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Abstract. Given a cryptographic device leaking side-channel informa-
tion, different distinguishers can be considered to turn this information
into a successful key recovery. Such proposals include e.g. Kocher’s orig-
inal DPA, correlation and template attacks. A natural question is there-
fore to determine the most efficient approach. In the last years, vari-
ous experiments have confirmed the effectiveness of side-channel attacks.
Unfortunately, these attacks were generally conducted against different
devices and using different distinguishers. Additionally, the public liter-
ature contains more proofs of concept (e.g. single experiments exhibiting
a key recovery) than sound statistical evaluations using unified criteria.
As a consequence, this paper proposes a fair experimental comparison of
different statistical tests for side-channel attacks. This analysis allows us
to revisit a number of known intuitions and to put forward new ones. It
also provides a methodological contribution to the analysis of physically
observable cryptography. Additionally, we suggest an informal classifi-
cation of side-channel distinguishers that underlines the similarities be-
tween different attacks. We finally describe a new (but highly inspired
from previous ones) statistical test to exploit side-channel leakages.

1 Introduction

Showing the effectiveness of a side-channel attack usually starts with a proof of
concept. An adversary selects a leaking device of his choice and exploits the avail-
able physical information with a distinguisher. Recovering a cryptographic key
(e.g. from a block cipher) is then used to argue that the attack works. But as for
any experimental observation, a proof of concept has to be followed by a sound
statistical analysis. For example, one can compute the number of queries to a
target cryptographic device required to recover a key with high confidence. Even
better, one can compute the success rate or guessing entropy of a side-channel
adversary in function of this number of queries. Various experimental and the-
oretical works describing different types of side-channel attacks can be found in
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the open literature. However, they are generally conducted independently and
therefore are not straightforward to compare. Hence, we believe that a unifying
analysis of actual distinguishers is important to enhance our understanding.

The contribution of this paper is threefold. First, we propose an informal
classification of side-channel distinguishers into two categories, namely partition
and comparison distinguishers. Second, we describe an alternative statistical test
for partitioning attacks based on the sample variance. Most importantly and fol-
lowing the framework in [18], we provide a fair empirical comparison of statistical
tests for univariate side-channel distinguishers against two unprotected software
implementations of the AES Rijndael [5]. It includes Kocher’s original Differen-
tial Power Analysis (DPA) [10], Pearson’s correlation coefficient [2] and template
attacks [3] as well as the recently proposed Mutual Information Analysis (MIA)
[6]. Our results demonstrate the wide variety of flexibility vs. efficiency tradeoffs
that can be obtained from different distinguishers and the effectiveness of tem-
plate attacks when exploiting good leakage models. Additionally, they illustrate
that claims on the efficiency of a given attack highly depend on an adversarial
or implementation context. These results suggest that any new proposal of side-
channel attack should come with a similar evaluation in order to show how these
new proposals behave compared to former attacks. Note that we do not claim the
novelty of our conclusions. As a matter of fact, several works already discussed
similar comparison goals (see e.g. [4, 11]). However, we believe that the approach,
metrics and number of experiments proposed in this paper allow improving the
evaluation of side-channel attacks and pinpointing their limitations.

The rest of the paper is structured as follows. Sections 2 and 3 describe our
target implementations and the side-channel adversaries that will be used in
our comparisons. Section 4 proposes an informal classification for side-channel
distinguishers and details the different statistical tests that we will consider in our
comparisons. It additionally describes a variance-based statistical test for side-
channel attacks. Section 5 defines our evaluation metrics. Section 6 discusses the
limitations and features of our classification and methodology. The description
of our experiments and results are in Section 7 and conclusions are in Section 8.

