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Abstract. Efficient cryptographic implementations are a fundamental
factor in the achievement and dissemination of new computerized ap-
plications. In some recent environments with (very) limited resources
such as smart cards, sensor networks or RFID tags, standard algorithms
may not be completely adapted.Consequently, the design of new solu-
tions for low-cost cryptography is sometimes necessary and is at least
an interesting research direction. In this context, stream ciphers are usu-
ally believed to be an efficient alternative to block ciphers, because of a
lower hardware (or even software) implementation cost. The eSTREAM
research initiative was consequently established in order to investigate
the possibility of building secure and efficient stream ciphers. Among a
large number of submitted candidates, the project recently (September
2006) narrowed the “hardware profiled” stream ciphers to four focused
candidates, namely Trivium, Grain-128, MICKEY-128 2.0 and Phelix.
In this paper, we evaluate the hardware performance of these algorithms
in the reconfigurable hardware Xilinx Virtex-II devices. Based on our
implementations (that mainly confirm previous results), we discuss the
respective interest of the focused candidates and suggest certain guide-
lines for their comparison.

1 Introduction

Stream ciphers are an important class of symmetric encryption algorithms. They
contain internal states that vary with time and generate pseudo-random bit se-
quences, usually denoted as the keystream. The keystream is then bitwise XORed
with a message in order to emulate the one-time-pad. By contrast, block ciphers
tend to simultaneously encrypt/decrypt blocks of bits and act as a pseudo-
random permutation of a fixed size, parametrized by a secret key. Although they
received less attention than standard block ciphers in the recent years, stream
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ciphers are more appropriate in certain contexts, e.g. where buffering is limited
or when characters must be individually processed. Another interesting property
is that the keystream can be generated prior to encryption and decryption when
it is independent of the plaintext/ciphertext. In addition, it is also generally as-
sumed that stream ciphers have a lower implementation cost and therefore are a
sound solution for very constrained environments. Due to the proliferation of ap-
plications requiring low-cost cryptographic algorithms, e.g. smart cards, sensor
networks or RFID tags, they appear as an interesting research direction1.

In this context, the eSTREAM initiative [20] was launched as an effort to
identify new stream ciphers that might be considered for widespread adoption.
Since most known (old) stream ciphers have been the target of (more or less
realistic) cryptanalytic attacks, a most important objective of the project was the
design of a secure cipher and the derivation of sound (easily checkable) security
criteria. As a reply to the eSTREAM call-for-papers, numerous algorithms have
been submitted. They have been divided into three categories, namely software
profiled, hardware profiled or suitable for both. Although the security evaluation
of the different candidates is still running, a selection of focused candidates
was posted on the ECRYPT page in September 2006. As for the Advanced
Encryption Standard process, an important criteria for the discrimination of the
remaining candidates is the performance evaluation.

In this paper, we consequently investigated the performances of the four ci-
phers selected as Phase 2 Focus Candidate for Hardware Profile, namely Grain-
128 [15], Trivium [5], Mickey-128 2.0 [3] and Phelix [21]. The different ciphers
will be shortly described in Section 2. Section 3 details our design methodology,
our target platform for the evaluation as well as our architectures for the differ-
ent ciphers. The implementation results are summarized in Section 4, together
with a comparison/discussion between different stream and block ciphers from a
hardware performance point of view and some guidelines for the discrimination
of the four eSTREAM candidates. Finally, our conclusions are in Section 5.

2 Ciphers Description

In general, stream ciphers consist of two phases: an initialization phase in which
the initial state of the cipher is derived from the key and initial vector (IV)
and a generation phase in which the state is repeatedly updated and used to
generate the keystream (e.g. via some non-linear function). In the next section
a brief functional description of the different eSTREAM ciphers we consider in
this paper will be given. For a more insight view of those ciphers, please refer to
the original papers [2–5, 14, 15, 21].

1 Note that the division stream cipher vs. block cipher may appear somewhat arbitrary
since a block cipher can be turned into a stream cipher if used in Output Feedback
Mode or Cipher Feedback Mode.



2.1 Trivium

Trivium is a synchronous stream cipher designed to provide a flexible trade-off
between speed and gate count. It has one of the simplest architecture amongst
the eSTREAM candidates and is consequently particularly easy to implement.
Trivium supports an 80-bit secret key and an 80-bit IV. It generates up to 264 bits
of keystream. Trivium’s 288-bit internal state may be seen as a concatenation of
three shift registers of different lengths. The state is updated using an iterative
process which extracts the values of 15 specific state bits and uses them to
both update 3 bits of the state and compute 1 bit of keystream. The state is
then updated and the process is repeated until the requested N ≤ 264 bits of
keystream have been generated. To initialize the cipher, the key and IV are
written into two of the shift registers and the remaining bits are set to a fixed
pattern of zeros and ones. The state is then updated over 4 full cycles (meaning
4 × 288 updates), in the same way as explained above, but without generating
keystream bits. This initial step guarantees that every bit of the internal state
depends on every bit of the key and of the IV in a complex nonlinear way.

