
Efficient FPGA Implementations of Block
Ciphers KHAZAD and MISTY1

Francois-Xavier Standaert, Gael Rouvroy,
Jean-Jacques Quisquater, Jean-Didier Legat

{standaert,rouvroy,quisquater,legat}@dice.ucl.ac.be

UCL Crypto Group
Laboratoire de Microelectronique
Universite Catholique de Louvain

Place du Levant, 3, B-1348 Louvain-La-Neuve, Belgium

Abstract. The technical analysis used in determining which of the NESSIE candidates will
be selected as a standard block cipher includes efficiency testing of both hardware and soft-
ware implementations of candidate algorithms. Reprogrammable devices such as Field Pro-
grammable Gate Arrays (FPGA’s) are highly attractive options for hardware implementations
of encryption algorithms and this report investigates the significance of FPGA implementa-
tions of the block ciphers KHAZAD and MISTY1. A strong focus is placed on high throughput
circuits and we propose designs that unroll the cipher rounds and pipeline them in order to
optimize the frequency and throughput results. In addition, we implemented solutions that
allow to change the plaintext and the key on a cycle-by-cycle basis with no dead cycle. The
resulting designs fit on a VIRTEX1000 FPGA and have throughput between 8 and 9 Gbits/s.
This is an impressive result compared with existing FPGA implementations of block ciphers
within similar devices.

1 Introduction

The NESSIE project1 is about to put forward a portfolio of strong cryptographic primitives that
has been obtained after an open call and been evaluated using a transparent and open process. These
primitives include block ciphers, stream ciphers, hash functions, MAC algorithms, digital signature
schemes, and public-key encryption schemes. The technical analysis used in determining which of
the NESSIE candidates will be selected as a standard block cipher includes efficiency testing of both
hardware and software implementations of candidate algorithms.

NESSIE candidate KHAZAD is a 64-bit block cipher that accepts a 128-bit key. Although KHAZAD
is not a Feistel cipher, its structure is designed so that by choosing all round transformations
components to be involutions, the inverse operation of the cipher differs from the forward operation
in the key scheduling part only. This property makes it possible to reduce the required chip area
in hardware implementations. The overall cipher design follows the Wide Trail Strategy, favours
component reuse, and permits a wide variety of implementation tradeoffs. Encryption algorithm
MISTY1 is a 64-bit block cipher with a 128-bit key and a variable number of rounds. Mitsuru
Matsui, the designer (1996), recommends a 8-round version. It is a Feistel cipher that allows very
efficient hardware implementations. MISTY1 is designed on the basis of the theory of provable
security against differential and linear cryptanalysis. In this report, we study the suitability of
KHAZAD and MISTY1 for hardware implementations. Fast encryption modules are detailed and
compared to AES RIJNDAEL and SERPENT in an effort to determine the efficiency of NESSIE
candidates for hardware implementations within commercially available FPGA’s.

This report is organized as follows. The description of the hardware, synthesis tools and imple-
mentation tools is in section 2. Section 3 gives a short mathematical description of KHAZAD and
we propose a description of the diffusion layer that allows efficient pipelining. Our implementations
of KHAZAD are in section 4. Section 5 gives a short mathematical description of MISTY1 and
the corresponding implementations are in section 6. Comparisons with RIJNDAEL and SERPENT
appear in section 7. Finally, conclusions are in section 8.
1 NESSIE: New European Schemes for Signatures, Integrity, and Encryption

2 Hardware description

All our implementations were carried out on a XILINX VIRTEX1000BG560-6 FPGA. In this
section, we briefly describe the structure of a VIRTEX FPGA as well as the synthesis and imple-
mentation tools that were used to obtain our results.

Configurable Logic Blocks (CLB’s): The basic building block of the VIRTEX CLB is the
logic cell (LC). A LC includes a 4-input function generator, carry logic and a storage element.
The output from the function generator in each LC drives both the CLB output and the D input
of the flip-flop. Each VIRTEX CLB contains four LC’s, organized in two similar slices. Figure 1,

Fig. 1. The VIRTEX slice.

shows a detailed view of a single slice. Virtex function generator are implemented as 4-input look-up
tables (LUT’s). In addition to operate as a function generator, each LUT can provide a 16×1-bit
synchronous RAM. Furthermore, the two LUT’s within a slice can be combined to create a 16×2-bit
or 32×1-bit synchronous RAM or a 16×1-bit dual port synchronous RAM. The VIRTEX LUT can
also provide a 16-bit shift register.

