
The Swiss-Knife RFID
Distance Bounding Protocol

Chong Hee Kim?, Gildas Avoine, François Koeune?, François-Xavier
Standaert??, Olivier Pereira??

Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium

Abstract. Relay attacks are one of the most challenging threats RFID
will have to face in the close future. They consist in making the verifier
believe that the prover is in its close vicinity by surreptitiously forward-
ing the signal between the verifier and an out-of-field prover. Distance
bounding protocols represent a promising way to thwart relay attacks,
by measuring the round trip time of short authenticated messages. Sev-
eral such protocols have been designed during the last years but none of
them combine all the features one may expect in a RFID system.
We introduce in this paper the first solution that compounds in a single
protocol all these desirable features. We prove, with respect to the pre-
vious protocols, that our proposal is the best one in terms of security,
privacy, tag computational overhead, and fault tolerance. We also point
out a weakness in Tu and Piramuthu’s protocol, which was considered
up to now as one of the most efficient distance bounding protocol.

1 Introduction

Radio Frequency Identification (RFID) is a ubiquitous technology that enables
identification of non-line-of-sight objects or subjects. Based on cheap RF - micro-
circuits – called tags – apposed on or incorporated into the items to identify, the
RFID technology is widely deployed in our everyday lives. Several billion RFID
tags are spread every year, in applications as diverse as pet identification, supply
chain managment, Alzheimer’s patient tracking, cattle counting, etc. RFID tags
suited to such applications do not cost more than 0.20 USD.

The impressive potential of the RFID is not only exploited in identification
solutions, but also in more evolved applications like access control, public trans-
portation, payment, ePassport, etc. that require the tag to be cryptographically
authenticated by the reader. To do so, a cipher and a pseudo-random number
generator can be implemented on the tag while keeping its cost low – e.g. no more
than 1 USD for a public transportation pass – but the number of calls to these
cryptographic functions must be small enough to keep the authentication delay
reasonable. Preserving privacy is also an expected feature of these protocols.

In practice, sensitive applications like those mentioned above rely on 2-pass
or 3-pass challenge-response authentication protocols based on symmetric-key
building blocks, typically block ciphers, although solutions based on asymmetric
primitives have also been proposed. Such a design is secure in theory, but the
? Research supported by the Walloon Region project E-USER (WIST program)

?? Research Associates of the Fonds de la Recherche Scientifique - FNRS

real life is a bit different when dealing with RFID. Indeed, a tag is quite a
simple device that automatically answers to any authentication query from a
reader without alerting its holder. Hence the reader has no means to decide
whether the tag’s holder agreed to authenticate. Because the maximum reader-
tag communication distance can not exceed a few decimeters with cryptography-
compliant tags, the presence of the tag in the close environment of the reader
is considered as an implicit authentication agreement from its holder. Providing
the reader with a means to decide whether the distance to the tag is less than
a given threshold is thus of the utmost importance to achieve practical security
in RFID systems.

We introduce in this paper an RFID authentication protocol that allows such
a verification. It is the first protocol that combines all the expected properties at
the same time: it resists against both mafia fraud and terrorist attacks, reaches
the best known false acceptance rate, preserves privacy, resists to channel errors,
uses symmetric-key cryptography only, requires no more than 2 cryptographic
operations to be performed by the tag, can take advantage of precomputation on
the tag, and offers an optional mutual authentication. As an additional result,
we also point out a weakness in the recent Tu and Piramuthu distance bounding
protocol.

In Section 2, we introduce the relay attacks and the existing distance bound-
ing protocols. We show that they all offer interesting features, but no one was
yet able to combine all these features. We show in Section 3 a new attack against
one of these protocols. We then describe our proposal in Section 4 and analyze
it in Section 5. Finally, we provide a security and efficiency analysis.

2 Relay attacks and distance bounding protocols

2.1 Relay attacks

There are two types of relay attacks: mafia fraud attack and terrorist fraud at-
tack. Mafia fraud attack was first described by Desmedt [5]. In this attack
scenario, both the reader R and the tag T are honest, but a malicious adver-
sary is performing man-in-the-middle attack between the reader and the tag by
putting fraudulent tag T and receiver R. The fraudulent tag T interacts with
the honest reader R and the fraudulent reader R interacts with the honest tag
T . T and R cooperate together. It enables T to convince R as if R communicates
with T , without actually needing to know anything about the secret information.
Terrorist fraud attack is an extension of the mafia fraud attack. The tag T
is not honest and collaborates with fraudulent tag T . The dishonest tag T uses
T to convince the reader that he is close, while in fact he is not. T does not
know the long-term private or secret key of T . The problem with Mafia fraud
attack is that this attack can be mounted without the notice of both the reader
and the tag. It is difficult to prevent since the adversary does not change any
data between the reader and the tag. Therefore mafia fraud attack cannot be
prevented by cryptographic protocols that operate at the application layer. Al-
though one could verify location through use of GPS coordinates, small resource

Fig. 1. Mafia and terrorist fraud attacks

limited devices such as RFID tags do not lend themselves to such applications.
Distance bounding protocols are good solutions to prevent such relay attacks.
These protocols measure the signal strength or the round-trip time between the
reader and the tag. However the proof based on measuring signal strength is
not secure as an adversary can easily amplify signal strength as desired or use
stronger signals to read from afar. Therefore many works are devoted to devise
efficient distance bounding protocols by measuring round-trip time [2, 3, 7, 10,
11, 4, 14–16].

