
How to Compare Profiled Side-Channel Attacks?

François-Xavier Standaert1?, François Koeune1??, Werner Schindler2
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Abstract. Side-channel attacks are an important class of attacks against
cryptographic devices and profiled side-channel attacks are the most
powerful type of side-channel attacks. In this scenario, an adversary first
uses a device under his control in order to build a good leakage model.
Then, he takes advantage of this leakage model to exploit the actual
leakages of a similar target device and perform a key recovery. Since
such attacks are divided in two phases (namely profiling and online at-
tack), the question of how to best evaluate those two phases arises. In
this paper, we take advantage of a recently introduced framework for
the analysis of side-channel attacks to tackle this issue. We show that
the quality of a profiling phase is nicely captured by an information the-
oretic metric. By contrast, the effectiveness of the online key recovery
phase is better measured with a security metric. As an illustration, we
use this methodology to compare the two main techniques for profiled
side-channel attacks, namely template attacks and stochastic models.
Our results confirm the higher profiling efficiency of stochastic models
when reasonable assumptions can be made about the leakages of a device.

1 Introduction

Side-channel attacks are a powerful class of cryptanalysis techniques in which
an adversary not only takes advantage of the mathematical properties of an
algorithm but also of the physical properties of its implementation. Profiled
side-channel attacks are the most powerful type of side-channel attacks and can
be viewed as divided in two phases. First, a profiling phase provides an adversary
with a training device and allows him characterizing its physical leakages. Sec-
ond, an online exploitation phase is mounted against a similar target device in
order to perform a key recovery. Standard profiled side-channel attacks include
template attacks and stochastic models, respectively introduced in [1] and [5].

Because of their division in two phases, a usual question for such attacks
is to determine their effectiveness in profiling and attacking a device. In this
work, we follow the analysis of [2] in which the performances of template attacks
and stochastic models were analyzed. In this reference, the efficiency of the
online phase was nicely captured by measuring the success rate of a key recovery
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adversary exploiting templates or stochastic models. By contrast, the criteria
used to quantify the quality of the profiling phase had a more ad hoc flavor.
As a consequence, we suggest that the framework of [7] can be used to improve
this analysis. We present experiments to confirm how and why an information
theoretic metric captures the profiling efficiency of an attack while a security
metric rather measures the effectiveness of its online phase. Hence, our results
confirm the previous intuitions with a more rigorous theoretical background.
In practice, we observe that stochastic models built from sound engineering
assumptions can give a very precise image of a device’s leakages from a reduced
amount of profiling measurements. More formally, our experiments can be viewed
as the practical counterparts of Theorems 1 and 2 in [7]. They show that the
proposed principles for comparing side-channel attacks are not only theoretical
but can also be practically meaningful and solve actual engineering problems.

The rest of this paper is structured as follows. Section 2 introduces the pre-
liminary assumptions in profiled side-channel attacks. Section 3 recalls the evalu-
ation metrics of [7]. Section 4 provides a brief description of the template attacks
and stochastic models with a discussion of their parameters. The core of the pa-
per is in Sections 5 and 6 in which our experimental comparisons are presented
and their limitations are analyzed. Eventually, conclusions are in Section 7.

2 Preliminary assumptions for profiled attacks

Before starting a careful analysis of particular types of attacks, it is important
to consider the different assumptions that can sometimes be hidden in the de-
scription and implementation of a profiled side-channel attack. In particular, this
section aims to list four decisions that generally have to be taken.