The storage elements in the VIRTEX slice can be configured either as edge-triggered D-type flip-
flops or as level-sensitive latches. The D inputs can be driven either by the function generators
within the slice or directly from slice inputs, bypassing function generators.

The F5 multiplexer in each slice combines the function generator outputs. This combination pro-
vides either a function generator that can implement any 5-input function, a 4:1 multiplexer, or
selected functions of up to nine bits. Similarly, the F6 multiplexer combines the outputs of all four
function generators in the CLB by selecting one of the F5-multiplexer outputs. This permits the
implementation of any 6-input function, an 8:1 multiplexer, or selected functions up to 19 bits.

The arithmetic logic also includes a XOR gate that allows a 1-bit full adder to be implemented
within an LC. In addition, a dedicated AND gate improves the efficiency of multiplier implementa-
tions.

Finally, VIRTEX FPGA’s incorporate several large RAM blocks. These complement the distributed
LUT implementations of RAM’s. Every block is a fully synchronous dual-ported 4096-bit RAM
with independent control signals for each port. The data widths of the two ports can be configured
independently.

Target FPGA: A VIRTEX1000BG560-6 FPGA contains 12288 slices and 32 RAM blocks, which
means 24576 LUT’s and 24576 flip-flops. In the following report, we compare the number of LUT’s,
registers and slices. We also evaluate the delays and frequencies thanks to our synthesis and imple-
mentation tools. The synthesis was performed with FPGA Express (SYNOPSYS) and the imple-
mentation with XILINX ISE-4. Finally, our circuits models were described using VHDL.

3 Block cipher description: KHAZAD

KHAZAD is an iterated block cipher that operates on a 64-bit cipher state represented as vectors
in GF (28)8. It uses a 128-bit key represented as a vector in GF (28)16, and consists of a serie of
applications of a key-dependent round transformation to the cipher state. In the following, we will
individually define the component mappings and constants that build up KHAZAD, then speciphy
the complete cipher in terms of these components.

Notation: Let s be a cipher state or a key ∈ GF (28)8, then si is the i-th byte of the state s and
si(j) is the j-th bit of this byte.

The nonlinear layer γ: Function γ : GF (28)8 → GF (28)8 consist of the parallel application of
a non-linear substitution box S:

γ(a) = b ⇔ bi = S[ai], 0 ≤ i ≤ 7 (1)

The substitution box is illustrated on figure 2, where P and Q are 4-bit input × 4-bit output
look up tables. They were defined in order to optimize the resistance against differential and linear
cryptanalysis and allow efficient hardware implementations.

Fig. 2. The KHAZAD substitution box.

The diffusion layer θ: Function θ : GF (28)8 → GF (28)8 is a linear mapping based on a [16, 8, 9]
MDS2 code:

θ(a) = b ⇔ b = a.H (2)

With :
2 MDS: Maximum Distance Separable

H =

01 03 04 05 06 08 0B 07
03 01 05 04 08 06 07 0B
04 05 01 03 0B 07 06 08
05 04 03 01 07 0B 08 06
06 08 0B 07 01 03 04 05
08 06 07 0B 03 01 05 04
0B 07 06 08 04 05 01 03
07 0B 08 06 05 04 03 01

We propose the following description of the diffusion layer that allows to introduce pipeline levels
inside the layer:

b0 = a0 ⊕ a1 ⊕ a3 ⊕ a6 ⊕ a7 ⊕X(a1 ⊕ a4 ⊕ a6 ⊕ a7)⊕X
2
(a2 ⊕ a3 ⊕ a4 ⊕ a7)⊕X

3
(a5 ⊕ a6)

b1 = a0 ⊕ a1 ⊕ a2 ⊕ a6 ⊕ a7 ⊕X(a0 ⊕ a5 ⊕ a6 ⊕ a7)⊕X
2
(a2 ⊕ a3 ⊕ a5 ⊕ a6)⊕X

3
(a4 ⊕ a7)

b2 = a1 ⊕ a2 ⊕ a3 ⊕ a4 ⊕ a5 ⊕X(a3 ⊕ a4 ⊕ a5 ⊕ a6)⊕X
2
(a0 ⊕ a1 ⊕ a5 ⊕ a6)⊕X

3
(a4 ⊕ a7)

b3 = a0 ⊕ a2 ⊕ a3 ⊕ a4 ⊕ a5 ⊕X(a2 ⊕ a4 ⊕ a5 ⊕ a7)⊕X
2
(a0 ⊕ a1 ⊕ a4 ⊕ a7)⊕X

3
(a5 ⊕ a6)