2.2 Distance bounding protocols

In 1993, Brands and Chaum presented their distance bounding protocol [2]. It
consists of a fast bit exchange phase where the reader sends out one bit and
starts a timer. Then the tag responds to the reader with one bit that stops the
timer. The reader uses the round trip time to extract the propagation time. After
series of n rounds (n is a security parameter), the reader decides whether the
tag is within the limitation of the distance. In order to extract the propagation
time, the processing time of the tag must be as short and invariant as possible.
The communication method used for these exchanges is different from the one
used for the ordinary communication. It does not contain any error detection or
correction mechanism in order to avoid the introduction of variable processing
cycles.

Although the idea has been introduced fifteen years ago, it is only quite
recently that distance-bounding protocols attracted the attention of the research
community. In 2005, Hancke and Kuhn proposed a distance bounding protocol
(HKP) [7] that has been chosen as a reference-point because it is the most
popular distance bounding protocol in the RFID framework. As depicted in
Fig. 2, the protocol is carried out as follows. After exchanges of random nonces
(Na and Nb), the reader and the tag compute two n-bit sequences, v0 and v1,
using a pseudorandom function (typically a MAC algorithm, a hash function,

Reader Tag
(secret x) (secret x)

Pick a random Na
Na−−−−−−−−→ Pick a random Nb
Nb←−−−−−−−−

v0‖v1 := h(x, Na, Nb)
with ‖v0‖ = ‖v1‖ = n

Start of rapid bit exchange
for i = 1 to n

Pick Ci ∈ {0, 1}
Start Clock

Ci−−−−−−−−→

Ri =

{
v0

i , if Ci = 0
v1

i , if Ci = 1

Stop Clock
Ri←−−−−−−−−

Check correctness of
Ri’s and 4ti ≤ tmax

End of rapid bit exchange

Fig. 2. Hancke and Kuhn’s protocol

etc.). Then (and repeating this step n times) the reader sends a random bit.
Upon receiving a bit, the tag sends back a bit from v0 if the received bit Ci

equals 0. If Ci equals 1, then it sends back a bit from v1. After n iterations,
the reader checks the correctness of Ri’s and computes the propagation time.
In each round, the probability that adversary sends a correct response is not 1

2
but 3

4 . This is because the adversary could slightly accelerate the clock signal
provided to the tag and transmit an anticipated challenge C ′

i before the reader
sends its challenge Ci. In half of all cases, the adversary will have the correct
guesses, that is C ′

i = Ci, and therefore will have obtained in advance the correct
value Ri that is needed to satisfy the reader. In the other half of all cases, the
adversary can reply with a guessed bit, which will be correct in half of all cases.
Therefore, the adversary has 3

4 probability of replying correctly.
Since this protocol’s publication, several solutions have been proposed to

improve its effectiveness and/or enhance its functionalities.
A solution to reduce the aforementioned probability below 3

4 is to include a
signing message (or message authentication code) as used in other protocols [2,
14, 15]. However a signing message could not be sent with the channel for fast
bit exchanges as it is very sensitive to the background noise. It should be sent
by normal communication method with error detection or correction technique.
Therefore this approach would put an overhead on computation of a tag as well
as communication, which causes the protocol to be slower.

In 2006, Munilla et al. modified the Hancke and Kuhn protocol by applying
“void challenges” in order to reduce the success probability of the adversary

[10]. Their protocol is the first and only approach not using any additional
signing message to reduce the success probability of the adversary. However the
disadvantage of their solution is that it requires three (physical) states: 0, 1, and
void, which is practically very difficult to implement.

HKP is vulnerable to the terrorist fraud attack but this can be solved, as
proposed by Reid et al. in [13], making the bit-strings, v0 and v1, and the long-
term key x intermingled (v0 = Encv1(x)). Thus, if a legitimate tag wants to
reveal the secret, then it will allow the adversary to impersonate it in more than
a single run of the protocol. However, Reid et al.’s protocol does not provide
privacy as it sends identities without any protection. Furthermore, as described
by Piramuthu [12], the probability of the success for an attack is higher than for
HKP.

In 2007, Tu and Piramuthu proposed a protocol to reduce the success prob-
ability of an adversary [15]. They used four for-loop iterations for fast bit ex-
changes, which made the success probability of an adversary equal to (9/16)n.
That is, the reader sends different hash values after n/4-bit exchanges. They also
used the combination of “v0 = v1 ⊕ x” to prevent terrorist fraud attack. How-
ever, we will show in Section 3 that their protocol is in fact not secure against
an active adversary.

Capkun et al. extended Brands and Chaum’s protocol to mutual authentica-
tion, so called MAD (mutual authentication with distance-bounding) in 2003 [4].
However their protocol is not resilient to bit errors during the fast bit exchanges.