Known or chosen plaintext models. As a matter of fact, any profiled side-
channel attack starts by building a leakage model that will be used in the online
part of an attack to predict the actual leakages of a target device. As a con-
sequence arises the question: “for which inputs will the model be built?”. In
the practice of side-channel attacks, there are essentially two available choices,
namely known or chosen plaintext leakage models. If a chosen plaintext leakage
model is decided, it suffices if the adversary only builds a model for certain plain-
texts or sequences of plaintexts. Hence, the same chosen plaintexts or sequences
of plaintexts will have to be used in the online phase of the attack. By contrast, if
a known plaintext leakage model is considered, the leakages corresponding to the
encryption of any plaintext can be exploited in the online phase of the attack1.
1 We mention that chosen plaintext models are not particularly desirable in template

attacks (since they limit the exploitable plaintexts in the online phase of the attack).
But they should not be confused with (possibly adaptive) chosen plaintext attacks
that generally improve the effectiveness of the online phases. Note also that known
or chosen ciphertexts could be considered equivalently.
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Weight or distance based models. A side-channel adversary always has to
do some minimal assumptions on the architecture of his target device. Typically,
side-channel leakages such as the power consumption are generally dependent on
the transition between two inputs rather than on single inputs. If such transition-
based leakages are actually observed, it implies that the models also have to be
built for different input transitions rather than for different inputs. Such a con-
text typically corresponds to the Hamming distance leakage models described,
e.g. in [4]. By contrast, in certain devices (e.g. smart cards) the meaningful
transitions are not between two inputs but between a variable input and a con-
stant state. In such scenarios, leakage models based on single inputs are again
meaningful, just as when Hamming weight models apply2.

Symmetry properties in the leakages. Depending on the two previous de-
cisions, an adversary will decide to build a model (e.g. templates) for different
inputs of the target device. In the context of a block cipher, it means that models
have to depend on plaintexts and keys. But the lower the number of templates
to build, the better the profiling efficiency. Hence, one will typically try to take
advantage of symmetry properties in the leakages, such as the Equal Images un-
der different Subkeys (EIS) property defined in [5]. For example, if it is known
that (most of) the leakages of a block cipher implementation are not dependent
on both the plaintext and the key but only on the XOR between the plaintext
and the key, then templates can be built only for these XOR values. For further
considerations on symmetries, we refer the interested reader to [6].

Need to program a target device. Eventually, it is worth mentioning that it
is generally assumed that profiled side-channel attacks require a device that one
can program (e.g. control the keys) during profiling. In fact, if an EIS property is
assumed, it can be sufficient to profile the device with only one known key. When
stochastic models are considered, it may even be possible to profile without a
device for which the key is known (see [5], Remark 2 for the details).

2.1 Target implementation

The goal of this paper is not to investigate one particular device but to pro-
vide a methodological contribution to the comparison of profiled side-channel
attacks. For this reason, we decided to analyze a simple simulated attack sce-
nario in which all the parameters are under control. As will be clear later, it
allows putting forward interesting intuitions on the respective effectiveness of
the template attacks and stochastic models but also on their limitations.

In practice, we investigated the following context. Let k be the first master
key byte of the AES Rijndael and xi be a corresponding input plaintext byte. Let
2 In theory, longer history effects could be observed, i.e. the actual leakages may not

only depend on the transition between two inputs but also on previous ones. We
focus on the weight and distance based models because they are very common in the
literature. But extending the choice towards other cases would be possible.
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S be the AES S-box and yi = S(xi⊕k) be the output of this S-box. We consider an
adversary that is provided with leakage traces3 of the form [xi, HW (S(xi⊕k)) +
ni] where HW is the Hamming weight function and ni is a realization of normally
distributed noise, described by a random variable Ni with expectation µ = 0
and with variance σ2. In the following sections, we will evaluate this adversary
in function of two parameters: the amount of traces used in the profiling stage of
the attack qp and the amount of traces used in the online phase of the attack q.
With respect to the previous assumptions, we will build known plaintext models
assuming weight based leakages. Eventually, the adversary will take advantage
of an EIS property and assume that the leakage for every pair (x1, k1), (x2, k2)
such that x1 ⊕ k1 = x2 ⊕ k2 is identical. We acknowledge that this scenario
(mainly selected for tutorial purposes) hides the practical problem of selecting
the meaningful time samples in the leakage traces (discussed, e.g. in [2, 9]), due
to its univariate nature. However, the proposed evaluation methodology can be
straightforwardly extended to multivariate probability distributions.

