrix (i.e. the time samples are con-
sidered independent) the classification errors reported by [2] were up to 35% for
similar keys. Since the power of the attack strongly depends on the implementa-
tion and the measurement noise, we also reproduced the experiments for a fully
multivariate Gaussian noise model (i.e. for full covariance matrices) for compar-
ison purposes. The samples were selected as the ones where maximal variance
occurred. The minimal distance between successive samples was chosen to be
equal to the clock cycle. For 42 time samples , the average classification suc-
cess was 91.8%, which is already considerable. However, note that this approach
requires to choose a particular distance between the samples a priori, which af-
fects the performances considerably. For example here, a distance of half the
clock cycle leeds to an average classification error of only 80.5%.

A similar loss of performance is observed when choosing too few samples to
construct the multivariate noise model, but when too many samples are taken,
the model reliability might be questionable. Indeed, when the dimension of the
data space increases, the number of observations to reliability estimate the pa-
rameters needs to increase as well. In the case of standard TA with a 42 points
of interest, estimating the mean and the covariance matrix of the multivariate
Gaussian noise model requires to fit M (M + 3)/2 = 945 parameters. However,
there is only a limited number of measurements (or traces), typically few hun-
dreds. The number of constraints increases linearly with the dimension M. There
are thus only very few measurements to estimate each model parameter.

0.4 0.4

0.3 0.3f
< 02 < 0.2
0.1r 0.1f
ol i
0 20 40 60 80 100 0 2 4 6 8 10
i i
(a) Eigenvalues. (b) Largest eigenvalues.

Fig. 1. Eigenvalues in descending order for RC4.

-

4
©

o
o

o
3

o
o

o
>

Average classification rate
o o
® &

o
N

o
e

o

8 10 12 14

2 4 6
Number of components

Fig. 2. Average classification rate for RC4 as a function of the number of components.

Again, an important advantage of PSTA over TA is that the number of rele-
vant features can be inferred from the eigenvalues. Only the significant ones need
to be retained; the remaining ones are thought of as being noise. Clearly, from
Figure 1, it can be observed that only the first two components are important,
and indeed, the average correct classification rate for two components is already
88.7% (see Figure 2). The next few components only slightly increase the power
of the attack. Furthermore, in the 7-dimensional principal subspace of the traces
only 70 parameters need to be estimated (as opposed to 945), while the number
of data is the same. The model parameters are thus expected to be more reliably
estimated. Note also that a minimal distance between the features needs not to
be chosen in the case of subspace TA. As a matter of fact, the principal compo-
nents are a weighted sum of many time samples, the weights being determined
as the ones minimizing the loss of variance in the data.

counter

Y

PRNG

\ D 4

v

Fig. 3. Simplified view of one round in AES Rijndael. The counter feeds a particular
sequence of messages to the device. The PRNG produces random message sequences.
K is the encryption key, S denotes an s-box and D is the diffusion layer of the round.

4.2 AES Rijndael

Template attacks are usually applied to stream ciphers, key scheduling algo-
rithms and pseudo-random number generators. This is motivated by the fact
that such primitives are difficult to target with standard side-channel attacks
like the DPA, since the attacker can only observe a single use of the key. How-
ever, in general, one could apply template attacks to any kind of cryptographic
primitive in order to take advantage of a more efficient information extraction
from side-channel observations. For example, in this section we show that an
adaptation of subspace based TAs can be applied to FPGA implementations of
block ciphers. Such a context is practically interesting since it allows to eval-
uate how the construction of templates may be affected by (large) amounts of
algorithmic noise. It also yields particular constraints since the objective is to
characterize only a part of the implemented design.

For illustration purposes, let us observe the simplified block cipher of Fig-
ure 3, where only one round is represented. In this picture, let us also assume
that we want to build templates for the key bits entering the first (upper) substi-
tution box S. Clearly, if we only want to identify the power consumption patterns
of this S-box (more specifically, we want to identify the dark grey computations
in the scheme, before the application of a diffusion layer), it is important to
randomize all the other points in the implementation. They will then contribute
to the overall leakage as random noise source. That is, all the inputs to the
other S-boxes should be feed with a random number generator. Therefore, we
will construct our templates according to the following procedure:

1. Select the target key bits in the implementation.
2. For each key class candidate:

— Feed the S-box corresponding to these target key bits with the same
deterministic sequence of plaintexts (e.g. a counter, typically).

