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Abstract. This paper presents an updated implementation of the Ad-
vanced Encryption Standard (AES) on the recent Xilinx Virtex-5 FP-
GAs. We show how a modified slice structure in these reconfigurable
hardware devices results in significant improvement of the design effi-
ciency. In particular, a single substitution box of the AES can fit in
8 FPGA slices. We combine these technological changes with a sound in-
tertwining of the round and key round functionalities in order to produce
encryption and decryption architectures that perfectly fit with the Digi-
tal Cinema Initiative specifications. More generally, our implementations
are convenient for any application requiring Gbps-range throughput.

1 Introduction

Reprogrammable hardware devices are highly attractive options for the imple-
mentation of encryption algorithms. During the selection process of the AES [1],
an important criterion was the efficiency of the cipher in different platforms,
including FPGAs. Since 2001, various implementations have consequently been
proposed, exploring the different possible design tradeoffs ranging from the high-
est throughput to the smallest area [2]. Each of those implementations usually
focuses on a particular understanding of “efficiency”. Furthermore, every time
a new hardware platform is introduced, a new implementation is to be made in
order to comply with and take advantage of its specificities.

Therefore, this paper aims to provide an update on the performances of the
AES, taking the new Xilinx’s Virtex-5 FPGAs as evaluation devices. Our results
show how the modified slice structure (i.e. the 6-input Look-Up-Tables combined
with multiplexors) allows an efficient implementation of the AES substitution
box (S-box). We include these technological advances in a state-of-the art archi-
tecture for an encryption module. The resulting IP core typically complies with
the Digital Cinema Initiative specifications [3]: the presented encryption and de-
cryption designs can be used to decrypt the incoming compressed data stream in
a digital cinema server and re-encrypt the uncompressed data between the server
and the projector. More generally, it is convenient for any application requiring
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Gbps-range throughput and compares positively with most recently published
FPGA implementations of the AES. Although the improvements described in
this paper straightforwardly derive from technological advances, we believe they
are of interest for the cryptographic community in order to keep state-of-the-art
implementation results available and detailed in the public literature.

The rest of the paper is structured as follows. Section 2 briefly reminds how
the AES cipher processes the data. Then, we discuss the specificities of our
target platform before fully describing the architecture developed in Section 4.
The implementation results are summarized in Section 5, together with some
selected results from the literature. Finally, our conclusions are in Section 6.

2 Cipher Description

The AES is a substitution permutation network (SPN) allowing the encryp-
tion/decryption of data by blocks of 128-bits and supporting key lengths of 128,
192 and 256 bits. In the following, we focus on the 128-bit key version. Its inter-
nal state, usually represented as a 4× 4 matrix of bytes, is updated by iterating
through the round structure (10, 12 or 14 times according to the key size). The
round is described as four different byte-oriented transformations.

First, SubBytes introduces the non-linearity by taking, for each byte, the
modular inverse in GF(28) and then applying an affine transformation. Instead
of computing distinctly these two steps, the full transformation is achieved by
passing each byte through an S-box (Figure 1). Then ShiftRows modifies the
state. It simply consists of a circular left shift of the state’s rows by 0, 1, 2 and 3
bytes respectively (Figure 2). Third, MixColumns applies a linear transforma-
tion to the state’s columns (Figure 3). Each of them is regarded as a polynomial
and is multiplied by a fixed polynomial c(x) = 3 ·x3 +x2 +x+2 (mod x4 +1).
Finally, the AddRoundKey transform mixes the key with the state. As each
subkey has the same size as the state, the combination is performed by a simple
bitwise XOR between subkey bytes and their corresponding state bytes (Fig-
ure 4). A first key addition is performed before entering the first round, and the
last round omits the MixColumns transformation.

Prior to the en/de-cryption process, the subkeys have to be generated.