2 Target implementations

We target two implementations of the AES-128 in two 8-bit RISC-based micro-
controllers. In the first setup, we used a PIC 16F877 running at a frequency
around 4 MHz. In the second setup, we used an Atmel ATmega163 in a smart
card body, clocked at 3.57 MHz. In both cases, our attacks aim to recover the
first 8 bits of the block cipher master key k. We denote this part of the key as
a key class s. The physical leakages were acquired with a digital oscilloscope,
respectively a Tektronix 7140 with a 1 GHz bandwidth running at a 250 MS/s
sampling rate for the PIC and an Agilent Infinium 54832D with a 1GHz band-
width running at a 200 MS/s sampling rate for the Atmel. We note that although
the PIC and Atmel devices seem to be very similar, their leakages are substan-
tially different, as will be confirmed in the following sections.



3 Side-channel adversary

The present analysis aims to compare different statistical tests for side-channel
attacks. But statistical tests are only a part of a side-channel adversary. A fair
comparison between such tests consequently requires that the other parts of
the adversary are identical. Following the descriptions and definitions that are
introduced in [18], it means that all our attacks against a given target device
exploit the same input generation algorithm, the same leakage function and the
same leakage reduction mapping. In addition, in order to illustrate the wide
variety of tradeoffs that can be considered for such adversaries, we used slightly
different settings for our two devices (i.e. PIC and Atmel). Specifically:

– We fed both devices with uniformly distributed random (known) plaintexts.
– We provided the statistical tests with the same sets of leakages, monitored

with two similar measurement setups (i.e. one setup by target device).
– Only univariate side-channel adversaries were considered in our comparison.

• For the PIC device, we used a reduction mapping R that extracts the
leakage samples corresponding to the computation of S(xi ⊕ s) in the
traces (this clock cycle is illustrated in the left part of Figure 1), where
S is the 8-bit substitution box of the AES and xi the first 8 bits of the
plaintext. Then, only the maximum value of this clock cycle was selected.
Hence, to each input plaintext vector xq = [x1, x2, . . . , xq] corresponds a
q-sample leakage vector R(lq) = [R(l1), R(l2), . . . , R(lq)].

• For the Atmel implementation, all the samples corresponding to the
computation of the first AES round were first tested independently in
order to determine the sample giving rise to the best results, for each
statistical test. Then, the actual analysis was only applied to this sample.
Figure 2 illustrates this selection of time samples for two statistical tests
to be defined in the next section, namely the Difference of Means (DoM)
and Pearson’s correlation coefficient. In other words, we used a different
reduction mapping for each of the statistical tests in this case.
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Fig. 1: Left: exemplary PIC power trace and selection of the meaningful samples. Right:
Histogram for the statistical distribution of the electrical noise in the PIC leakages.



Fig. 2: Selection of the meaningful time samples for the Atmel.

We mention that these choices are arbitrary: the only goal is to provide
each statistical test with comparable inputs, for each target device. They also
correspond to different (more or less realistic) attack scenarios. For the PIC
device, we assume that one knows which sample to target: it considerably reduces
the attack’s time and memory complexities. But the selected time sample may
not be optimal for a given attack. For the Atmel, no such assumption is made.

4 Classification of distinguishers

In this section, we propose to informally classify the possible side-channel dis-
tinguishers as partition-based or comparison-based. More specifically:

– In a partition-based attack and for each key class candidate s∗, the adversary
defines a partition of the leakages according to a function of the input plain-
texts and key candidates. We denote such partitions as: P(s∗,vq

s∗), where
v

q
s∗ = V(s∗,xq) are some (key-dependent) values in the implementation that

are targeted by the adversary. For example, the S-box output S(xi ⊕ s∗) is
a usual target. Then, a statistical test is used to check which partition is
the most meaningful with respect to the real physical leakages. We denote
this test as T(P(s∗,vq

s∗), R(lq)). For example, Kocher’s original DPA [10]
partitions the leakages according to one bit in the implementation.