— Feed the other S-boxes in the scheme with random inputs?.
— Build the templates from the measurement of these computations.

An important feature of this process is that each key candidate will be char-
acterized by a number of encryptions. This is because every value in the counter
will give rise to a computation that identifies these candidates. As a matter of
fact, this will allow us to evaluate the efficiency of our template attack, by check-
ing the number of encryptions required to reach a successful classification and
therefore to compare our results with previous attacks against similar implemen-
tations. In practice, we targeted an FPGA implementation of the AES Rijndael
[11]. Basically, we selected a loop architecture with only one round implemented
in the circuit. The key scheduling was not implemented on-the-fly, but executed
once, before the execution of our encryptions. However, note that the possible
implementation of an on-the-fly key scheduling would not affect the construction
of the templates as long as the key is fixed and therefore, once initialized, the
key scheduling does not lead to any switching activity anymore.

In the experiments, 10 different keys were considered. For each one, 500 traces
were used to estimate the model parameters and 500 to validate the resulting
models. The number of samples per trace is equal to 500,000. Figure 4 shows
the eigenvalues for AES Rijndael. Again, it can be observed that most of the
variance in the data can be summarized with relatively few components. For
example, with 20 components and for 128 encrypted messages the average clas-
sification success is equal to 86.7% (see Figure 5). Compared to the results with
RC4, a higher number of components is necessary for a comparable classification
accuracy. This result can be explained by the fact that the power traces are here
much noisier (due to the parallel hardware implementation).

Although, there are relatively few significant components needed with re-
spect to the number of encrypted messages, it is important to realize that it
does not mean that the information in most of them is discarded. Indeed, in
PSTAs, the PCA-step seeks of the optimal projection in the feature space. Each
component corresponds thus to a weighted sum of a possibly high number of
time samples. Therefore, the information leakage due to a possibly high num-
ber of encrypted messages is summarized in a single component. Figure 5 shows
the average correct classification rate as a function of the number of retained
components and the number of messages. As expected, when the number of en-
cryptions decreases, the performances drops. This is due to the fact that there
is less information leakage available. Similarly, when the number of components
is small, there is only a poor capacity to classify correctly, as too many relevant
features have been discarded. When the number of messages and the number of
components increases the average correct classification rate rapidly increases.

4 Random inputs are used not only when constructing the templates, but also when
evaluating the performance of the attack. Therefore, this set up mimics a device
with unknown inputs for the other S-boxes as desired. Note that a convenient way
to generate these random inputs is to use the feedback from the block cipher outputs.

6X 10 6X 10
5 5
4 4
473 473
2 2
1 1
0 L 0
0 50 100 150 200 250 0 5 10 15 20 25 30

(a) Eigenvalues. (b) Largest eigenvalues.

Fig. 4. Eigenvalues in descending order for AES Rijndael.

Average correct classification rate

50

Number of components Number of messages

Fig. 5. Average correct classification rate for AES, as a function of the number of
encrypted messages and the number of retained components.

Compared to recent correlation-based power analysis attacks of AES Rijn-
dael (also on FPGAs), the number of message required to recover the correct
key bytes is much smaller. The factor of proportionality ranges from 2 to 5 de-
pending on the fact that the attack uses trace averaging [10] or not [9]. Note also
that correlation attacks require in general to carefully preprocess the traces, for
example using several filters. By contrast, PSTA is much more practical as it
exploits the information in the raw data directly and does not require to adjust
any tuning parameters, but the number of components to retain.