b4 = a2 ⊕ a3 ⊕ a4 ⊕ a5 ⊕ a7 ⊕X(a0 ⊕ a2 ⊕ a3 ⊕ a5)⊕X
2
(a0 ⊕ a3 ⊕ a6 ⊕ a7)⊕X

3
(a1 ⊕ a2)

b5 = a2 ⊕ a3 ⊕ a4 ⊕ a5 ⊕ a6 ⊕X(a1 ⊕ a2 ⊕ a3 ⊕ a4)⊕X
2
(a1 ⊕ a2 ⊕ a6 ⊕ a7)⊕X

3
(a0 ⊕ a3)

b6 = a0 ⊕ a1 ⊕ a5 ⊕ a6 ⊕ a7 ⊕X(a0 ⊕ a1 ⊕ a2 ⊕ a7)⊕X
2
(a1 ⊕ a2 ⊕ a4 ⊕ a5)⊕X

3
(a0 ⊕ a3)

b7 = a0 ⊕ a1 ⊕ a4 ⊕ a6 ⊕ a7 ⊕X(a0 ⊕ a1 ⊕ a3 ⊕ a6)⊕X
2
(a0 ⊕ a3 ⊕ a4 ⊕ a5)⊕X

3
(a1 ⊕ a2)

Where b7, b6, ..., b0 represent the eight bytes of the cipher state and X is defined at the byte level
as: X : GF (28) → GF (28) : X(a) = b ⇔

b(7) = a(6)
b(6) = a(5)
b(5) = a(4)

b(4) = a(3)⊕ a(7)
b(3) = a(2)⊕ a(7)
b(2) = a(1)⊕ a(7)

b(1) = a(0)
b(0) = 0⊕ a(7)

Finally, we define functions X2 ≡ X ◦X and X3 ≡ X ◦X ◦X.

The key addition σ: The affine key addition σ[k] : GF (28)8 → GF (28)8 consists of the bitwise
addition (exor) of a key vector k ∈ GF (28)8:

σ[k](a) = b ⇔ bi = ai ⊕ ki, 0 ≤ i ≤ 7 (3)

The round constants: The constant for the r-th round is a vector cr ∈ GF (28)8, defined as:

cr
i = S[8r + i], 0 ≤ r ≤ 8, 0 ≤ i ≤ 7 (4)

The round function ρ: The r-th round function is the composite mapping ρ[k] : GF (28)8 →
GF (28)8, parameterized by the key vector k ∈ GF (28)8 and given by:

ρ[k] ≡ σ[k] ◦ θ ◦ γ (5)

The key schedule: The key schedule expands the cipher key K ∈ GF (28)16 into a sequence of
round keys K0,K1, ...; K8, plus two initial values K−2 and K−1 corresponding to the most and least
significant parts of the cipher key K. Every round key is an element of GF (28)8 that we derive as
follows:

Kr = ρ[cr](Kr−1)⊕Kr−2, 0 ≤ r ≤ 8 (6)

The complete cipher: KHAZAD is defined for the cipher key K as the transformation KHAZAD[K]
= α[K0,K1, ...,K8] applied to the plaintext, where

α[K0,K1, ...,K8] = σ[K8] ◦ γ ◦ (©7
r=1ρ[Kr]) ◦ σ[K0] (7)

Our implementation is based on this description of KHAZAD.

4 Implementation: KHAZAD

4.1 Objectives:

FPGA’s are very efficient devices and they are suitable for high work frequencies. As opposed to
custom hardware or software implementations, little work exist in the area of block cipher imple-
mentations within existing FPGA’s. Results available in the public literature sometimes mention
encryption rates comparable with software ones. We believe that these performances can be greatly
improved using today’s technology as soon as inherent constraints of FPGA’s are taken into account.
The VIRTEX slice offers great flexibility to implement various logic functions, but it also constraints
the designer to an efficient usage of its resources. Regarding the inner structure of KHAZAD, we
determined that an optimal circuit should limit its critical path inside one slice, without consuming
slices for register usage only.

4.2 Components:

Table 1 evaluates the hardware cost of some basic elements of KHAZAD. Their structure, very
close to the VIRTEX LUT, allow a direct and efficient implementation. Practically, we optimized
our circuit by keeping its critical path inside the slice of Fig 1, and making an efficient use of its
registers.

Component Nbr of LUT

X 3

S 24

γ layer 192

Key addition σ 64

Table 1. Some combinatorial components of KHAZAD.