The key schedule takes the main key K0 and expand it as shown in Fig. 5
for the case of a 128-bit key, where SubWord applies the S-box to the 32-bit
input word, RotWord rotates the word one byte to the left and RC(i) is an
8-bit constant associated to each round i 1.
1 In encryption mode, this can easily be performed “on-the-fly”, i.e. in parallel to

the rounds execution in order to get the subkey at the exact time it is needed. In
decryption mode, the round keys generally have to be derived prior to the decipher.
Solutions allowing “on-the-fly” derivation of the decryption subkeys require specific
features (i.e. knowledge of a decryption key that corresponds to the last encryption
subkeys) and hardware overhead. Therefore, these are not considered in this paper.
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Fig. 1. SubBytes Transformation. Fig. 2. ShiftRows Transformation.

Fig. 3. MixColumns Transformation. Fig. 4. AddRoundKey Transform

Fig. 5. AES 128-bit Key Expansion Round.
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Let us finally mention that the decryption process slightly differs from the
encryption one. In order to decipher data blocks, the inverse transformations
have to be applied to the state. These operations are respectively called Inv-
Transform, except for the AddRounKey as it is its own inverse, and are applied
in the same order as described above. This may result in a different performance
of the AES in encryption and decryption. Regarding the key schedule, the oper-
ations remain the same as for encryption but the subkeys have to be introduced
in reverse order. For more details, we refer to [1].

3 Target Platform

The chosen platform for implementation is a Xilinx Virtex-5 FPGA. Nowadays,
such devices embed programmable logic blocks, RAM memories and multipli-
ers2. Compared to the early reconfigurable devices, these features allow recent
FPGAs to provide interesting solutions for a wide range of applications. In this
description, the focus will be set on logic elements as other resources will not
be used. In Xilinx FPGAs, the slice is the logic unit that is used to evaluate
a design’s area requirement. The Virtex-5 platform exhibits two kinds of slices.
Each of these contains 4 Look-Up Tables (LUTs), 4 flips-flops and some addi-
tional gates. These elements, defining the “basic” slice (sliceL), provide the user
with logic, arithmetic and ROM functions. In addition, another version of the
slice (sliceM) adds the capability to be configured as a distributed RAM or as a
shift register. Those enhanced slices represent about 25% of the total amount of
available slices. Figure 6 shows the difference between sliceLs and sliceMs.

4 Architecture

A lot of architectures for the AES have been presented in the open literature.
Each of those target a specific application and accordingly, various tradeoffs of
pipelining, unrolling, datapath width and S-boxes designs have been presented.
These contributions do generally agree that the most critical part in an AES de-
sign is the S-box. To our knowledge, three different methods have been exploited
in order to achieve efficient implementations:

Logic. In this first proposal, one 256×8-bit S-box is required for each byte
of the state. Implementing this as a large multiplexor on platforms where
LUTs provide 4-to-1 computation and by taking advantage of special FPGA
configurations (i.e. MuxF5s and MuxF6s), led the authors of [4] to consume
144 LUTs for one S-box. In the case of a full length datapath (128-bit), 2304
LUTs (144×16) are required to perform the whole substitution. This method
results in a logic depth of 2 slices. Those two levels can be advantageously
pipelined to prevent frequency reduction.

2 Additionally, certain devices also embed microprocessors (PowerPC).
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Fig. 6. Virtex-5 mixed view of top-half sliceL and bottom-half sliceM.
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Algorithmic. Another approach to compute SubBytes is to directly imple-
ment the multiplicative inverse and affine transforms. In order to make it
more efficient, Rijmen suggested in [5] to move computations from GF(28)
to the composite field GF((24)2). The main advantage relies on the reduced
size of the inversion table: 24 × 4 instead of 28 × 8. However, some logic
is required to implement transformations to and from such composite field.
This type of implementation has been exploited in [6, 7] for example.

RAM. Embedded BlockRAMs on FPGA platforms can also be used to store
the S-boxes. Such an approach achieves high-throughput performances in [8].
If enough of these memories are available, another idea is to combine Sub-
Byte and MixColumns in a single memory table, as sometimes proposed
in software implementations. Examples of such designs are in [9, 10]. De-
pending on the size and availability of RAM blocks, these solutions may be
convenient in practice for recent FPGA devices.