3 Evaluation metrics

Following the framework introduced in [7], we will evaluate our different exper-
iments with a combination of information theoretic and security metrics.

Information theoretic metric. Let K be a discrete random variable repre-
senting the target key byte of our side-channel attacks and k be a realization of
this variable (i.e. the key in one instance of attack). Let Lq be a random vec-
tor describing random side-channel observations generated with q queries to the
target physical computer and lq = [l1, l2, . . . , lq] be a realization of this random
vector, with e.g. li = HW (S(xi⊕ k)) +ni (and Li = HW (S(xi⊕ k)) +Ni) as ex-
plained in the previous section. Let finally Pr[k|lq] be the conditional probability
of a key byte k given a leakage lq. We define a conditional entropy matrix as:

Hq
k,k∗ = −

∑
lq

Pr[lq|k] · log2 Pr[k∗|lq], (1)

where k∗ denotes a possible key class candidate in the attack. From this matrix,
we derive Shannon’s conditional entropy as follows:

H[K|Lq] = −
∑

k

Pr[k]
∑
lq

Pr[lq|k] · log2 Pr[k|lq] = E
k

Hq
k,k,

where E denotes the mathematical expectation and Pr[k|lq] is derived from the
Bayes law. We note that this definition is equivalent to the classical one since:

H[K|Lq] = −
∑
lq

Pr[lq]
∑

k

Pr[k|lq] · log2 Pr[k|lq]

= −
∑

k

Pr[k]
∑
lq

Pr[lq|k] · log2 Pr[k|lq]

3 Each trace contains only one leakage sample, i.e. we only consider univariate attacks.
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Then, we define an entropy reduction matrix: H̃
q

k,k∗ = H[K]−Hq
k,k∗ , where

H[K] is the entropy of the key byte K before any side-channel attack has been
performed: H[K] = −Ek log2 Pr[k]. It directly yields the mutual information:

I(K; Lq) = H[K]−H[K|Lq] = E
k

H̃
q

k,k (2)

Security metric. We consider a side-channel key recovery adversary of which
the aim is to guess a key byte k with non negligible probability. For this purpose
and for each candidate k∗, he compares the actual observation of a leaking device
lq with some key dependent model for these leakages M(k∗, .). The construction
of these models (otherwise said templates or stochastic models) will be detailed in
the next section. Let T(lq,M(k∗, .)) be the statistical test used in the comparison.
We assume that the highest value of the statistic corresponds to the most likely
key candidate. For each observation lq, we store the result of the statistical test
T in a vector gq = T(lq,M(k∗, .)) containing the key candidates sorted according
to their likelihood: gq := [g1, g2, . . . , g|K|] (e.g. in our present context |K|=256).
Then, for any side-channel attack exploiting a leakage vector lq and giving rise
to a result gq, we define the success function of order o against a key byte k as:
So

k(gq)=1 if k ∈ [g1, . . . , go], else So
k(gq)=0. It leads to the oth-order success rate:

Succo
K = E

k
E
lq

So
k(gq) (3)

Intuitively, a success rate of order 1 (resp. 2) relates to the probability that the
correct key byte is sorted first (resp. among the two first ones) by the adversary.