Actually, the most critical function in terms of implementation is the diffusion layer θ. In the
precedent section, we gave a combinatorial description of it that allow us to consider different
pipeline levels. For efficiency purposes, we also combined θ with the key addition layer σ, because
of their relevant compatibility. Figure 3 illustrates the computation of an output byte b0 of the
diffusion layer θ combined with key addition σ. The key point of this architecture is the central
bitwise XOR operation between 4 bytes. As the VIRTEX slice contains, a 4-input LUT and an
additional XOR gate, we can efficiently combine this operation with the bitwise key addition and
perform the resulting task in one cycle.

The upper part of θ don’t permit this kind of optimization. Looking at Figures 3, 4, we see that
the byte a2 ⊕ a3 ⊕ a4 ⊕ a7 is an input of function X2 = X ◦X. This can’t be done inside one slice.
Consequently, we considered two circuits depending on the diffusion-addition layer implemented:

1. A fast and expensive implementation using three registers levels inside the layer.
2. A slower but less expensive implementation where the grey register of θ is removed.

A tradeoff has to be done between a low-delay (pipeline of X, X2, X3 functions) and a low area
where we avoid the implementation of useless registers in the left branch of θ. Table 2 gives the
implementation results of our two implementations. In this section, the delay is estimated after
synthesis3. Note that in the fast implementation, the critical path corresponds to a look up table
and an exor operation in the left branch of θ.
3 FPGA Express (SYNOPSYS)

65 aa ⊕7432 aaaa ⊕⊕⊕7641 aaaa ⊕⊕⊕76310 aaaaa ⊕⊕⊕⊕

X 2X 3X8

8 8 8 8

8

]70[→rK

Fig. 3. KHAZAD: output byte b0 of the diffusion layer θ combined with key addition σ.

0a1a2a3a4a5a6a7a

0b1b2b3b4b
5b6b7b

⊕ ⊕ ⊕

Fig. 4. The function X of KHAZAD.

Type Nbr of LUT Nbr of registers Estimated delay (ns)

Fast implementation 384 576 5.2

Low area implementation 384 320 7.3

Table 2. KHAZAD: implementations of the diffusion layer θ combined with key addition σ.

4.3 The round and key round functions:

Based on the above components, we propose two solutions for the round and key round functions,
with a difference of one register level. Figure 5 illustrates the round function of KHAZAD. Figure
6 illustrates its key round. Depending on the use of the grey register, we obtain the results of table
3.

Type Nbr of LUT Nbr of registers Estimated delay (ns)

Fast round 576 768 5.5

Low area round 576 512 7.3

Fast key round 768 832 5.6

Low area key round 756 576 7.3

Table 3. KHAZAD: implementations of the round and key round.

PQ PQ PQ PQ PQ PQ PQ PQ

QP QP QP QP QP QP QP QP

PQ PQ PQ PQ PQ PQ PQ PQ

64

64

64

64

rK

γ

θ

σ

Fig. 5. The KHAZAD round function ρ.

4.4 The complete cipher:

The implementation of the complete KHAZAD cipher directly results from the precedent descrip-
tions. Our results are summarized by the next figure and table: Figure 7 illustrates our two versions
of the complete cipher. Finally, table 4 summarizes our implementation results for the block ci-
pher KHAZAD. In this section, the frequency is estimated after synthesis4 and implementation5.
From these results, we observe very high frequencies after synthesis. However critical delays mainly

Type Nbr of Nbr of Nbr of Latency Output every Freq. after Freq. after
LUT registers slices (cycles) (cycles) Synt. (Mhz) Impl. (Mhz)

Fast KHAZAD 11328 13568 8800 62 1 175 148
Low area KHAZAD 11072 9600 7175 53 1 137 123

Table 4. Implementations of KHAZAD.

occurs when trying to place and route these synthesis results. The resulting implemented designs
4 FPGA Express (SYNOPSYS)
5 Xilinx ISE4

64

64

γ

64

rC

64

2−iK1−iK

1+iK

64

PQ PQ PQ PQ PQ PQ PQ PQ

QP QP QP QP QP QP QP QP

PQ PQ PQ PQ PQ PQ PQ PQ

64

64

64

iK

γ

64

64

64

θ

σ

Fig. 6. The KHAZAD keyround.