2.2 Grain-128

Grain is a synchronous stream cipher targeted for hardware environments where
gate count, power consumption and memory are limited. It supports a key size
of 128 bits and IV size of 96 bits. Grain’s 256-bit internal state consists of a
128-bit linear feedback shift register (LFSR) and a 128-bit non-linear feedback
shift register (NFSR). The state is updated thanks to a nonlinear filter function
that takes two inputs from the NFSR and seven from the LFSR. The NFSR
is updated with a nonlinear 19-to-1 boolean function and a 1-bit linear input
selected from the LFSR. The LFSR is updated with a 6-to-1 linear function.
Before keystream is generated, the cipher must be initialized as follows: the 128-
bit key is loaded into the 128-bit NFSR, the 96-bit IV is loaded into the low
96-bits of the LFSR and the remaining 32 high bits of the LFSR are filled with
ones. The cipher is then clocked 256 times without producing any keystream.
Instead, the output function is fed back and XORed with the input, both to the
NFSR and LFSR update functions.

2.3 MICKEY-128 2.0

Just like Grain-128 and Trivium, MICKEY-128 2.0 is based on shift registers.
The content of the two 160-bit registers defines the state of the cipher. It uses a
fixed length 128-bit key and a variable length initialization vector (ranging from
0 to 128 bits). At startup, the two shift registers are set to “0”. Then, the IV
is used to fill the registers, followed by the key. The cipher is then clocked 160
times before producing any keystream bit. According to the authors, up to 264

bits may be generated using a single (IV,key) pair. The main difference with
Grain-128 and Trivium is that each single bit of the state of MICKEY-128 2.0
is computed, not just shifted (see Sec. 3.4). This allows replacing the use of a
filter function by a simple XOR of two state bits to compute the keystream.



2.4 Phelix

Phelix is an enhanced version of Helix. Although it is presented as a stream
cipher, it looks very much like a block cipher. It operates on a set of nine 32-bit
words at a time, five of which being “active”, that cycle through the Phelix
structure. The basic operations involved are XORs, additions (mod 232) and
rotations, allowing a fast execution on any kind of platform. Phelix works dif-
ferently than the previously mentioned ciphers. For example, the first step is to
derive the working key from the initial key (256-bit) and expand the nonce (128-
bit) to its full size (256-bit). Those expanded words are then used to initialize
and pre-clock the cipher before the keystream generation begins. Another dif-
ference is that the plaintext is incorporated during the computation. This gives
the cipher the additional feature of a message authentication code (MAC) that
can be derived at the cost of a fixed number of additional loops in the structure.

3 Hardware Implementation

3.1 Methodology

Since the selected designs are purposed for low-cost devices, we adopted a bit-
serial style of interface for the inputs and outputs (plaintext, key, IV, ciphertext).
Similarly, throughput was generally sacrificed in the favor of area requirements.
For example, we did not take advantage of the possible parallelization tricks
of Trivium and Grain-128 that would increase the throughput over area ratio.
Consequently, our implementations are not necessarily the most efficient ones
and we mainly aimed to evaluate the possibility to obtain low-cost architectures.

3.2 Targeted Platform

The chosen platform for implementation is a Xilinx Virtex-II FPGA. Such de-
vices embed programmable logic blocks, RAMs and multipliers. In this descrip-
tion, the focus will be set on the logic elements as other resources will not be
used. The slice is the logic unit that is used to evaluate a design’s area require-
ments. Such a slice, depicted in Fig. 1 is made up of 2 Look-Up Tables (LUTs), 2
flip flops and a few additional gates. According to the user’s choice, any of these
LUTs can be configured in one out of three possible ways: RAM16 that act like
a 16-bit RAM storage, SRL16 that implements a 16-bit linear shift register and
LUT that is capable of computing any 4-to-1 boolean function. A more detailed
view of half a slice is given in Fig. 2. An interesting thing to notice is the fast
carry chain that cross the slice. As its designation suggests, it allows the efficient
implementation of carry-propagate adders and, as will be shown, can sometimes
be used to simplify the combinatorial cost of some designs.



Fig. 1. Available Slice Con-
figurations. Fig. 2. Top Half Slice of a Xilinx Virtex-II.