4 Description of the attacks

4.1 Classical template attacks

Templates construction. Suppose that an adversary is provided with Nx

leakage traces corresponding to the computation of a secret value v. As will
be discussed in Section 4.3, this value can but does not have to be the secret
key k. In theory, one can build templates for any intermediate value computed
by a leaking cryptographic device. In the template attacks of [1], a multivariate
Gaussian noise is considered, which means that the vectors {lv,i

q }
Nx
i=1 are assumed

to be drawn from the multivariate distribution:

N (lv,i
q |µv,Σv) =

1

(2π)
N
2 |Σv|

1
2

exp

{
−1

2
(lv,i

q − µv)>Σ−1
v (lv,i

q − µv)

}
,

where the mean µv and the covariance matrix Σv specify completely the noise
distribution associated to each secret v. Constructing the templates consists
then in estimating the sets of parameters {µv}

|V|
v=1 and {Σv}|V|v=1. A standard

approach is to use the empirical mean and covariance matrix associated to the
observations {lv,i

q }
Nx
i=1: µ̂v = 1

Nx

∑Nx

i=1 lv,i
q , Σ̂v = 1

Nx

∑Nx

i=1(lv,i
q − µ̂v)(lv,i

q − µ̂v)>.
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Attack. Assume now that there are |V| possible secret values. In order to de-
termine by which secret signal a new vector lnew was generated, we apply Bayes’
rule. This leads to the following classification rule:

ṽ = argmax
v∗

P̂r[v∗|lnew] = argmax
v∗

P̂r[lnew|v∗] Pr[v∗],

where P̂r[lnew|v∗] = N (lnew|µ̂v∗ , Σ̂v∗) and Pr[v∗] is the a priori probability of
the value candidate v∗. The classification rule assigns lnew to the candidate v∗

with the highest a posteriori probability. In general, we have Pr[v∗] = 1
|V| .

Interestingly, such template attacks require Nx traces to build each of the
|V| possible models (i.e. mean vectors, covariance matrices). Hence, the overall
number of traces for profiling qp equals Nx × |V|. We note again that in our
example, each execution of the S-box only gives rise to a single leakage sample.
Hence we are limited to univariate attacks. But the following analysis would
apply identically if each leakage trace was containing several samples.

Finally, in the (frequent) case where the values v for which the templates are
built are not equal to the target key k, the adversary additionally combines the
leakages corresponding to different key-dependent values in order to perform a
key recovery, i.e. he computes k̃ = argmax

k∗

∏q
i=1 P̂r[lnew,i|xi, k

∗].

4.2 Stochastic models

The stochastic models introduced in [5] work in a slightly different fashion than
classical template attacks in the sense that they attempt to take advantage of
the adversary’s knowledge of the target device during the profiling phase. Let
lq = [l1, l2, . . . , lq] be the leakage vector defined in the previous sections, li be
a leakage trace and li(t) a leakage sample in this trace. In theory, any of those
samples is the output of a leakage function Lt such that, e.g. in our block cipher
context, li(t) = Lt(xi, k). Stochastic models assume that this leakage function
can be written as the sum of a deterministic part and a random part, namely:
Lt(xi, k) = δt(xi, k) + ρt. From this basic assumption results the fact that the
profiling phase will now be divided in two parts in order to approximate the
leakage function deterministic part and random part separately.

Approximation of the leakage function deterministic part. In this first
phase, it is assumed that the deterministic part of the leakage function can be
approached as a linear combination δ̂t(xi, k) =

∑u−1
j=0 βj,t·gj,t(xi, k), for some well

chosen base functions gj,t of the plaintext and the key4. Hence, the goal of this
first phase is to find the closest approximation of this form. Finding a good base
[g0,t, g1,t, . . . , gu−1,t] is typically where engineering intuition can be exploited
since one has to select the functions of which the output influences the actual
leakages. The better the base vector functions are correlated with the actual
4 ... and any other possible input, e.g. the masks in case of protected designs.
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leakages, the better the approximation of δt. Quite naturally, the best situation
for an adversary is to have a small basis that perfectly captures all the leakage
dependencies, i.e. to have a fast convergence towards a good approximation.