Singelée and Preneel proposed a noise resilient protocol in 2007 [14]. They
used error correcting code (ECC) and MAC for the sake of channel error resis-
tance, but this made the protocol slower.

Recently Nikov and Vauclair proposed a protocol [11]. They used more than
a bit for fast exchanges. However it is susceptible to channel noise. Furthermore
the tag needs to compute 2k secret key functions (HMAC or AES) and store the
result.

Finally, Waters and Felten [16] and Bussard and Bagga [3] proposed dis-
tance bounding protocols using public key cryptography respectively. However
the adoption of public key cryptography in a small device such as low-cost RFID
is not applicable yet.

3 New attack on Tu and Piramuthu protocol

We show in this section an attack against the protocol described by Tu and
Piramuthu [15].

3.1 The protocol

The protocol is depicted in Figure 3 (for convenience, we use the same notations
as in the original paper). The Reader first generates a nonce rB and sends x⊕rB
to the tag, where x is a shared long-term secret. Similarly, the tag generates a
random nonce rA and sends x⊕rA. The reader and the tag then derive a common

session key k = h(rA, x||rB) and use this key to split the secret x in two shares,
k and c = k ⊕ x. Then an outer loop is iterated four times, for four different
combination values of (u, v), namely (rA, rA), (rB , rB), (rB , rA), (rA ⊕ rB , rA ⊕
rB). During each iteration of this outer loop, an inner loop is iterated n/4 times.
The inner loop is a rapid bit exchange consisting in a challenge bit qi being sent
by the reader and the corresponding answer Ci being sent by the tag, where
Ci = ki (resp. Ci = ki ⊕ xi) if the challenge was equal to 0 (resp. 1). After this
inner loop, a reader verification is performed by the tag by having the reader
compute and transmit a value ktemp = h(u, x||v), which is then verified by the
tag (this verification step is thus performed 4 times, one at each iteration of the
outer loop). The idea of this verification step is to have the reader validated by
the tag at intermediary steps of the rapid bit exchange, in order to prevent an
adversary from sending queries (random) qi’s and retrieving corresponding Ci’s
in advance. According to [15], this step can also use bit streaming and clocking
to measure (on tag’s side) the distance between tag and reader.

Reader Tag

Pick a random rB
x⊕rB−−−−−−−−−−→ Pick a random rA
x⊕rA←−−−−−−−−−−

k = h(rA, x||rB) k = h(rA, x||rB)
c = k ⊕ x c = k ⊕ x

for (u, v) = {(rA, rA), (rB , rB),
(rB , rA), (rA ⊕ rB , rA ⊕ rB)}

for i = 1 to n/4
Pick qi ∈ {0, 1}

Start clock
qi−−−−−−−→

Ci =

{
ki, if qi = 0
ci, if qi = 1

Stop clock
Ci←−−−−−−−−

Check Ci,4ti

If Ci,4ti invalid, abort process
End for

ktemp = h(u, x||v)
ktemp−−−−−−−−−−→ Verify ktemp = h(u, x||v)

If invalid, abort process
End for

Fig. 3. Tu and Piramathu’s protocol

3.2 Our attack

We show an attack allowing an adversary to recover the long-term key x. To
learn bit xi of that key, the attacker can, during the fast bit exchange, toggle
the value of challenge bit qi when it is transmitted from reader to tag and leave

all other messages untouched. The attacker then observes the reader’s reaction.
As a matter of fact, if the reader accepts the tag, it means that the tag’s answer
Ci was nevertheless correct, and thus that ci = ki. As ci = ki⊕xi, the adversary
can conclude that xi = 0. Similarly, if the reader refuses the tag, the adversary
can conclude that xi = 1.

4 Proposed scheme

4.1 Adversary

We consider an active adversary who entirely controls the channel. That is,
she can eavesdrop, intercept, modify or inject messages. She can also increase
the transmission speed on the channel up to a given bound. We define this
bound as the speed of light. On the other hand, we consider that our adversary
cannot correctly encrypt, decrypt, or sign messages without knowledge of the
appropriate key. We assume that she has no way to obtain such keys except
those of colluding tags.

We assume that the communication protocols are public, enabling an adver-
sary to potentially communicate with a reader or a tag. While communicating
with a tag, the adversary is able to increase or decrease its clock frequency and
thus the computation speed.

We define a neighborhood as a geographical zone around a reader whose
limits are clearly defined and publicly known. We consider that a tag present in a
neighborhood agrees to authenticate. We say that a tag T has been impersonated
if an execution of the protocol convinced a reader that it has authenticated
T while the latter was not present inside the neighborhood during the said
execution. In the same vein, a reader can be impersonated.

4.2 Goals

Authentication. The primary goal of the protocol is to ensure tag authentication,
that is, at the end of the execution of the protocol, the reader gets the conviction
that it communicates with the claimed entity. Mutual authentication is achieved
if the tag also gets the conviction that it communicates with the claimed reader.

Mafia fraud attack resistance. A tag cannot be impersonated, except if it colludes
with the adversary.