3.3 Trivium and Grain-128

A straightforward approach was adopted to implement Grain and Trivium. We
only used the platform-specific primitives SRL16 for the shift registers that pro-
vide an advantageous area optimization over a platform-independent design. It
is worth noticing that the efficient exploitation of the SRL16 primitives highly
depends on the required tap positions in the stream ciphers. Any time an inter-
mediate value is extracted from the SRL16 primitives, a new LUT has to be used.
As a consequence, a k bit register with k < 16 may occupy a complete SRL16
cell. Note also that this approach has the disadvantage of being less portable.
The rest of our code is directly derived from the algorithm’s specifications. Due
to the simplicity of the operative parts in our designs, the cost of the control
parts (i.e. state machines and counters) is not negligible.

3.4 MICKEY-128 2.0

The description of MICKEY-128 2.0 is somewhat software oriented. We conse-
quently re-wrote the update functions of the R and S registers as follows:

– CLOCK R :
• if i == 0 : r0 ⇐ (r0 · CR) ⊕ r159 ⊕ IR
• if i ∈ [1..159] :

ri ⇐

{

ri−1 ⊕ (ri · CR) ⊕ r159 ⊕ IR if i ∈ RTAPS
ri−1 ⊕ (ri · CR) if i 6∈ RTAPS



– CLOCK S :
• if i == 0 : s0 ⇐ s159 ⊕ IS
• if i ∈ [1..158] :

si ⇐















si−1 ⊕ (si
′ · si+1

′) if FB0i || FB1i == 00
si−1 ⊕ (si

′ · si+1
′) ⊕ ((s159 ⊕ IS) · CS) if FB0i || FB1i == 01

si−1 ⊕ (si
′ · si+1

′) ⊕
(

(s159 ⊕ IS) · CS
)

if FB0i || FB1i == 10
si−1 ⊕ (si

′ · si+1
′) ⊕ s159 ⊕ IS if FB0i || FB1i == 11

where (si
′ ·si−1

′) is a shorthand for ((si ⊕COMP0i) · (si+1⊕COMP1i)).
The tabulated values of COMP0i and COMP1i allow to determine whether
the operator has to apply2.

• if i == 159 : s159 ⇐ s158 ⊕
(

(s159 ⊕ IS) · CS
)

As stated in Sec. 3.2, each LUT is capable of implementing any 4-to-1 boolean
function. Fortunately, the update functions of the R and S registers of MICKEY-
128 2.0 mainly use XOR operations, i.e. one of the additional gate available for
each LUT. By setting either r159 or s159 on the carry-in pad of the slice, elements
ri and si requiring 5 inputs to be computed will fit in half a slice (see emphasized
path in Fig. 2). For the remaining cases of si parameterized by FB0i 6= FB1i

3,
the same trick can be used in order to fill a single slice. In extenso, the first LUT

computes
(

(s159 ⊕ IS) · CS
′
)

; the second, si−1 ⊕ (si
′ · si+1

′) and an additional

XOR is used to complete the evaluation. Each of these bits consumes 2 LUTs.
This implementation can slightly be improved: if a group of 3 si with same

FB0i || FB1i is stacked within 2 slices, the computation of
(

(s159 ⊕ IS) · CS
′
)

–

taking place in one LUT – can be broadcasted to the upper 3 LUTs through the
fast carry-chain. The increase in area for this part is now limited to a third of
the 80 LUTs required to store this part of S. It is tempting to extend this idea
to a group of 7 si stacked within 4 slices. However, this is likely to decrease the
performance by increasing the complexity of the routing as the local availability
of the data is reduced. Note that, as opposed to Trivium and Grain-128, each
single bit of the state has to be computed which prevents benefiting from the
SRL16 configured slices of the device. As a result, MICKEY-128 2.0 is expected
to consume more area in our target FPGAs.

3.5 Phelix

The implementation of Phelix is quite straightforward. The designer is just left
with the choice of the tradeoff best suiting his needs: a “big” design with a
high throughput by implementing the whole Phelix block structure or something
smaller, down to the “tiny” single round. From the previous implemented designs
in [11], the best trade-off seems to be the one based on the H function (half the
block structure) which exhibits the highest throughput over area. Therefore, we

2 For example: let i == 2, then si ⇐ si−1 ⊕ (si · si+1) ⊕
(

(s159 ⊕ IS) · CS
)

.
3 About half the length of the register S; that is around 80 bits.



selected this configuration. In order to implement the buffer storing Z
i−1

4 to Z
i−4

4 ,
the use of SRL16-configured LUTs again allows reducing the required space from
64 slices (128 registers) to 16 slices. In addition, the 512 memory points required
to remember the expanded key and nonce words can be efficiently stored in
LUTs configured as RAM (RAM16). This consumes 32 LUTs, that is 16 slices.
Despite these efforts, the implementation seems to stay a little more expensive
in area than presented in [11], which may be caused by a different interface.

4 Implementation Results

The four selected ciphers were implemented in VHDL. Synthesis and Place &
Route were achieved on Xilinx ISE 8.2i. The selected device is a Xilinx Virtex-
II XC2V6000-4ff1152. Table 1 summarizes our results whereas table 2 reminds
some results of previous selected works.