– In comparison-based attacks, the adversary models a part/function of the
actual leakage emitted by the target device, for each key class candidate s∗.
Depending on the attacks, the model can be the approximated probability
density function of a reduced set of leakage samples denoted: M(s∗, R(lq)) =

P̂r[s∗|R(lq)], as when using templates [3]. Or the model is a deterministic
function (e.g. the Hamming weight) of some values in the implementation:
M(s∗,vq

s∗), as in correlation attacks [2]. Then, a statistical test is used to
compare each model M(s∗, .) with the actual leakages. Similarly to partition-
ing attacks, we denote this test as T(M(s∗, .), R(lq)).

We note that the previous classification is purely informal in the sense that it
does not relate to the capabilities of an adversary but to similarities between



the way the different attacks are performed in practice. As the next sections will
underline, it is only purposed to clarify the description of different statistical
tests. As a matter of fact, one can partition according to (or model the leakage
of) both single bits and multiple bits in an implementation. In both partition and
comparison attacks, the expectation is that only the correct key class candidate
will lead to a meaningful partition or good prediction of the actual leakages.
Hence, for the two types of attacks, the knowledge of reasonable assumptions
on the leakages generally improves the efficiency of the resulting key recovery.
With this respect, the choice of the internal value used to build the partitions
or models highly matters too. For example, one could use the AES S-box inputs
xi ⊕ s∗ or outputs S(xi ⊕ s∗) for this purpose. But using the outputs generally
gives rise to better attack results because the of the S-box non-linearity [14].

4.1 Statistical tests for partition distinguishers

In a partition attack, for each key class candidate s∗ the adversary essentially
divides the leakages in several sets and stores them in the vectors p1

s∗ , p2
s∗ ,

. . . , pn
s∗ . These sets are built according to a hypothetical function of the internal

values targeted by the adversary that we denote as H. It directly yields a variable
h

q
s∗ = H(vq

s∗). In general, H can be any surjective function from the target values
space V to a hypothetical leakage space H. Examples of hypothetical leakages
that can be used to partition a 16-element leakage vector R(l16) include:

– a single bit of the target values (i.e. n = 2),

– two bits of the target values (i.e. n = 4),

– the Hamming weight of 4 bits of the target values (i.e. n = 5).

Such partitions are illustrated in Table 1 in which the indices of the R(li) values
correspond to the input plaintexts [x1, . . . , x16]. In a 1-bit partition, the 16 leak-
age values are stored in the vector p1

s∗ if the corresponding hypothetical leakage
(e.g. one bit of S(xi ⊕ s∗)) equals 0 and stored in p2

s∗ otherwise. As a result, we
have one partition per key class candidate s∗ and n vectors pi

s∗ per partition.

p1

s∗
p2

s∗

R(l1) R(l2)
R(l3) R(l5)
R(l4) R(l7)
R(l6) R(l8)
R(l10) R(l9)
R(l12) R(l11)
R(l14) R(l13)
R(l15) R(l16)

p1

s∗
p2

s∗
p3

s∗
p4

s∗

R(l3) R(l1) R(l5) R(l6)
R(l4) R(l2) R(l9) R(l7)
R(l11) R(l10) R(l8) R(l12)
R(l15) R(l14) R(l16) R(l13)

p1

s∗
p2

s∗
p3

s∗
p4

s∗
p5

s∗

R(l5) R(l2) R(l1) R(l3) R(l14)
R(l7) R(l4) R(l6)
R(l9) R(l8) R(l12)
R(l16) R(l10) R(l13)

R(l11)
R(l15)

Table 1: Examples of 1-bit, 2-bit and Hamming weight partitions.