Terrorist fraud attack resistance. A tag cannot be impersonated, except if it
reveals its secret key to the adversary.

Low computation complexity. In order to get a practical authentication delay,
the number of cryptographic operations performed by the tag during the authen-
tication process must be as small as possible. Due to their efficiency compared to
asymmetric cryptography, the use of symmetric primitives is certainly desirable
in this respect.

When several tags are present in the field of the reader, each tag must be
singulated through a collision-avoidance protocol before starting the authenti-
cation protocol. During this process when tags are powered but mostly idled, or
whenever tags can be powered without having to authenticate, they are able to
perform some precomputation “for free”.

Low false acceptance rate. In order to get a practical authentication delay, the
number of rounds of the fast phase and the total number of bits exchanged
between the tag and the reader must be kept as small as possible for a given
false acceptance rate. For accuracy reason on the round trip time, we assume
that only one bit can be included per message in the fast phase.

Privacy. The protocol should not reveal the tag identifier except to the legiti-
mate reader.1 Moreover, given any set of recorded protocol executions, only the
legitimate reader should be able to determine whether a tag is involved in two
or more executions.

Channel error resistance. We assume that the channel used during the slow
phase is error-free. This assumption is quite realistic in the sense that there is
no specific time-constraint on that channel. An error-correcting mechanism can
therefore be used.

However, the channel used during the fast phase may suffer from Byzantine
errors. In such a case, the authentication property must be ensured up to a given
error rate threshold. Above this threshold, the reader must abort the protocol.

4.3 Description

Our authentication protocol is based on the MAP1 protocol of Bellare and Rog-
away [1], in the MAP1.1 variant proposed by Guttman et al. [6]. To this protocol,
which provides mutual authentication, a rapid bit exchange step has been added
in order to achieve distance-bounding, and some cleartext information has been
removed to ensure the privacy of the tag.

The MAP1.1 protocol works as follows. Tag and reader are assumed to share
a secret key x.

1. The reader chooses a random nonce NA and transmits it to the tag.
2. The tag chooses a random nonce NB and transmits [[ID,NA, NB]]x to the

reader, where [[m]]x means m‖fx(m), f is a pseudorandom function (PRF),
x is the key of the tag, and ID is the concatenation of the reader’s and tag’s
identifier.

3. The reader computes [[NB]]x and transmits it to the tag. Note that this
extra step is only required if mutual authentication must be achieved. If it
is not necessary for the tag to authenticate the reader, this last step can be
discarded.

1 Note that this is in fact not the most stringent notion of privacy that can be con-
sidered. A stronger notion, in which even the reader does not learn the identity of
the tag, can also be useful in some contexts.

Reader
NA //

��

Tag

��
•

��

•
[[ID,NA, NB]]xoo

��
•

[[NB]]x // •

Taking this protocol as our starting point, four adaptations are proposed.

1. Since tags do not make any difference between the readers, we simply rep-
resent the identity of teh readers as the empty string.

2. Since we want to preserve the privacy of the tags, we do not transmit their
identity in clear. The reader will then need to access a database storing the
identity and key (x, ID) of each tag and to perform an exhaustive search
over this DB, trying all possible keys until a match is found.2

3. Since honest tags and readers are not involved in concurrent sessions, we
can also avoid repeating the transmission of nonces in clear after their initial
transmission, so NA (resp. NB) does not need to be transmitted in clear
during the second (resp. third) round.

4. Since we want our protocol to be distance bounding, a rapid bit exchange
phase is added. The role of this phase is to prove to the reader that it is
directly interacting with the tag, preventing relay attacks.

It can be observed that the first three adaptations do not have any impact on
the authentication properties of the protocol, keeping the analyzes of [1, 6] valid.
The last adaptation will be designed in such a way that it does not interfere
with the other parts of the protocol.

Basic version We first describe a basic version of our protocol and discuss its
security. A more efficient variant is discussed in Section 5.2.

First a preparation phase is performed, involving the generation of nonces,
one application of the PRF and a few XORs. We will discuss below how pre-
computing can be used for low-resource devices. No delays are measured during
this phase.

– Following the MAP1.1 protocol, the reader chooses a random nonce NA and
transmits it to the tag.

– The tag chooses a randomNB and computes a temporary key a := fx(CB , NB)
using its permanent secret key x and NB (here CB is just a system-wide con-
stant).

– The tag splits his permanent secret key x in two shares by computing Z0 :=
a, Z1 := a⊕ x.

2 Note that the protocol is always initiated on reader’s side, so that a reflection attack,
in which a genuine answer from one execution of the protocol is used by an attacker
in another one, is not possible here.

– The tag transmits NB to the reader (which constitutes the first part of the
second message of the MAP1.1 protocol).

After this preparation, the rapid bit exchange phase starts. This phase is
repeated n times, with i varying from 1 to n, and the challenge-response delay
is measured for each step. As explained in Section 2.2, this communication goes
over a channel that does not contain any error detection or correction mechanism,
so we must take into account the fact that channel errors might occur (either
randomly or by action of the attacker) in this phase. Moreover, the protocol
must involve as few tag operations as possible in this phase, and we make this
number of operations fairly minimal: in each round, the tag only needs to select
one out of two pre-computed bits.