In practice, the adversary first generates N1 leakage traces corresponding to
plaintexts xi and keys k and builds the following matrix:

A =


g0,t(x1, k) g1,t(x1, k) ... gu−1,t(x1, k)
g0,t(x2, k) g1,t(x2, k) ... gu−1,t(x2, k)

... ... ... ...
g0,t(xN1 , k) g1,t(xN1 , k) ... gu−1,t(xN1 , k)


As mentioned in Section 2, depending on the exploitation or not of a symmetry
property in the leakages, it can be necessary or not to actually change the key
during the profiling (note that is generally true for template attacks as well).
Then, the adversary takes the leakage vector lN1(t) = [l1(t), l2(t), . . . , lN1(t)]
corresponding to the encryption of the same plaintexts with the same keys as in
the matrix A. The approximation of δt can eventually be obtained by applying
the least square method and simply computing the coefficients βj,t as follows:

bt = [β0,t, β1,t, . . . , βu−1,t] = (AT ·A)−1 ·AT · lN1(t)

Approximation of the leakage function random part. As for the previous
template attacks, stochastic models assume a multivariate gaussian distribution
for the random part of the leakages. In order to approximate this distribution,
the adversary generates N2 new traces and first evaluates a random vector that
corresponds to the approximation error for m different time samples:

rm = [rt1 , rt2 , . . . , rtm
], with rtj

= Ltj
(xi, k)− δ̂tj

(xi, k)

From the N2 realizations of the corresponding random variable Rm, he then
computes the m×m empirical covariance matrix C such that cij = Cov(rti , rtj ).

Attack. In this third phase, the adversary obtains N3 new traces lnew,i=L(xi, k).
For each of those traces, he first computes a noise vector: zi = [lnew,i(t1) −
δ̂t1(xi, k), lnew,i(t2)− δ̂t2(xi, k), . . . , lnew,i(tm)− δ̂tm(xi, k)]. From this vector, he
can compute the following probabilities:

P̂r[zi|xi, k
∗] =

1√
(2π)m|C|

exp
{
−1

2
zT

i C
−1zi

}
Finally, he combines these probabilities and applies the maximum likelihood rule:

k̃ = argmax
k∗

N3∏
i=1

P̂r[zi|xi, k
∗]

Hence, the total number of traces for profiling a stochastic model equals qp =
N1 +N2 and the number of traces in the online phase equals q = N3.
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4.3 Selection of templates and base vectors

A consequence of the previous descriptions is that both template attacks and
stochastic models need to do some arbitrary choices before starting to profile a
device. In the context of template attacks, one has to define the secret values v
for which templates will be built. When stochastic models are considered, one
has to determine the base functions. Therefore, if our goal is to compare those
techniques on a fair basis, it is important to perform this arbitrary choice with
assumptions as close as possible. For the template attacks, because we assume
an EIS property, we decided to build templates for each of the |V| = 256 possible
values of xi ⊕ k. For the stochastic models, we assumed that the leakages were
dependent of the 8 bits of the S-box output yi = S(xi ⊕ k). Hence the base
functions used in our experiments were [1, yi(1), yi(2), . . . , yi(8)], where yi(j)
denotes the jth bit of yi (here interpreted as a real number). We note that for
both attacks, we could similarly assume that the leakages only depend on the
Hamming weight of the S-box output. It would have resulted in the construction
of only 9 templates corresponding to those Hamming weights and the use of a
2-dimensional basis [1, HW (yi)] for the stochastic models.

5 Experiments

5.1 Empirical computation of the metrics

In this section, we present the results of different simulated profiled attacks. For
this purpose, we empirically evaluated our different metrics as follows.

1. We generated large amounts of profiling traces.
2. We split these traces in different sets of qp traces (with N1 = N2 = qp/2)5.
3. For various qp values, we constructed templates and stochastic models.
4. Eventually and for various number of traces q, we evaluated the attacks, i.e.

– We evaluated the probabilities P̂r[k∗|xi, lnew,i],
– From those probabilities, we estimated the first-order success rate in

function of q and the conditional entropy Ĥ[K|L1].