ROUND1

ROUND2

ROUND7

KEYROUND1

KEYROUND2

KEYROUND3

KEYROUND8

KEYROUND9

K1 K0

K3 K2

K5 K4

K7 K6

K17 K16

K19

txt

cipher

σ

σ
γ

Fig. 7. KHAZAD.

have surprising critical paths including 20% of logic and 80% of routes. We conclude that the real
bottleneck of such large ciphers is in the difficulty of having an efficient place and route. Actually,
constraints come from shift registers and high fanout. Implementation could probably be improved
by replacing the last stage of shift registers by flip-flops, but the additional degree of freedom for the
routes would be balanced with additional resources. Anyway, the resulting designs are very efficient
as we will underline in section 7.

5 Block cipher description: MISTY1

MISTY1 is an iterated block cipher that operates on a 64-bit block with a 128-bit key and with
a variable number of rounds n. We describe the algorithm with n = 8, as recommended in [3, 4].
In the following subsections, we describe the data randomizing part and the key scheduling part of
MISTY1 with their different components.

5.1 Data randomizing part

Figure 9 shows the data randomizing part of MISTY16. The 64-bit plaintext P is divided in two
32-bit parts. Both parts are transformed into the 64-bit ciphertext using bitwise XOR operations,
sub-functions FOi (1 ≤ i ≤ (n = 8)) and sub-functions FLi (1 ≤ i ≤ (n + 2 = 10)).

FOi function: Figure 8 shows the structure of FOi
7. This function split the input into two 16-bit

strings. Then, it transforms both strings into the output with bitwise XOR operations and sub-
functions FIij (1 ≤ j ≤ 3). KOij (1 ≤ j ≤ 4) and KIij (1 ≤ j ≤ 3) are the left j-th 16 bits of KOi

and KIi, respectively.

FIij function: Figure 8 also shows the structure of FIij . The input is divided into two parts:
a 9-bit string and a 7-bit string. These strings are transformed into the output using bitwise XOR
operations and substitutions tables S7 and S9. In the beginning and the end of FIij function, the
7-bit string is zero-extend to 9 bits, and in the middle part, the 9-bit string is truncated to 7 bits
eliminating its highest two bits (MSB). KIij1 and KIij2 are the left 7 bits and the right 9 bits of
KIij , respectively.

FLi function: The structure of FIij function is illustrated on figure 8. The 32-bit input is divided
into two equal parts. The function transforms both parts into the output with bitwise AND, OR
and XOR operations. KLij1 (1 ≤ j ≤ 2) is the left j-th 16 bits of KLi.

S7 and S9 substitution functions: For the selection of S7 and S9 substitution functions, Matsui
considers three criteria:

1. Their average differential/linear probability must be minimal,
2. Their delay time in hardware is as short as possible,
3. Their algebraic degree is high, if possible.

Based on these criteria, for the S7 substitution function, Matsui chooses the following mathe-
matical description:

y0 = x0 + x1x3 + x0x3x4 + x1x5 + x0x2x5 + x4x5 + x0x1x6 + x2x6 + x0x5x6 + x3x5x6 + 1
y1 = x0x2 + x0x4 + x3x4 + x1x5 + x2x4x5 + x6 + x0x6 + x3x6 + x2x3x6 + x1x4x6 + x0x5x6 + 1
y2 = x1x2 + x0x2x3 + x4 + x1x4 + x0x1x4 + x0x5 + x0x4x5 + x3x4x5 + x1x6x3x6 + x0x3x6 + x4x6 + x2x4x6

y3 = x0 + x1 + x0x1x2 + x0x3 + x2x4 + x1x4x5 + x2x6 + x1x3x6 + x0x4x6 + x5x6 + 1
y4 = x2x3 + x0x4 + x1x3x4 + x5 + x2x5 + x1x2x5 + x0x3x5 + x1x6 + x1x5x6 + x4x5x6 + 1
y5 = x0 + x1 + x2 + x0x1x2 + x0x3 + x1x2x3 + x1x4 + x0x2x4 + x0x5 + x0x1x5 + x3x5 + x0x6 + x2x5x6

y6 = x0x1 + x3 + x0x3 + x2x3x4 + x0x5 + x2x5 + x3x5 + x1x3x5 + x1x6 + x1x2x6 + x0x3x6 + x4x6 + x2x5x6

6 Where registers needed for efficiency purposes are already mentioned
7 Where registers needed for efficiency purposes are already mentioned