– The reader chooses a random bit ci, starts a clock and transmits ci to the tag.
We will denote by c′i the (possibly incorrectly transmitted) value received by
the tag.

– The tag answers by r′
i := Z

c′
i

i . We will denote by ri the value received by the
reader.

– Upon receiving ri, the reader stops the clock, stores the time delay 4ti and
answer received (note that answer’s correctness is not checked at this time),
and moves to the next step.

After the rapid bit exchange phase, the final phase begins. This phase also
involves significant computing overhead, and no delays are measured during it.

– The tag computes tB := fx(c′1, . . . , c
′
n, ID,NA, NB) and transmits tB and

the challenges c′1, . . . , c
′
n it received during the rapid bit exchange phase.

Together with the sending of NB that took place earlier, this is the second
round of the MAP1.1 protocol, with the addition that tB also authenticates
the challenges c′1, . . . , c

′
n received during the rapid bit exchange phase.

– The reader performs an exhaustive search over its tag database until it finds
a pair (ID, x) such that tB := fx(c′1, . . . , c

′
n, ID,NA, NB)).

– The reader computes the values Z0 and Z1.
– The reader checks the validity of the responses made during rapid bit ex-

change phase, i.e.:
• it counts the number errc of positions for which ci 6= c′i;
• it counts the number of positions errr for which ci = c′i, but ri 6= Zci

i ;
• it counts the number of positions errt for which ci = c′i and ri = Zci

i ,
but the response delay 4ti is above the time threshold tmax;

• if errc + errr + errt is above the fault tolerance threshold T , authenti-
cation fails and the protocol aborts.

– The reader computes tA := fx(NB) and transmits it to the tag (this is the
last step of the MAP1.1 protocol).

– The tag checks the correctness of tA. As stated before, the last two steps are
only required if mutual authentication must be achieved. If it is not necessary
for the tag to authenticate the reader, they can be omitted. Still, in both
cases, privacy is guaranteed.

Reader Tag
(x, ID)

Pick a random NA
NA−−−−−−−−→

Pick a random NB

a := fx(CB , NB){
Z0 := a,
Z1 := a⊕ x

NB←−−−−−−−−

Start of rapid bit exchange
for i = 1 to n

Pick ci ∈ {0, 1}

Start Clock
c′

i−−−−−−−→

r′i :=

{
Z0

i , if c′i = 0
Z1

i , if c′i = 1

Stop Clock
ri←−−−−−−−

Store ri,4ti

End of rapid bit exchange

tB := fx(c′1, . . . , c
′
n,

ID, NA, NB)
tB ,c′

1,...,c′
n,

←−−−−−−−−−
Check ID via DB.
Compute Z0, Z1.

Compute errc :=]{i : ci 6= c′i},
errr :=]{i : ci = c′i∧ ri 6= Zci

i },
errt :=]{i : ci = c′i∧ 4ti > tmax}.

If errc + errr + errt ≥ T ,
then REJECT.

tA := fx(NB)
tA−−−−−−−−→

Compute and
compare tA

Fig. 4. Our basic authentication protocol secure against relay attacks

5 Analysis

5.1 Security

To make the security discussion easier, let us first ignore the fault tolerance
parameter. That is, we will consider that the threshold T is 0. The effect on
security of a larger threshold will be discussed in Section 5.3.

Authentication. The security of the basic authentication protocol has been stud-
ied in [1] and [6]. Basically, the presence of NA – a fresh nonce generated by the
reader – in the input of the PRF f authenticates the tag to the reader (as only
the tag and the reader know the value x used to key f). Similarly, the presence of
NB as an argument of fx in fx(NB) guarantees the tag that it was successfully
authenticated by the reader. We refer to the aforementioned papers for more
details.

Let us show that our modifications to MAP1.1 do not modify the security of
the protocol. We did the following modifications to MAP1.1:

– some values that were transmitted in clear in MAP1.1 (e.g., the tag and
reader ID) are not transmitted anymore;

– the values (c1, . . . , cn) are additionally transmitted in clear during the rapid
bit exchange phase, and included as additional argument of the function f .

It is obvious that removing the cleartext transmissions from the protocol
cannot harm security.

The (c1, . . . , cn) bits do not depend on any secret parameter involved in the
protocol, and they are transmitted in the authenticated text transmission mode
proposed for the MAP1 protocol [1].

Considering the rapid bit exchange, we will first argue that a passive obser-
vation of the rapid bit exchange does not reveal any information on x. If we
consider the PRF as a random oracle, a can be seen as a pure random string,
and the construction of Z0, Z1 is a classical secret sharing of x. As only one
share of each bit is revealed during the rapid bit exchange, no information on x
is disclosed by the responses ri. Besides, no information on x can be revealed by
the challenges ci, as these do not depend on x.