In practice, the traces were generated from uniformly distributed plaintexts.
We mention that since all our experiments are simulated, we were not limited
in the amount of traces generated nor by statistical sampling problems in the
estimation of the metrics. Note also that, following the analysis in [7], the success
rate was estimated in function of the number of queries in the online phase of
the attacks. By contrast, the conditional entropy was only estimated for q = 1.

5 Usually, N2 should increase as the number m of considered time instants t1, . . . , tm
increases, while m is irrelevant for the choice of N1. Also, if the implementation has
no symmetries, N2 is generally of subordinate relevance compared to N1.
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Fig. 1: Entropy reduction matrix of a sound leakage model.

5.2 Sanity check: the conditional entropy matrix

A first interesting step in the evaluation of a leakage model (i.e. templates-based
or stochastic) is to check if it is at least good enough to perform a successful
key recovery. The conditional entropy matrix is a particularly useful tool with
this respect. As demonstrated in [7], Theorem 1, a matrix Ĥ

1

k,k∗ such that its
diagonal values are minimum for all keys indicates a sound leakage model (i.e.
a leakage model that allows asymptotically successful key recoveries). Hence,
any time we constructed a new leakage model, we checked its soundness. For
example, Figure 1 illustrates the entropy reduction matrix of a sound leakage
model obtained from a template attack in which every template was profiled
with 16 traces. We can clearly see the significantly higher information leakages
of the diagonal values. It is interesting to observe that while a sound leakage
model guarantees a successful key recovery, it is not a necessary condition. One
could easily imagine a leakage model such that only certain templates have been
properly profiled and nevertheless leads to successful attacks.

5.3 Evaluation of the attacks

Next to the sanity check of the conditional entropy matrix, Figures 2 and 3 re-
spectively represent the estimation of our metrics for the two considered attacks.
Interestingly, the success rate plot is 2-dimensional since it depends on both qp
and q. By contrast, the conditional entropy plot is only computed for q = 1 and
hence only depends on qp. Quite naturally, the success rate tends to one when the
number of traces in the profiling and online phases increases. It is worth noting
that the conditional entropy value is sometimes higher than 8 which clearly indi-
cates an insufficient profiling. From a practical point of view, the figure directly
suggests the increased effectiveness of the profiling phase when using stochastic
models compared to template attacks. This is because only one function in a
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9-dimensional subspace has to be approximated compared to the building of 256
templates. From a more theoretical point of view, we can see that an increase
in the amount of traces for profiling improves the effectiveness of the attacks
(or informativeness of the models) up to a certain bound. It is consequently
interesting to use the information theoretic metric to determine this bound. In
our example, we can observe that template attacks and stochastic models have
their conditional entropy that seem to converge towards the same value. It indi-
cates that the base functions used to approximate the leakages properly capture
their dependencies (which is expected since we know that the leakages actually
correspond to the noisy Hamming weights of the AES S-box output).

Fig. 2: Conditional entropy and success rate of the template attacks.

Fig. 3: Conditional entropy and success rate of the stochastic models.
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5.4 Comparison of the attacks

Given the previous results, a very natural question is to wonder if we can properly
quantify the effectiveness of the profiling and online phases of the investigated
attacks. As a matter of fact, this question can be divided in three parts: (1)
“which profiling is the fastest to build a sound model?”, (2) “which profiling
gives rise to the smallest conditional entropy?” and (3) “which profiling gives
rise to the most efficient online attacks?”. In order to answer these questions, it
is convenient to plot the conditional entropy values in a logarithmic scale as in
the left part of Figure 4. From this picture, it clearly appears that the profiling
of stochastic models is one order of magnitude faster than the one of classical
template attacks in our example, which answers the first question. We then
see (again) that both methods seem to converge towards the same conditional
entropy value which answers the second question. Eventually and following [7],
Theorem 2, this also implies that stochastic models and template attacks should
be as efficient in the online attacks if a sufficient profiling is used. This is because
a more informative model generally gives rise to a more efficient online attack.
As an illustration, we plotted the success rates corresponding to three different
profiling phases in the right part of the figure and they confirm this intuition.
Hence, the information theoretic and security metrics appear as good methods
for the comparison of the profiling and online attack efficiencies, respectively.
In practice, since the main goal of a profiling step is to build a precise leakage
model, the most important parameter to compare this step is usually the smallest
value of the conditional entropy that can be reached. But when the limit of this
conditional entropy for increasing qp values is identical for different methods
or in contexts where the number of profiling traces is limited, the rapidity of
converging towards a sound leakage model becomes important as well.