Kocher’s DoM test. The first proposal for checking the relevance of a leakage
partition is the difference of means test that was initially introduced in [10] and
more carefully detailed in [12]. In this proposal and for each key class candidate
s∗, the adversary only considers two vectors from each partition, respectively
denoted as pA

s∗ and pB
s∗ . Applying such a difference of means test simply means

that the adversary computes the difference between the sample means1:

∆s∗ = Ê(pA
s∗) − Ê(pB

s∗) (1)

In single-bit attacks as when using the 1-bit partition in Table 1, the vectors
pA

s∗ and pB
s∗ correspond to the two only columns of the partition. In multiple-bit

attacks as when using the 2-bit partition in Table 1, the vectors pA
s∗ and pB

s∗

either correspond to two columns (out of several ones) in the partition, as in
“all-or-nothing” multiple-bit attacks or they correspond to two combinations of
columns in the partition, as in “generalized” multiple-bit attacks (see [12]). Note
that “all-or-nothing” attacks have the drawback that several leakage samples are
not exploited (i.e. corresponding to the unexploited columns of the partition).
Note also that the best selection of the (combination of) columns requires to
make assumptions about the leakages. For example, “all-or-nothing” attacks
implicitly assume that the behavior of several bits is the same so that “all-or-
nothing” partitions yield the largest ∆s. As a result of the attack, the adversary
obtains a vector gq with the key candidates rated according to the test result,
the most likely key corresponding to the highest absolute value for ∆s∗ .

MIA. Another proposal for exploiting a leakage partition in a more generic
way than using a difference of means test has been described in [6]. It notably
aims to exploit all the samples in a multiple-bit partition, without making any
assumption on the leakage model. For this purpose, the adversary attempts to
approximate the mutual information between the hypothetical leakages h

q
s∗ and

the actual leakages R(lq). For each vector pi
s∗ , he first builds histograms in order

to evaluate the joint distribution P̂r[R(Lq),H
q
s∗ ] and the marginal distributions

P̂r[R(Lq)] and P̂r[Hq
s∗ ], for each key class candidate. Then, he estimates:

Î(R(Lq);H
q
s∗) = Ĥ[R(Lq)] + Ĥ(Hq

s∗) − Ĥ[R(Lq),H
q
s∗ ]

As in a difference of means test, the adversary obtains a vector gq containing
the key candidates rated according to the test result, the most likely key corre-
sponding to the largest value for the mutual information.

4.2 Statistical tests for comparison distinguishers

Pearson’s correlation coefficient. In a correlation attack, the adversary es-
sentially predicts a part/function of the leakage in the target device, for each key
class candidate s∗. As a result, he obtains q-element vectors m

q
s∗ = M(s∗,vq

s∗).

1 In statistical textbooks, Difference of Means tests usually refer to more complex
hypothesis tests. We use this simple version for illustration because it was extensively
used in the cryptographic hardware community.



For example, if a device is known to follow the Hamming weight leakage model,
the vector typically contains the Hamming weights of the values S(xi⊕s∗). Since
the reduced leakage vector R(lq) also contains q elements, the test can estimate
the correlation between these two vectors, e.g. using Pearson’s coefficient:

ρs∗ =

∑q

i=1(R(li) − Ê(R(lq))) · (m
i
s∗ − Ê(mq

s∗))
√

∑q

i=1(R(li) − Ê(R(lq)))2 ·
∑q

i=1(m
i
s∗ − Ê(mq

s∗))
2

(2)

Again, the adversary obtains a vector gq with the key candidates rated according
to the test result, the most likely key corresponding to the highest correlation.

Bayesian analysis. In template attacks, the adversary takes advantage of a
probabilistic model for the leakages. He exploits an estimation of the conditional
probabilities Pr[R(lq)|s]. From such an estimation, a straightforward strategy is
to apply Bayes theorem and to select the keys according to their likelihood:

λs∗ = P̂r[s∗|R(lq)] (3)

It yields the same key candidate vector gq as in the previous examples. Note that
these attacks correspond to a stronger adversarial context than the other sta-
tistical tests in this section and require an estimation of the leakage probability
distribution (i.e. to build templates). They should therefore be seen as a limit
of what a side-channel adversary can achieve. We also note that in our simple
context, the construction of templates was assumed to be unbounded2. But in
more challenging scenarios, i.e. if the construction of templates is bounded, the
use of stochastic models can be necessary for this purpose [15].