Things get a bit different when we consider an active adversary, allowed to
manipulate the messages exchanged during the rapid bit exchange. As in the
attack described in Section 3, if the reader checked for the correctness of ri
without verifying the value of the challenge bits used by the tag (using tB), one
easy attack would be for the adversary to flip one bit ci during transmission from
reader to tag, and then to simply forward the answer of the tag to the reader.
If the authentication is successful, the attacker can conclude that Z0

i = Z1
i

and hence that xi = 0; if the authentication is unsuccessful, she can similarly
conclude that xi = 1. This is the reason why we authenticate the c′i and place the
verification steps after the reception and verification of tB . More precisely, we
protect against active attackers by ensuring that verification is only performed
on bits for which the challenge was not manipulated by the tag. In this way,

– tampering with ci does not reveal any additional information, as the corre-
sponding answer will simply be ignored,3 and

– of course, tampering with answer ri does not reveal any information either.

Tampering with the messages can of course make the protocol fail by DoS,
but, as the attacker anyway knows he is always turning a correct answer into an
incorrect one, he cannot gain any information in this way. We have thus showed
that authentication is well achieved by our protocol.

Terrorist fraud resistance. We will show that only a tag knowing at least n− v
bits of the long-term key x is able to answer the requests issued during the
rapid bit exchange phase with success probability at least (3

4)v. As discussed in
Section 4.1, we will consider that only a tag present in the neighborhood of the
reader is able to answer the requests ci in due time (without the possibility to
obtain assistance from any device not present in the neighborhood), and show
that this tag must know x. Considering that, at step i of the protocol, the tag
will have to respond Z0

i with probability 1
2 and Z1

i with probability 1/2, a tag
ignoring the value of v bits of Z0 or Z1 can only succeed with probability (3

4)v.
From the equalities Z0 = a, Z1 = a⊕ x, the knowledge of 2n− v bits of Z0, Z1

immediately yields the knowledge of at least n−v bits of x. This security bound
is for example reached if we consider a terrorist attack in which a genuine, but
distant, tag transmits the value of Z0 to his accomplice: although no bit of x
has been revealed to the accomplice, she has now 3

4 chance to answer correctly
on each step of the rapid bit exchange.

Mafia fraud resistance. It is worth noting that, as opposed to the Hancke and
Kuhn protocol, the attack described in Section 2.2 (anticipated challenge trans-
mission) does not work against our protocol. As a matter of fact, the presence
in tB of the list of challenges received by the genuine tag prevents this attack in
our context. Therefore, we argue that the security bound against mafia attacks
is (1

2)n.

Privacy. We first show that an adversary who does not know the value of x
does not learn any information on ID. The only message depending on ID is
tB = fx(c1, . . . , cn, ID,NA, NB). It is easy to show that any adversary who could
retrieve any information on the input ID could also distinguish fx from a random
function. As f is supposed to be a PRF, we can conclude that no information
on ID is revealed by the protocol. As far as tracking between various protocol
executions is concerned, the values NB , r0, . . . , rn, tB , c0, . . . , cn observable by an
attacker are either random or the output of a PRF with fresh input and unknown
3 Of course, the adversary will be able to choose which share, Z0

i or Z1
i will be revealed

there, but we already showed that obtaining only one share does not compromise
the secret. Also note that, although the adversary is able to modify the challenges ci

during the rapid bit exchange phase, the presence of tB prevents her from reflecting
this modification in the message sent by the tag, so that the reader will learn which
values were incorrectly received.

key. It is thus clear that all of them appear as random values to the attacker,
and tracking is not possible.

5.2 A more efficient variant

Our protocol, in the version we just presented, involves one rapid bit exchange
step per bit of the key. In a constrained environment, this communication over-
head might be problematic. On the other hand, we cannot for example restrict
the rapid bit exchange to the first m bits of Z0, Z1, because we would then loose
resistance against terrorist attack: a device knowing only the first m bits of the
key x would be able to succeed in the rapid bit exchange phase.

This problem could be solved by having the reader challenge the tag on
m random bit positions of Z0, Z1. However, although very simple, fetching a
specific bit from an integer might be a too complex operation for the minimal
overhead we expect during the rapid bit exchange phase.

Yet, there is a possible compromise. Basically, the reader could send a list of
m bit positions (but not the corresponding challenges) to the tag before the rapid
bit exchange phase, enabling the extraction of these positions from Z0 and Z1

and preserving a fast treatment during the phase itself. Of course, in a terrorist
attack, the genuine device could take advantage of that delay to transmit only
the relevant parts of Z0, Z1 to his accomplice, revealing her only m bits of x.
Yet, as the list changes for each authentication, m random bits of x would have
to be revealed for each authentication, so that the full key would be quickly
revealed.

The full protocol is depicted in Figure 5.2. Below we only describe the part
that changed compared to the initial protocol.

– The reader chooses a random NA; it also chooses a random d with hamming
weight m. Intuitively, d corresponds to a mask pointing the positions on
which the tag will be questioned during the rapid bit exchange. The reader
transmits NA and d to the tag.

– The tag chooses a random NB and computes a := fx(CB , NB), Z0 and Z1

as before. Then it prepares the possible answers by extracting the relevant
parts of Z0, Z1 according to the mask d, building the m-bit vectors R0 and
R1.