Fig. 4: Left figure: comparison of the conditional entropies - plain: template attacks,
dotted: stochastic models, dashed: histograms. Right figure: comparison of the success
rates - plain: template attack with H[S|L1] ' 7.94, dotted: stochastic model with
H[S|L1] ' 7.92, dashed: stochastic model with H[S|L1] ' 7.98.
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Summarizing, the speed of convergence of a profiling method is measured by the
X axis in the left part of Figure 4; the informativeness of the profiled models is
measured by the Y axis of Figure 4; and this informativeness is generally related
to the success rate of the corresponding online attacks.

We mention that for illustration, we also evaluated a naive profiling in which
the Gaussian templates were replaced by histograms. As observed in the left
part of Figure 4, such histograms are slower to build less informative models. In
theory, one could of course imagine many other types and contexts of profiling
(e.g. profiling that produces sound but not very informative models very fast or
profiling that produces very informative models very slowly).

6 Limitations

The previous sections were dedicated to the description of an exemplary context
in which the proposed methodology to compare profiled side-channel attacks was
meaningful. Before concluding the paper, this section aims to briefly discuss the
extent to which the previous conclusions are generally true.

A first restriction that has to be mentioned relates to the evaluation frame-
work itself. As demonstrated in [7], there is no one-to-one relation between the
conditional entropy and the success rate computed for a general leakage function.
In numerous practical applications, the intuition that more conditional entropy
implies less success rate is verified. But this does not prevent the possible ex-
istence of counterintuitive situations. It remains that the proposed metrics and
relations are at least more meaningful than ad hoc evaluation criteria. But a
certain level of scepticism and the verification of some relations such as in the
right part of Figure 4 are always in place in the analysis of side-channel attacks.

A second restriction relates to the evaluation of the metrics in real measure-
ment environments where statistical sampling can become an issue. As a matter
of fact, reaching a high confidence level in the evaluation of the metrics when
computed from small unprotected devices is generally not an issue. But, e.g.
computing the conditional entropy for a protected hardware design can be more
difficult. With this respect, it is worth remembering that comparing implemen-
tations according to their information leakages is only meaningful in the context
of sound leakage models. Hence, the more challenging the target device, the more
interesting the entropy matrix sanity check of Section 5.2.

Thirdly, it is important to acknowledge that the comparison between two
side-channel attacks such as templates attacks and stochastic models in this
paper is in essence implementation-dependent. What this paper provides is a
methodology that allows comparing these attacks on a sound basis, for one given
implementation (or for a class of similar implementations). But changing the ex-
perimental conditions can affect the practical conclusions that are obtained from
a set of experiments. For example, we conclude from our investigated context
that the profiling efficiency of stochastic models is much higher than the one
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of classical template attacks. In fact, this conclusion mainly holds because the
base functions chosen to build our stochastic models perfectly capture the actual
leakage dependencies. But in case the base vectors are not perfectly chosen, the
generic nature of template attacks may allow them to better incorporate the
physical specificities of the measurements. Yet, we point out that the subspace
can always be selected so large that it catches all relevant peculiarities, possibly
at cost of profiling efficiency. Hence, template attacks can be viewed as the lim-
iting case of the stochastic approach, when the subspace equals the full vector
space. In other words, stochastic models generally trade a bit of the generality
of template attacks for a more efficient (i.e. faster) profiling.