5 Conclusion

In this work, we introduced principal subspace template attacks and showed that
they can be successfully applied to both stream and block ciphers. Preprocessing
the leakage traces beforehand by PCA allows avoiding the practical issues of or-
dinary template attacks. Principal subspace template attacks are motivated by
the fact that template attacks consider the time instants having a great variabil-
ity as being important to discriminate. If this assumption is correct, then PCA
is the optimal (linear) transformation to identify the most relevant features. Be-
sides, the eigenvalues provide a systematic rule for determining how many and
which features should be selected to mount a powerful attack. Finally, it is also
important to realize that the main difference between both attacks resides in the
way they extract information from traces. In template attacks M of the N sam-
ples are used to mount the noise model, the selection being based on heuristics,
while in principal subspace template attacks M linear combinations (preserving
maximal variance) of these N samples are used. Note finally that PCA opti-
mizes the inter-class variances without considering the intra-class variances. It
is therefore not an optimal tool and still relies on heuristics that have to be
experimentally confirmed (as in this work) and could be theoretically improved.

References

1. Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis
with a leakage model. In Marc Joye and Jean-Jacques Quisquater, editors, CHES,
volume 3156 of Lecture Notes in Computer Science, pages 16—29. Springer, 2004.

2. Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In Burton S.
Kaliski Jr., Cetin Kaya Kog, and Christof Paar, editors, 4th International Work-
shop on Cryptographic Hardware and Embedded Systems (CHES), volume 2523 of
Lecture Notes in Computer Science, 13-28. Springer, 2002.

3. B. Efron and R.J. Tibshirani. An introduction to the Bootstrap. Chapman and
Hall, London, 1993.

4. K. Fukunaga. Introduction to Statistical Pattern Recognition. Elsevier, NY, 1990.

1. T. Jolliffe. Principal Component Analysis. Springer-Verlag, New York, 1986.

6. Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In Neal Koblitz, editor, 16th Annual International Cryptology
Conference (CRYPTO), volume 1109 of Lecture Notes in Computer Science, 104—
113. Springer, 1996.

o

10.

11.

12.

Microship, PIC16F877 datasheet, www.microchip.com.

Christian Rechberger and Elisabeth Oswald. Practical template attacks. In
Chae Hoon Lim and Moti Yung, editors, 5th International Workshop on Infor-
mation Security Applications (WISA), volume 3325 of Lecture Notes in Computer
Science, 440-456. Springer, 2004.

F.-X. Standaert, S.B. Ors, and B. Preneel. Power analysis of an FPGA implemen-
tation of Rijndael: Is pipelining a DPA countermeasure? In Marc Joye and Jean-
Jacques Quisquater, editors, 6th International Workshop Cryptographic Hardware
and Embedded Systems (CHES), volume 3156 of Lecture Notes in Computer Sci-
ence, 30—44. Springer, 2004.

F.-X. Standaert, E. Peeters, F. Macé, and J.-J. Quisquater. Updates on the security
of FPGAs against power analysis attacks. In proceedings of ARC 2006, Lecture
Notes in Computer Science, vol. 3985, pp. 335-346, 2006.

F.-X. Standaert, G. Rouvroy, J.-J. Quisquater, and J.-D. Legat. Efficient imple-
mentation of Rijndael encryption in reconfigurable hardware: Improvements and
design tradeoffs. In Colin D. Walter, Cetin Kaya Kog, and Christof Paar, edi-
tors, 5th International Workshop Cryptographic Hardware and Embedded Systems,
volume 2779 of Lecture Notes in Computer Science, 334-350. Springer, 2003.

M. Turk and A.Pentland. Eigenfaces for recognition. Journal of Cognitive Neuro-
science, 3(1):71-86, 1991.

A Illustration of PCA

An illustration of PCA is shown Figure 6. The data is drawn from a 2-dimensional
Gaussian distribution. The two principal directions vy and vy are shown by the
solid lines. The length of the lines is proportional to the variance of the projected
data onto the corresponding direction. If we remove the second dimension (after
rotation) and describe the data only by the first one, then we will minimize the
loss of information (i.e., loss of variance) due to this new representation.

-4

Fig. 6. Illustration of principal component analysis (PCA).

Exemplary leakage traces

0.121 q

0.1 q

0.08 l

~=70.06

0.04

Fig. 7. Example of a RC4 power trace.

0.16

0.14H

0.12H

Zo
x
o
o,

Fig. 8. Example of an AES Rijndael power trace.