– The remainder of the protocol is unchanged, except that R0, R1 is used
instead of Z0, Z1.

It can be observed that the NA and d protocol parameters could actually be
merged to save bandwidth, by requiring the tag to use NA as a mask. However,
as the hamming weight of m must be fixed to some value (or range of values)
in order to guarantee the appropriate security level for the rapid bit exchange,
the set of admissible nonces of n bits is reduced, and the length of NA must be
increased accordingly.

Reader Tag
(x, ID)

Pick a random NA

Pick a random d s.t. H(d) = m
NA,d−−−−−−−−−−→

Pick a random NB

a = fx(CB , NB){
Z0 = a,
Z1 = a⊕ x

for i = 1 to m{
j : index of the next 1 of d(2),
R0

i = Z0
j , R1

i = Z1
j

NB←−−−−−−−−

Start of rapid bit exchange
for i = 1 to m

Pick ci ∈ {0, 1}

Start Clock
c′

i−−−−−−−→

ri :=

{
R0

i , if c′i = 0
R1

i , if c′i = 1

Stop Clock
ri←−−−−−−−

Check: 4ti ≤ tmax

End of rapid bit exchange

tB := fx(c′1, . . . , c
′
n, ID, NA, NB)

tB ,c′
1,...,c′

n,
←−−−−−−−−−

Check ID via DB.
Compute R0, R1.

Compute errc :=]{i : ci 6= c′i},
errr :=]{i : ci = c′i ∧ ri 6= Zci

i },
errt :=]{i : ci = c′i∧

4ti > tmax}.
If errc + errr + errt ≥ T

then REJECT.

tA := fx(NB)
tA−−−−−−−−→

Compute and compare tA

Fig. 5. A more efficient variant of the protocol

5.3 Fault tolerance

Our protocol is tolerant to faults occurring during the rapid bit exchange trans-
missions:4 if some of the bits ci, ri get corrupted during transmission, or get inap-
propriately delayed, authentication can succeed anyway, provided the percentage
of such errors is sufficiently small. Basically the threshold T must be chosen so
that the probability for an adversary to be successful on m−T challenges is ac-
ceptably small. Taking our most pessimistic context, i.e. terrorist fraud attacks,
the chances of success follow a binomial distribution A := Bi(m, 3

4) and we want
Pr[A > m−T] < ε for an appropriate security parameter ε. For example, taking
m = 30 rapid bit exchange steps and tolerating up to two errors (i.e. T = 3)
yields a success probability for the adversary of about 1%. If we consider only
resistance against mafia fraud attacks (so A := Bi(m, 1

2)) and take m = 20 rapid
bit exchange steps, then we can tolerate up to 4 errors and still have less than
1% fraud probability (or tolerate only one error and have the probability shrink
to 0.01%).

5.4 Efficiency

Let us consider the amount of computation to be performed by the most con-
strained device involved in the protocol, i.e. the tag. The most time consuming
part of the protocol is the computation of pseudo-random functions f . As shown
in Fig. 4, the function f is used three times on the tag side: in computing a, tB
and tA. If we need not mutual but unilateral authentication from tag to reader,
we need just two computations, a and tB .

As in [8], we can construct an RFID system which allows a precomputation
in a tag. The contents of the input for the computation of a of our proposed pro-
tocol do not have any information from the reader. Therefore a can be computed
before starting the protocol. Then we need two computations of pseudo-random
functions to achieve mutual authentication (one if we need unilateral authenti-
cation only).

As it involves an exhaustive search in a key database, the workload on reader’s
side is significantly higher, and grows linearly with the number of keys deployed
in the system. To the best of our knowledge, there is no existing method provid-
ing better performance without sacrificing some security, and this is certainly
an interesting subject for further research. In particular, we note that most of
the protocols discussed in Section 2.2 simply consider that the reader knows the
identity of the tag it is questioning, or transmits this identity in clear during the
protocol. Clearly, a variant of our scheme in which a single key is shared through-
out the system would not have this computing overhead while still preserving
privacy regarding outsiders (i.e. without knowledge of the key).

4 As stated before, we assume that other transmissions occur over a channel capable
of error detection.

6 Protocols comparison

Table 1 compares the proposed protocol with previous ones on several points
of view: mafia fraud and terrorist attack resistance, error resistance, privacy
preservation, mutual authentication and computational overhead inside the most
restricted resource, i.e. the tag.

Regarding the security against mafia fraud attack, we compare the success
probabilities for an adversary, in other words, false acceptance ratio against
mafia fraud attack (M-FAR). This is the probability that the reader accepts the
adversary as a legitimate tag. Although Reid et al. claim the M-FAR of their
protocol to be (3/4)n, Piramuthu later showed it to be equal to (7/8)n.

The security against terrorist fraud attack and its success probability for an
adversary (T-FAR) are compared in a similar way.

Then we compare the resilience against channel errors. This resilience is
pretty important for protocol’s robustness, as fast bit exchanges are typically
sensitive to channel errors.

Mafia M-FAR Terrorist T-FAR Err. resis. Privacy MA Comp.