Table 1. Implementation Results.

Cipher Device Slices Frequency Throughput Thr./Area
(MHz) (Mbps) (Mbps/slice)

Trivium Virtex-II 41 207 207 5.05

Grain-128 Virtex-II 48 181 181 3.77

MICKEY-128 2.0 Virtex-II 190 200 200 1.05

Phelix Virtex-II 1213 62.5 1000 0.82

Compared to the previous implementations of the same ciphers, the situation
has not changed much. The specifications of Trivium and Phelix are the same
as for eSTREAM Phase 1 and consequently, they exhibit quite similar figures
compared to the results in Table 2. In the case of Grain-128, the revision that,
amongst others, has grown the state from 2×80-bit to 2×128-bit goes unnoticed
in terms of FPGA hardware cost. Regarding MICKEY-128 2.0, the updated
version has slightly increased its cost but keeps it reasonable. It should be no-
ticed that the gap between MICKEY-128 2.0 on the one hand and Trivium and
Grain-128 on the other hand could be reduced if ASIC implementations were
considered. Indeed, MICKEY-128 2.0 does not benefit from SRL16-configured
slices that Trivium and Grain-128 use abundantly.

Compared to the implementations of other stream ciphers, a number of addi-
tional observations can be mentioned. For illustration purposes, we also reported
some implementation results for the AES Rijndael block cipher. Most interest-
ingly, these performance evaluations highlight that Trivium and Grain-128 have
extremely reduced implementation complexities that could be compared, e.g.

to those of A5/1. MICKEY-128 2.0 has a slightly higher hardware cost in our
target Xilinx FPGA. As already mentioned, this trend would probably be tem-
pered if ASIC designs were considered. Finally, it seems that the performances
of Phelix are better compared to those of a block cipher, as its structure also



Table 2. Previous Block and Stream Ciphers Implementations.

Cipher Device Slices Frequency Throughput Thr./Area
(MHz) (Mbps) (Mbps/slice)

Stream Ciphers

A5/1 [9] Virtex-II 32 – 188.3 5.88

Trivium [11] Spartan-II 40 – 102 2.55

Grain [11] Spartan-II 48 – 105 2.19

RC4 [9]* Virtex-II 140 – 120.8 0.86*

MICKEY-128 [17] Virtex-E 167 170 170 1.02

Phelix [11] Spartan-II 1077 – 750 0.7

Block Ciphers

AES [10]* Spartan-II 124 – 2.2 0.02*

AES [19]* Virtex-II 146 123 358 2.45*

AES [22] Virtex-II 1780 77.91 1000 0.56

suggests. For example, the AES architecture in [22] iterates over a 128-bit width
loop structure while the one in [19] uses a 32-bit datapath. Phelix ranges some-
where close to these results. Note that these observations have to be considered
as general intuitions rather than fair comparisons since they consider different
FPGA technologies: more recent FPGAs have higher work frequencies and thus
throughput. In addition, the hardware efficiency (i.e. throughput/area ratio) of
the *-marked implementations is not meaningful since they consumes FPGA
RAM blocks. Finally, the hardware cost can only be compared if the respective
implementation efficiencies (e.g. measured with the throughput/area ratio) are
somewhat comparable. As a matter of fact, it is always possible to reduce the
implementation cost, by considering smaller datapaths (e.g. [10] uses an 8-bit
datapath for the AES) at the cost of a reduced throughput.

To strengthen these observations, let us finally mention that Trivium and
Grain-128 offer the best opportunities to improve their throughput by paral-
lelization techniques. In the case of Trivium (resp. Grain-128), any state bit is
not used for at least 64 (resp. 16) iterations after it has been modified. This way,
up to 64 (resp. 16) iterations can be computed at once, at some additional com-
binatorial cost. For example, [13] shows that a 64-bit Trivium is 54% larger and
has a maximum clock frequency that is 10% lower than a 1-bit implementation.

5 Conclusion

This paper reports updated results on the FPGA implementations of the eS-
TREAM Phase-2 Focus Candidates with Hardware Profile. Compared to Phase
1, only the specifications of Grain-128 and MICKEY-128 2.0 have been slightly
modified. We re-implemented Trivium and Phelix for comparison purposes. These
results suggest that Trivium and Grain-128 have the smallest complexities for
a hardware implementation. Since these ciphers also provide the best opportu-
nities to improve their throughput by exploiting parallelization techniques, the



strongest cryptanalytic efforts should be concentrated on these ciphers. Addi-
tional efforts could also be devoted to an ASIC implementation of MICKEY-
128 2.0 since its structure is not perfectly suitable for FPGA implementations.
Finally, Phelix appears as an interesting alternative among the implemented
ciphers, due to its significantly different design principles.
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