Based on the same above criteria, the S9 function is defined as:

y0 = x0x4 + x0x5 + x1x5 + x1x6 + x2x6 + x2x7 + x3x7 + x3x8 + x4x8 + 1
y1 = x0x2 + x3 + x1x3 + x2x3 + x3x4 + x4x5 + x0x6 + x2x6 + x7 + x0x8 + x3x8 + x5x8 + 1
y2 = x0x1 + x1x3 + x4 + x0x4 + x2x4 + x3x4 + x4x5 + x0x6 + x5x6 + x1x7 + x3x7 + x8

y3 = x0 + x1x2 + x2x4 + x5 + x1x5 + x3x5 + x4x5 + x5x6 + x1x7 + x6x7 + x2x8 + x4x8

y4 = x1 + x0x3 + x2x3 + x0x5 + x3x5 + x6 + x2x6 + x4x6 + x5x6 + x6x7 + x2x8 + x7x8

y5 = x2 + x0x3 + x1x4 + x3x4 + x1x6 + x4x6 + x7 + x3x7 + x5x7 + x6x7 + x0x8 + x7x8

y6 = x0x1 + x3 + x1x4 + x2x5 + x4x5 + x2x7 + x5x7 + x8 + x0x8 + x4x8 + x6x8 + x7x8 + 1
y7 = x1 + x0x1 + x1x2 + x2x3 + x0x4 + x5 + x1x6 + x3x6 + x0x7 + x4x7 + x6x7 + x1x8 + 1
y8 = x0 + x0x1 + x1x2 + x4 + x0x5 + x2x5 + x3x6 + x5x6 + x0x7 + x0x8 + x3x8 + x6x8 + 1

Both substitution boxes are defined as ROM tables in [3]. To optimize the number of logic cells
used in FPGA implementations, we prefer to implement S7 and S9 functions directly as logical
expressions. With enough pipelined stages, we keep the critical path of the design under control.

5.2 Key scheduling part

Figure 10 shows the key scheduling part of MISTY18. Ki (1 ≤ i ≤ 8) is the left i-th 16 bits of
the secret input key K. K

′
i (1 ≤ i ≤ 8) corresponds to the output of FIij where the input of FIij

is assigned to Ki and the key KIij is set to K(i+1)mod8. The assignment between key scheduling
subkeys Ki/ K

′
i and the round subkeys KOij , KIij , KLij is defined as follows, where i equals to

(i− 8) when (i > 8):

Encrypt Round KOi1 KOi2 KOi3 KOi4 KIi1 KIi2 KIi3 KLi1 KLi2

Key round Ki Ki+2 Ki+7 Ki+4 K
′
i+5 K

′
i+1 K

′
i+3 K i+1

2
(odd.i) K

′
i+1
2 +6

(odd.i)

K
′
i
2+1

(even.i) K i
2+4(even.i)

Table 5. Subkeys distribution.

This concludes the mathematical description of MISTY1 algorithm. The next section explains our
FPGA design choices in order to be efficient in term of speed and resources used.

6 Implementation: MISTY1

In order to achieve the fastest FPGA implementation of MISTY1, we decided to limit the critical
path to only one 4-input LUT and routes. Consequently, we do not use additional XOR’s and
multiplexors F5, F6 available in the VIRTEX slice. However, these functions could be used in order
to reduce the area requirements of MISTY1.

Based on this delay constraint, we modified the mathematical description of the algorithm in order
to regroup a maximum number of functions in a minimum number of 4-input LUT’s. This strategy
leads to very fast designs.

6.1 S7 and S9 implementations

For S7 and S9 implementations, we used the logical expressions in place of substitution tables in
order to reduce the number of logic cells used. The logical functions have to be pipelined in order to
limit the critical path to only one 4-input LUT and routes. For S7 and S9, we designed two 2-stage
pipelined versions. The next table shows the results that we obtained after synthesis:

8 Where registers needed for efficiency purposes are already mentioned

Component Nbr of LUT’s Nbr of FF’s Nbr of pipelined stages

S7 45 45 2

S9 44 35 2

Table 6. MISTY1: S7 and S9 synthesis results.

6.2 FOi, FIij, FLi implementations

Figure 8 details how we implemented FOi, FIij , FLi functions in order to limit the critical path to
only one 4-input LUT and routes. As mentioned on the figure, we have to put an additional output
pipeline stage into FIij function in order to correspond with the key scheduling part. The next
table shows the results that we obtained after synthesis:

Component Nbr of LUT’s Nbr of FF’s Nbr of pipelined stages

FOi 565 633 24

FIij 158 195 7

FLi 32 32 1

Table 7. MISTY1: FOi, FIij , FLi synthesis results.