4.3 An alternative partition distinguisher using a variance test

The previous section described a number of statistical tests to evaluate the qual-
ity of a leakage model or partition. Of course, this list is not exhaustive: various
other approaches have been and could be proposed. In this section, we suggest
that under the common hypothesis of Gaussian noise in the physical leakages
(confirmed in Figure 1 for the PIC), one can propose an alternative to the mu-
tual information distinguisher [6]. Indeed, since in this context, the entropy of

2 Following [3], we assumed the leakages to be drawn from a normal distribution:

N (R(li)|µi

s, σ
i

s) =
1

σi
s

√
2π

exp
−(R(li) − µi

s)
2

2σi
s

2
, (4)

in which the means µi

s and standard deviations σi

s specify completely the noise
associated to each key class s. In practice, these means and standard deviations were
estimated during a preliminary profiling step in which the adversary characterizes
the target device (we constructed one template for each value of S(s⊕ xi)). That is,
the probabilities Pr[s∗|R(li)] are approximated in our attacks using Bayes theorem
and the estimated Gaussian distribution P̂r[R(li)|s∗] = N (R(li)|µ̂i

s∗ , σ̂i

s∗), where µ̂i

s∗

and σ̂i

s∗ respectively denote the sample mean and variance for a given leakage sample.



a good partition only depends on its variance, one can save the construction of
histograms. Such a variance test can be described as follows. Let us denote the
sample variance of the leakage and partition vectors as σ̂2(R(lq)) and σ̂2(pi

s∗).
From those variances, we compute the following statistic for each partition:

σ2
s∗ =

σ̂2(R(lq))
∑n

i=1

#(pi
s∗

)

q
· σ̂2(pi

s∗)
(5)

where #(pi
s∗) denotes the number of elements in a vector pi

s∗ of the partition.
The most likely key is the one that gives rise to the highest variance ratio. Note
that variance tests have been used in the context of timing attacks (e.g. in [9]).
However, we could not find a reference using a similar test in the context of
power analysis attacks. Any suggestion is welcome.

We finally mention that partition-based attacks generally require the parti-
tions corresponding to different key candidates to be made of meaningful vectors
pi

s∗ . For example, an attack against the 8 key-bits corresponding to the first S-
box of the AES using an 8-bit partition will give rise to vectors pi

s∗ containing
only the leakages corresponding to one input xi. Therefore, these partitions will
not allow discriminating the key candidates. In other words, partition attacks
cannot use bijective hypothetical leakage functions [6].

5 Evaluation metrics

We propose to quantify the effectiveness of our distinguishers with two security
metrics, namely the success rates of order o and guessing entropy. Let gq be the
vector containing the key candidates sorted according to the test result after a
side-channel attack has been performed: gq := [g1, g2, . . . , g|S|]. A success rate
of order 1 (resp. 2, . . . ) relates to the probability that the correct key class is
sorted first (resp. among the two first ones, . . . ) by the adversary. More formally,
we define the success function of order o against a key class s as: S

o
s(gq)=1 if

s ∈ [g1, . . . , go], else S
o
s(gq)=0. It leads to the oth-order success rate:

Succo
S = E

s
E
lq

S
o
s(gq) (6)

Similarly, the guessing entropy measures the average number of key candi-
dates to test after a side-channel attack has been performed. Using the same
notations as for the success rate, we define the index of a key class s in a side-
channel attack as: Is(gq) = i such that gi = s. It corresponds to the position
of the correct key class s in the candidates vector gq. The guessing entropy is
simply the average position of s in this vector:

GES = E
s

E
lq

Is(gq) (7)

Intuitively, a success rate measures an adversarial strategy with fixed com-
putational cost after the physical leakages have been exploited. The guessing
entropy measures the average computational cost after this exploitation. For a
theoretical discussion of these metrics, we refer to [18].