BC [2] Yes (1/2)n No - No - No 2

HK [7] Yes (3/4)n No - Yes - No 1

Reid et al. [13] Yes (7/8)n Yes (3/4)v Yes No No 2

SP [14] Yes (1/2)n No - Yes - No 1 + ECC

Capkun et al. [4] Yes (1/2)n No - No - Yes 4

NV [11] Yes (1/2)n No - No - No 2k

Proposed (MA) Yes (1/2)n Yes (3/4)v Yes Yes Yes 3 (2)

Proposed (no MA) Yes (1/2)n Yes (3/4)v Yes Yes No 2 (1)

Table 1. Comparison of distance bounding protocols

As far as privacy is concerned, Reid et al.’s protocol discloses identities in
cleartext during protocol execution, and is thus not privacy-preserving. Most
of the other protocols assume that the reader knows the identity and secret
key of the tag before starting distance bounding protocol, hence ignoring the
privacy issue or assuming a single secret is shared by all tags. Our protocol
allows the reader to learn the tag’s identity during execution, although we admit
the corresponding overhead is pretty high, since an exhaustive search among all
possible keys is necessary for this identification.

We measure the amount of computation needed in the tag as the required
number of computation of pseudo-random functions such as hash functions, sym-
metric key encryptions, etc.5 We propose our protocol in two flavors, with and
without mutual authentication. The number of computations of our protocol is
three with mutual authentication and two without it. Additionally, one of these
values can be pre-computed in each case (the values between parentheses in
Table 1 refer to the number of computations that must be computed on-line).

5 We note that Singelée and Preneel’s protocol (SP) requires additional error correct-
ing codes (ECC), which normally requires significant computation overhead.

References

1. M. Bellare and P. Rogaway. Entity authentication and key distribution. In Ad-
vances in Cryptology – CRYPTO 93, pages 232–249, Santa Barbara, USA, 1994.
Springer-Verlag - LNCS Vol. 773.

2. S. Brands and D. Chaum. Distance-Bounding Protocols. In Advances in Cryptology
– EUROCRYPT 93, volume 765 of Lecture Notes in Computer Science, pages 344–
359. Springer, 1994.

3. L. Bussard and W. Bagga. Distance-bounding proof of knowledge to avoid real-
time attacks. In IFIP/SEC, 2005.

4. S. Capkun, L. Buttyan, and J.-P. Hubaux. SECTOR: secure tracking of node
encounters in multi-hop wireless networks. In 1st ACM Workshop on Security of
Ad Hoc and Sensor Networks – SASN’03, pages 21–32, 2003.

5. Y. Desmedt. Major security problems with the “Unforgeable” (Feige)-Fiat-Shamir
proofs of identiy and how to overcome them. In SecuriCom ‘88, pages 15–17, 1988.

6. J. D. Guttman, F. J. Thayer, and L. D. Zuck. The faithfulness of abstract protocol
analysis: Message authentication. Journal of Computer Security, 12(6):865–891,
2004.

7. G. Hancke and M. Kuhn. An RFID distance bounding protocol. In the 1st Interna-
tional Conference on Security and Privacy for Emergin Areas in Communications
Networks (SECURECOMM’05), pages 67–73. IEEE Computer Society, 2005.

8. G. Hofferek and J. Wolkerstorfer. Coupon recalculation for the GPS authentication
scheme. In Eighth Smart Card Research and Advanced Application IFIP Conference
- CARDIS 2008, 2008. To appear.

9. J. Munilla and A. Peinado. Distance bounding protocols with void-challenges for
RFID. In Workshop on RFID Security - RFIDSec ’06, 2006.

10. J. Munilla and A. Peinado. Distance bounding protocols for RFID enhanced by
using void-challenges and analysis in noisy channels. Wireless communications and
mobile computing, 2008. Published online: Jan 17 2008, an earlier version appears
in [9].

11. V. Nikov and M. Vauclair. Yet another secure distance-bounding protocol. Avail-
able at http://eprint.iacr.org/2008/319. An earlier version appears in SECRYPT
2008.

12. S. Piramuthu. Protocols for RFID tag/reader authentication. Decision Support
Systems, 43:897–914, 2007.

13. J. Reid, J. G. Nieto, T. Tang, and B. Senadji. Detecting relay attacks with timing-
based protocols. In F. Bao and S. Miller, editors, Proceedings of the 2nd ACM
symposium on Information, computer and communications security, pages 204–
213. ACM, 2007. Available at http://eprint.qut.edu.au/view/year/2006.html.

14. D. Singelée and B. Preneel. Distance bounding in noisy environments. In Security
and Privacy in Ad-hoc and Sensor Networks - ESAS 2007, volume 4572 of Lecture
Notes in Computer Science, pages 101–115. Springer, 2007.

15. Y.-J. Tu and S. Piramuthu. RFID distance bounding protocols. In the 1st Inter-
national EURASIP Workshop in RFID Technology, 2007. Vienna, Austria.

16. B. Waters and E. Felten. Secure, private proofs of location. Princeton Computer
Science, TR-667-03, 2003.