6.3 The data randomizing part of MISTY1

For the same delay constraints, we obtained the design detailed in figure 9. Additional registers
for input and output bits are needed to increase the speed performances and these are packed into
IOBs. We finally get a 208-stage pipelined design.

6.4 The key scheduling part of MISTY1

Figure 10 shows the key scheduling part of MISTY1. Additional registers for input key bits are
also packed into IOBs in order to increase performances. The assignment between key scheduling
subkeys Ki/ K

′
i and the round subkeys KOij , KIij , KLij is defined in table 5. We do the same

in hardware putting the correct number of pipelined stages for every round subkeys. Therefore, to
achieve the key distribution, we use 16-bit shift registers, every one fitting in one LUT. Figure 11
represents the subkeys distribution.

Table 8 summarizes the result that we obtained for the complete key scheduling part.

Nbr of LUT’s Nbr of FF’s Nbr of pipelined stages

4912 2352 208

Table 8. MISTY1: Key scheduling synthesis results.

6.5 The complete cipher

The complete MISTY1 combines the data randomizing part and the key scheduling part from the
precedent descriptions. Our results are summarized in table 9 where the latency is the number of
pipelined stages. We propose a post-map9 and a post-implementation10 estimated frequency. The
second one takes the routing delays into account. From this result, we observe a very high frequency
9 XILINX ISE4

10 XILINX ISE4

9

16

7

S7

KI ij1

zero-extend

truncate

KI ij2

zero-extend

FIij function

S9

Pipelined stage required for
Key Scheduling

KL i1

KL i2

32

FI i1

KO i1

KI i1

16

32

16

FI i2KI i2

KO i2

FI i3KI i3

KO i3

KO i4

FOi function

8-stage
pipeline7

FLi function

8-stage
pipeline

8-stage
pipeline

7
7

S9

Fig. 8. MISTY1: FOi, FIij , FLi hardware designs.

Nbr of Nbr of Nbr of Latency Output every Frequency (MHz) Frequency (MHz)
LUT registers slices (cycles) (cycles) Post-map Post-implementation

10920 8480 8386 208 1 204 140

Table 9. Implementation of MISTY1.

FL1KL1 FL2 KL2
KI1, KO1

32

P
64

32

KI2, KO2

FL3KL3 FL4KI3, KO3

KI4, KO4

FL5KL5 FL6KI5, KO5

KI6, KO6

FL7KL7 FL8KI7, KO7

KI8, KO8

KL4

KL6

KL8

24

491

FO1
24

FO2
24

FO3
24

FO4
24

FO5
24

FO6
24

FO7
24

FO8
24

1 49

49

49

49

49

49

25

1

1

1

1

1

1

C

FL9KL9 FL10 KL10

1

1
Registers packed

into IOBs

Registers packed
into IOBs 1

1 1

1 1

1 1

1 1

1 1

Fig. 9. The data randomizing part of MISTY1.

FI

K1

K'1

FI

K2

K'2

FI

K3

K'3

FI

K4

K'4

FI

K5

K'5

FI

K6

K'6

FI

K7

K'7

FI

K8

K'8

8 8 8 8 8 8 8 8

4-stage
pipeline

4-stage
pipeline

4-stage
pipeline

4-stage
pipeline

4-stage
pipeline

4-stage
pipeline

4-stage
pipeline

4-stage
pipeline

Fig. 10. MISTY1: Key Scheduling.

 Delayed keys

K1
....
....

K8 K'1
....
....

K'8

KL1 KI1 KO1

....

....

.... KL8 KI8 KO8 KL9 KL10

Fig. 11. MISTY1: Subkeys distribution.

after mapping phase but the final design only runs at 140 MHz. As we observed for KHAZAD,
critical delays are mainly caused by the routing task. Because the critical path was limited to one
4-input LUT, the problem is even more critical than for KHAZAD. We conclude that:

1. It is not so easy to deal with routing delays. They are no systematic tools to prevent these ones.
All we can do, is to locate the problem and to redesign the global circuit. Nevertheless, routing
problems usually come from shift registers and high fanout. Implementation could probably be
improved by replacing the last stage of shift registers by flip-flops.

2. Trying to reduce the critical path to only one 4-input LUT is not always the best choice. Indeed,
if a big part of the critical path is due to route, the use of additional XORs, F5,F6 can reduce
the number of logic cells used without increasing the critical path.

Anyway, the resulting design is very efficient and suitable for FPGA, as proved in the next section.