6 Limitations of our classification and methodology

Before moving to the description of our experimental results, let us emphasize
again that the previous classification of attacks is informal. It is convenient to
consider partition-based attacks since they all exploit a division of the leakages
such as in Table 1. But as far as the adversarial capabilities are concerned, the
most important classification relates to the need (or lack thereof) of a leakage
model. For example, template attacks require the strongest assumptions, i.e. a
precise characterization of the target device. Other attacks do not need but can
be improved by such a characterization (e.g. correlation in [17]), with more or
less resistance to a lack of knowledge on the target device. With this respect,
the mutual information analysis is the most generic statistical test in the sense
that it does not require any assumption on the leakage model.

Also, all our evaluations depend on the target implementations and attack
scenarios, and hence are only valid within these fixed contexts. As will be shown
in the next section, even two implementations of the same algorithm on similar
platforms may yield contrasted results. Similarly, changing any part of the adver-
sary in Section 3 (e.g. considering adaptively selected input plaintexts, another
reduction mapping, . . . ) or modifying the measurement setups could affect our
conclusions. Importantly, these facts should not be seen as theoretical limitations
of the proposed framework but as practical limitations in its application, related
to the complex device-dependent mechanisms in side-channel attacks. Hence, it
motivates the repetition of similar experiments in various other contexts.

7 Experimental results

In this section, we present the different experiments that we carried out against
our two target devices. We investigated partition distinguishers with DoM tests,
MIA and variance tests. We also evaluated correlation attacks using Pearson’s
coefficient and template attacks. For this purpose and for each device, we gener-
ated 1000 leakage vectors, each of them corresponding to q=250 random input
plaintexts. Then, for each of the previously described statistical tests, we com-
puted different success rates and the guessing entropy for:

– various number of queries (1 ≤ q ≤ 250),
– various partitions and models (1-bit, 2-bit, . . . , Hamming weight).

For each value of q, our metrics were consequently evaluated from 1000 samples.
The results are represented in Figures 3, 4, 5, 6, 7, (the latter ones in Appendix)
and lead to a number of observations that we now detail.

1. The two devices have significantly different leakage behaviors. While the PIC
leakages closely follow Hamming weight predictions (e.g. Figure 3, correlation
test, lower left part), the Atmel leakages give rise to less efficient attacks in
this context (e.g. Figure 4, correlation test, lower left part).
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Fig. 3: PIC: 1st-order SR for different statistical tests, partitions, models (dotted: DoM
test, dash-dotted: correlation test, dashed: MIA, solid: variance test).

2. By contrast 1-bit and 2-bit partitions give rise to more efficient attacks
against the Atmel device than against the PIC (e.g. Figures 3 and 4 again).

The assumed reason for these observations is that different bits in the Atmel
implementation contribute differently to the overall leakage. In particular, we
observed experimentally that 1-bit attacks were the most efficient when targeting
the S-box output LSB against the Atmel (the success rate was significantly lower
with other bits). This assumption also explains why multiple-bit attacks lead to
relatively small improvement of the attacks, compared to the PIC.

3. As far as the comparison of distinguishers is concerned, the main observation
is that template attacks are the most efficient ones against both devices,
confirming the expectations of [3, 18]. However, it is worth noting that while
univariate templates directly lead to very powerful attacks against the PIC
implementation, the exploitation of multiple samples significantly improves
the success rate in the Atmel context (e.g. Figure 4, lower right part). Note
again that the unbounded construction of our templates has a significant
impact on this observation. The effect of a bounded construction of templates
to the final attack effectiveness has been studied in [7].
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Fig. 4: Atmel: 1st-order SR for different statistical tests, partitions, models (dotted:
DoM test, dash-dotted: correlation test, dashed: MIA, solid: variance test).

4. By contrast, no general conclusions can be drawn for the non-profiled distin-
guishers (DoM and variance tests, correlation attack, MIA). This confirms
that different adversarial contexts (e.g. types of leakages, distributions of the
noise, selections of the meaningful samples, . . . ) can lead to very different
results for these attacks. A distinguisher can also be fast to reach low success
rates but slow to reach high success rates. Or different distinguishers could
be more or less immune to noise addition or other countermeasures against
side-channel attacks. For example, in our experiments the DoM test shows
an effectiveness similar the other distinguishers against the PIC with 1-bit
partitions while it is the least efficient against the Atmel.