Eventually, let us mention that there are situations where templates are more
appropriate than stochastic models. An interesting example is the following. Say
the S-box in a block cipher is unknown and a device only leaks the Hamming
weights of this S-box output. Then, templates can still be built for any value of
xi⊕k and result in a sound leakage model. By contrast, the previous (standard)
selection of basis vectors that depend on S(xi⊕ k) is not possible anymore. And
a basis made of the 8 bits of xi⊕ k will not lead to a good approximation of the
leakage function, because it does not not capture the S-box non-linearity.

7 Conclusions

This paper presents an application of the methodology introduced in [7] to the
analysis of template attacks and stochastic models. We investigated an exem-
plary context of simulated leakages in order to confirm the soundness of some
metrics to compare profiled side-channel attacks. Extending this analysis and
evaluation towards more complex scenarios is a good scope for further research.

In particular, the evaluation of multivariate attacks against masked imple-
mentations or non-CMOS devices would be interesting. Since in general, the
problem of power-based side-channel attacks can be viewed as a probability
density function estimation problem, it is expected that the intuition provided
by an information theoretic analysis as in this work will generally hold. But addi-
tional empirical confirmations would strengthen this expectation. For example,
it is known that the conditional entropy can be used to evaluate masked imple-
mentations [8] and that stochastic models are also applicable in this context [3,
6]. A practical question is to determine how much the masking exactly affects
the profiling efficiency of profiled attacks (with known or unknown masks).

Acknowledgements. The authors would like to thank the reviewers of ACNS
2009 for their meaningful comments about this work.

13



References

1. S. Chari, J. Rao, P. Rohatgi, Template Attacks, in the proceedings of CHES 2002,
Lecture Notes in Computer Science, vol 2523, pp 13-28, CA, USA, August 2002.

2. B. Gierlichs, K. Lemke, C. Paar, Templates vs. Stochastic Methods, in the pro-
ceedings of CHES 2006, Lecture Notes in Computer Science, vol 4249, pp 15-29,
Yokohama, Japan, October 2006.

3. K. Lemke, C. Paar, Analyzing Side-Channel Leakage of Masked Implementations
with Stochastic Methods, in the proceedings of ESORICS 2007, Lecture Notes in
Computer Science, vol 4734, pp 454-468, Dresden, Germany, September 2007.

4. S. Mangard, E. Oswald, T. Popp, Power Analysis Attacks, Springer, 2007.
5. W. Schindler, K. Lemke, C. Paar, A Stochastic Model for Differential Side-Channel

Cryptanalysis, CHES 2005, Lecture Notes in Computer Science, vol 3659, pp 30-46,
Edinburgh, Scotland, September 2005.

6. W. Schindler, Advanced Stochastic Methods in Side-Channel Analysis on Block Ci-
phers in the Presence of Masking, J. of Math. Cryptology, vol 2, pp 291-310, 2008.

7. F.-X. Standaert, T.G. Malkin, M. Yung, A Unified Framework for the Analysis of
Side-Channel Key Recovery Attacks, to appear in the proceedings of Eurocrypt 2009.
Extended version available from: Cryptology ePrint Archive, Report 2006/139.

8. F.-X. Standaert, E. Peeters, C. Archambeau, J.-J. Quisquater, Towards Security
Limits in Side-Channel Attacks, in the proceedings of CHES 2006, Lecture Notes
in Computer Science, vol 4249, pp. 30–45, Yokohama, Japan, October 2006. Latest
version available from: http://eprint.iacr.org/2007/222.

9. F.-X. Standaert, C. Archambeau, Using Subspace-Based Template Attacks to Com-
pare and Combine Power and Electromagnetic Information Leakages, CHES 2008,
Lecture Notes in Computer Science, vol 5154, Washington DC, USA, August 2008.

14