In our context, the choice is straightforward. Due to the technology evolution, a
256×8-bit S-box fits in 32 LUTs. Using a similar approach as in [4], four LUTs
make four 6-to-1 tables from which the correct output is chosen thanks to the
F7MUXs and F8MUX of the slice. It allows packing a 256×1-bit table in four
LUTs, that is a single slice. This solution has the significant advantage of both
reducing the area requirements in LUTs and performing the S-box computation
in a single clock cycle, thus reducing the latency.

The architecture developed for 128-bit key encryption is in Figure 7. It has
a 128-bit datapath for both data and keys. The state of the cipher iterates over
a single round structure. The ShiftRows operation is not shown on the figure
below as it simply consists in routing resources.

As far as the key expansion is concerned and when dealing with large amount
of data, like in the Digital Cinema context, computing all subkeys prior to en/de-
cryption seems a better alternative than an “on-the-fly” key schedule. Indeed, the
overhead due to a master key change quickly vanishes as the number of messages
using this same key increases. It also allows us to reduce the area requirements
of the complete design. As the key schedule and the encryption module use
the same S-boxes, these are shared in our architecture. Multiplexors allow the
S-box inputs to change between the state and the subkey. These multiplexors
do not increase the implementation cost as they are packed in LUTs together
with the key addition. The remaining of the subkeys’computation proceeds as
explained in Section 2. Each subkey is written in a RAM configured sliceM.
They are brought back when needed for en/de-cryption. We note that the key
schedule must be performed before decryption takes place anyway, as the subkeys
have to be applied in reverse order. Also, the S-Boxes sharing does not hold for
the decryption architecture. Indeed, the S-boxes implementing SubBytes for
the key schedule can not be reused for deciphering. This is because decryption
involves the InvSubBytes operation that do not yield the same S-boxes.
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Fig. 7. AES Encryption Architecture.
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This architecture perfectly suits the needs of ECB and Counter modes of
operations. It could also be tuned to handle the CBC mode, at the cost of
a reduced efficiency. Indeed, as the plaintext block is to be XORed with the
previous ciphertext before being encrypted, the four pipeline stages of the round
do not allow encryption of four plaintext blocks at the same time. Note that
in the case of CBC decryption, this restriction does not hold as this additional
XOR is performed after looping through the round.

Although the focus of this paper is the implementation of an AES en/de-
cryption module on a Virtex-5, we also investigated this IP core in Virtex-4
and Spartan-3 FPGAs, for illustration/comparisons purposes. The architecture
remains the same as the one presented here for the Virtex-5. The only difference
relies on the way S-boxes are implemented. In the case of a Virtex-4, the S-boxes
are made up of BlockRAMs. Each of the blockRAM has a datapath width of
32-bit that allows the output of the S-box to be stored times 0, 1, 2 and 3. That
is, a part of the MixColumns computation is made while passing through the
RAMs. To make things clear, let us consider the combination of SubBytes and
MixColumns in the AES. An output column of this transform equals:

2
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3
775 =

2
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02 03 01 01
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where the bi’s represent the transform output bytes and the ai’s its input bytes.
The bi vector is equivalent to:
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the combination of SubBytes and MixColumns equals:
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In our Virtex-4 implementation, these T tables are stored in RAM and all
what is left to complete the MixColumns transform is a single level of logic
handling the XOR of the four bytes. On Spartan-3 devices, the situation is dif-
ferent since the BlockRAMs do not provide a dedicated latch at their output.
Reproducing the behavior of Virtex-4 requires 24-bits to be stored using the slice
flip-flops which consumes much more area. Since XORing the table outputs with-
out using the slice flip flops causes a reduction of the work frequency, the most
efficient solution is to implement MixColumns and SubBytes independently.

5 Results

The AES designs were described using VHDL. Synthesis and Place & Route
were achieved on Xilinx ISE 9.1i. The selected devices are Xilinx’s Virtex-5,
Virtex-4 and Spartan-3. Table 1 summarizes the results achieved for both the
encryption and decryption (Enc/Dec) modules. Moreover, some previous results
are summarized in Table 2. As it is generally true for any comparison of hard-
ware performances, those results have to be taken with care since they relate to
different FPGA devices. In the Virtex-5 FPGAs, a slice is made up of 4 LUTs
instead of 2 for previous Xilinx devices. In order to allow fair(er) comparison, it
then makes sense to double the figures as if a slice was 2 LUTs. This is taken
into account into the parenthesis of Table 1. Compared to previous devices, the
benefit of Virtex-5 is easily underlined. It corresponds either to the removal of
the blockRAMs from the design on the Virtex-4 or a 50% slice reduction from a
full logic design on Spartan-3 FPGAs. This strongly emphasized the advantage
of technology evolution shifting from 4 to 6 input bits LUTs.