7 Comparison with AES RIJNDAEL, SERPENT and MISTY1

In order to evaluate our implementation results and the hardware suitability of KHAZAD and
MISTY1, we compare them with similar results obtained with the Advanced Encryption Standard
RIJNDAEL and SERPENT [5]. We chose RIJNDAEL because of its status of new encryption
standard and SERPENT because it seems that it was the best AES candidate regarding FPGA
implementations. However, comparisons between KHAZAD and MISTY1 seem to be more relevant
because they were implemented using the same methodology.
In [5], the Xilinx VIRTEX1000BG560-4 was selected as the target device for evaluation of AES
candidates. Table 10 compare RIJNDAEL, SERPENT, MISTY1 and KHAZAD encryption circuits
in terms of hardware cost, frequency and throughput. The hardware cost in LUT and registers is
replaced by a number of slices. We also investigate the ratio Throughput/Area which is a good
measurement of hardware efficiency.

Type Nbr of Output every Estimated Throughput Throughput/Area

slices (clk edges) frequency(Mhz) (Mbits/s) (
Mbits/s

slices)
RIJNDAEL [5] 10992 2.1 31.8 1938 0.18
SERPENT [5] 9004 1 38 4860 0.54

MISTY1 8386 1 140 8960 1.07
Fast KHAZAD 8800 1 148 9472 1.07

Low area KHAZAD 7175 1 123 7872 1.09

Table 10. Comparisons with RIJNDAEL, SERPENT and MISTY1.

8 Conclusions

We propose efficient FPGA implementations of block ciphers KHAZAD and MISTY1. The struc-
ture of KHAZAD is very close to AES RIJNDAEL and offers comparable security. However, im-
provements have been done concerning implementation aspects and these allow very efficient FPGA
implementations for high throughput applications. Although its keyround is still very expensive,
KHAZAD is a very suitable block cipher for FPGA implementation in the context described for
these experiments. MISTY1 offers similar performances and its main bottleneck is to be found in
the routing delays. By avoiding these problems, we could greatly improve the design frequency.

Upon comparison, our implementations of KHAZAD and MISTY1 offer better results than those
reported for RIJNDAEL and SERPENT in [5], but the implementation of RIJNDAEL with the
design methodology described in this paper will deserve a forthcoming work and allow more relevant
comparisons.

Concerning KHAZAD and MISTY1, we believe that both ciphers have interesting properties for
hardware implementations. MISTY1 offers slight advantages in terms of hardware cost: it has the
Feistel structure and low-cost substitution boxes. Its key scheduling is also less expansive than
KHAZAD. However, the intensive use of shift registers to pipeline the Feistel network makes the
algorithm structure more complex and the design more difficult to route. It results in a larger latency.
Looking at the final results, the ratio Throughput/Area illustrates that both ciphers are very close
and sufficiently efficient but potential improvements exist for MISTY1. It seems that reconfigurable
hardware implementations will not be the bottleneck for the selection of KHAZAD or MISTY1 as
a NESSIE cipher.

References

1. Xilinx: Virtex 2.5V Field Programmable Gate Arrays Data Sheet, http://www.xilinx.com.
2. Paulo Baretto and Vincent Rijmen, The KHAZAD Legacy-Level Block Cipher, Finalist of the

NESSIE Project, available from http://www.cosic.esat.kuleuven.ac.be/nessie/
3. Mitsuru Matsui, New Block Encryption Algorithm MISTY, The 4th Fast Software Encryption

Workshop, Jan. 1997, available from http://www.cosic.esat.kuleuven.ac.be/nessie/
4. M. Matsui Supporting Document of MISTY1. Available from

http://www.cosic.esat.kuleuven.ac.be/nessie/
5. A.J.Elbirt et Al, An FPGA Implementation and Performance Evaluation of the AES Block

Cipher Candidate Algorithm Finalists, The Third Advanced Encryption Standard (AES3)
Candidate Conference, April 13-14 2000, New York, USA.

6. M.McLoone et al, High Performance Single Ship FPGA Rijndael Algorithm Implementations,
in the proceedings of CHES 2001: The Third International CHES Workshop, Lecture Notes
In Computer Science, LNCS2162, pp 65-76, Springer-Verlag.

7. K. Gaj et al, Comparison of the Hardware Performance of the AES Candidates using Recon-
figurable Hardware, The Third Advanced Encryption Standard (AES3) Candidate Conference,
April 13-14 2000, New York, USA.

	1: * This work has been funded by the Walloon region (Belgium) through the research project TACTILS.