Next to these general observations, more specific comments can be made, e.g.:

– The results for the DoM test against the PIC (Figure 3) experimentally
confirm the prediction of Messerges in [13]: in the context of “all-or-nothing”
multiple-bit attacks using a DoM test, the best partition size is 3 bit out of
8 if the leakages have strong Hamming weight dependencies. It corresponds
to the best tradeoff between the amplitude of the DoM peak (that increases
with the size of the partition) and the number of traces that are not used
by the test because not corresponding to an “all zeroes/ones” vector.



– The different metrics introduced, although correlated, bring different insights
on the attacks efficiencies: Figures 5, 6 illustrate the guessing entropies of
different attacks for our two devices; Figure 7 contains the 4th-order suc-
cess rates for the PIC. Interestingly, the variance test using 4-bit partitions
against the Atmel allows a better 1st-order success rate than guessing en-
tropy, compared to other distinguishers (e.g. Figures 4, 6: middle right parts).

– The number of bins used to build the histograms in the MIA has a signif-
icant impact on the resulting attack efficiency. More bins generally allow a
better estimation of the mutual information Î(R(Lq);H

q
s∗) but can lead to

less discriminant attacks if the number of leakage samples is bounded. In
general, we use as many bins as the number of vectors in our partitions.
For the 4-bit partitions, we additionally considered 8-bins-based attacks to
illustrate the impact of a change of this parameter. The optimal selection of
these bins and their number is an interesting scope for further research.

This list of comments is of course not exhaustive and only points out exemplary
facts that can be extracted from our experiments. We finally emphasize the im-
portance of a sufficient statistical sampling in the approximation of the success
rates or guessing entropy in order to provide meaningful conclusions. While an
actual adversary only cares about recovering keys (i.e. one experiment may be
enough for this purpose) the evaluation and understanding of side-channel at-
tacks requires confidence in the analysis of different statistical tests. In practice,
such evaluations are obviously limited by the amount of traces that one can ac-
quire, store and process. With this respect, we computed our success rates and
guessing entropies from sets of 1000 samples (i.e. 1000 leakage vectors of 250
encrypted plaintexts each). Both the smoothness of the curves in our figures and
the confidence intervals that can be straightforwardly extracted for the success
rates confirm that this sampling was enough to obtain sound observations.

8 Conclusions

This paper describes a fair empirical comparison of different side-channel dis-
tinguishers against two exemplary devices. Our results essentially highlight the
implementation-dependent nature of such comparisons. It shows that any conclu-
sion about the efficiency of a side-channel attack is only valid within a specific
context. Therefore it emphasizes the importance of performing similar evalu-
ations against various other implementations. In particular, countermeasures
against side-channel attacks (e.g. masked [8] or dual-rail circuits [19]) are an
interesting evaluation target. Other scopes for further research include the inte-
gration of more complex side-channel attacks in the comparisons, e.g. based on
collisions [16] or the investigation of advanced statistical tools for key extraction,
e.g. [1]. The methodology described in this work is expected to prevent wrong
general claims on side-channel attacks and to allow a better understanding of
both the target devices and the attacks used to exploit physical leakages.
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Fig. 5: PIC: Guessing entropy for different statistical tests, partitions, models (dotted:
DoM test, dash-dotted: correlation test, dashed: MIA, solid: variance test).
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Fig. 6: Atmel: Guessing entropy for different statistical tests, partitions, models (dotted:
DoM test, dash-dotted: correlation test, dashed: MIA, solid: variance test).
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Fig. 7: PIC: 4th-order SR for different statistical tests, partitions, models (dotted: DoM
test, dash-dotted: correlation test, dashed: MIA, solid: variance test).