Table 1. Implementation Results: encryption/decryption designs.

Device Slices BRAM Freq. Thr. Thr. / Area
(MHz) (Gbps) (Mbps/slice)

Virtex-5 400 / 550 (800 / 1100) 0 350 4.1 10.2 / 7.4

Virtex-4* 700 / 1220 8 250 2.9 4.1 / 2.3 *

Spartan-3 1800 / 2150 0 150 1.7 0.9 / 0.8

Additional insights on our implementation results can be obtained by looking
at Table 2. Namely, the proposed architectures range among the efficient ones
found out in the literature. Again, these observations have to be considered
as general intuitions rather than fair comparisons since they consider different
FPGA technologies: more recent FPGAs have higher work frequencies and thus
throughput. In addition, the hardware efficiency (i.e. throughput/area ratio) of
the *-marked implementations is not meaningful since they consumes FPGA
RAM blocks. Finally, the hardware cost can only be compared if the respective
implementation efficiencies (e.g. measured with the throughput/area ratio) are
somewhat comparable. As a matter of fact, it is always possible to reduce the
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Table 2. Previous Implementations.

Device Datapath Slices BRAM Freq. Thr. Thr./Area
(MHz) (Gbps) (Mbps/slice)

Spartan-2 [11]* 8 124 2 – 0.002 0.02*

Virtex-2 [10]* 32 146 3 123 0.358 2.45*

Virtex-E [12]* 128 542 10 119 1.45 2.67*

Virtex-E [4] 128 2257 0 169 2.0 0.88

Virtex-2 [13]* 128 387 10 110.16 1.41 3.64*

Virtex-2 [13] 128 1780 0 77.91 1.0 0.56

Virtex-4 [14] 128 18400 0 140 17.9 0.97

Virtex-5 [15] 128 349 0 350 4.1 11.67

implementation cost, by considering smaller datapaths (e.g. [11] uses an 8-bit
datapath for the AES, [10] uses a 32-bit datapath, all the others use 128-bit
architectures) at the cost of a reduced throughput.

In the case of Helion Technology’s implementation [15], the comparison is
more interesting since it relates to the same Virtex-5 platform as ours. At first
sight, their Fast AES Encryption core seems to consume less area than the
proposed architecture. However, the gap can be reduced if we assume that their
core uses an “on-the-fly” key schedule. In such a case, the distributed RAM
used to store subkeys is to be removed from our presented design (along with
its control logic) which allows to earn at least 32 slices. This makes both designs
very close. As a matter of fact, the differences between these cores mainly relate
to different optimization goals. Our was to design encryption and decryption IPs
exploiting a very similar architecture with a key scheduling algorithm executed
prior to the encryption/decryption process. We note that not using the “on-the-
fly” key scheduling for encryption makes sense for power consumption reasons.
If the implementation context does not require frequent key changes, there is no
need to re-compute these keys for every plaintext.

6 Conclusion

This paper reports implementation results of the AES algorithm on the new
Virtex-5 devices. It exhibits the (straightforward but significant) benefits that
can be drawn from the technology evolution within recent FPGAs. In particular
it is shown how the AES substitution box perfectly suits the new Virtex-5 slice
structure using 6-bit LUTs. This enables reducing the cost of a single S-box from
144 down to 32 LUTs ! Compared to 4 input bit LUTs-based designs, this ad-
vantage roughly corresponds to either the removal of blocks of embedded RAM
memory or a slice count reduction of 50%, depending on the design choices.
The proposed architectures range among the most efficient ones published in
the open literature. Their reasonable implementation cost make them a suit-
able solution for a wide range of application requiring Gbps-range throughput,
including digital cinema and network encryption.
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