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Abstract. The Mutual Information Analysis (MIA) is a generic side-
channel distinguisher that has been introduced at CHES 2008. This pa-
per brings three contributions with respect to its applicability to practice.
First, we emphasize that the MIA principle can be seen as a toolbox in
which different (more or less effective) statistical methods can be plugged
in. Doing this, we introduce interesting alternatives to the original pro-
posal. Second, we discuss the contexts in which the MIA can lead to
successful key recoveries with lower data complexity than classical at-
tacks such as, e.g. using Pearson’s correlation coefficient. We show that
such contexts exist in practically meaningful situations and analyze them
statistically. Finally, we study the connections and differences between
the MIA and a framework for the analysis of side-channel key recovery
published at Eurocrypt 2009. We show that the MIA can be used to com-
pare two leaking devices only if the discrete models used by an adversary
to mount an attack perfectly correspond to the physical leakages.

1 Introduction

The most classical solutions used in non profiled side-channel attacks are Kocher’s
original DPA [14] and correlation attacks using Pearson’s correlation coefficient,
introduced by Brier et al. [5]. In 2008, another interesting side-channel distin-
guisher has been proposed, denoted as Mutual Information Analysis (MIA) [12].
MIA aims at genericity in the sense that it is expected to lead to successful
key recoveries with as little assumptions as possible about the leaking devices it
targets. In this paper, we confirm and extend the ideas of Gierlichs et al. and
tackle three important questions with respect to this new distinguisher.

1. How to use MIA? In general, MIA can be viewed as the combination of
two subproblems. In a first stage of the attack, an adversary has to estimate

the leakage probability density functions for different key-dependent models. In
a second stage of the attack, this adversary has to test the dependence of these
models with actual measurements. In the original description of [12], the MIA
is using histograms for the first stage and a Kullback-Leibler divergence for the
second stage. In this paper, we argue that in fact, the MIA can be seen as a
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toolbox in which different probability density estimation techniques and notions
of divergence can be used. We show that these different solutions (some of them
being introduced in [3, 19]) yield different results for the attack effectiveness. We
also introduce an alternative test that is at least as generic as the original MIA
but does not require an explicit estimation of the leakage probability densities.

2. When to use MIA? In a second part of this paper, we analyze the contexts
in which MIA can be necessary (i.e. when other side-channel attacks would not
succeed). In [19], it is argued that MIA is particularly convenient in higher-
order side-channel attacks because of its simple extension to multi-dimensional
scenarios. In this paper, we show that MIA can also be useful in univariate
side-channel attacks, if the models used by an adversary to mount an attack are
not sufficiently precise. Hence, we complement the original experiment of [12]
against a dual-rail pre-charged implementation. In order to further validate this
intuition, we analyze an arbitrary degradation of the leakage models and show
that after a certain threshold, MIA leads to a more effective key recovery than
the corresponding correlation attack using Pearson’s coefficient. We also discuss
the effect of incorrect models theoretically and intuitively.

3. Why to use MIA? Eventually, in a third part of the paper, we investigate
the relations between the MIA and the information theoretic vs. security model
of [22]. We exhibit that although having similar foundations, MIA and this model
have significantly different goals and are not equivalent in general. We also show
that in certain idealized contexts (namely, when adversaries can exploit leakage
predictions that perfectly correspond to the actual measurements), the MIA can
be used as a metric to compare different cryptographic devices.

2 Background

2.1 Information theoretic definitions

Entropy. The entropy [7] of a random variable X on a discrete space X is a
measure of its uncertainty during an experiment. It is defined as:

H [X ] = −
∑

x∈X

Pr [X = x] log2(Pr [X = x]).

The joint entropy of a pair of random variables X, Y expresses the uncertainty
one has about the combination of these variables:

H [X, Y ] = −
∑

x∈X ,y∈Y

Pr [X = x, Y = y] log2(Pr [X = x, Y = y]).

The joint entropy is always greater than that of either subsystem, with equality
only if Y is a deterministic function of X . The joint entropy is also sub-additive.
Equality occurs only in the case where the two variables are independent.

H [X ] ≤ H [X, Y ] ≤ H [X ] + H [Y ] .



Finally, the conditional entropy of a random variable X given another variable
Y expresses the uncertainty on X which remains once Y is known.

H [X |Y ] = −
∑

x∈X ,y∈Y

Pr [X = x, Y = y] log2(Pr [X = x|Y = y]).

The conditional entropy is always greater than zero, with equality only in the
case where X is a deterministic function of Y . It is also less than the entropy of
X . Equality only occurs if the two variables are independent.

0 ≤ H [X |Y ] ≤ H [X ] .

All these measures can be straightforwardly extended to continuous spaces by
differentiation. For example, the differential entropy is defined as:

H [X ] = −
∫

x∈X

Pr [X = x] log2(Pr [X = x]).

The differential entropy can be negative, contrary to the discrete entropy.

Mutual information The mutual information is a general measure of the
dependence between two random variables. On a discrete domain, the mutual
information of two random variables X and Y is defined as:

I (X ; Y ) =
∑

x∈X ,y∈Y

Pr [X = x, Y = y] log2

(

Pr [X = x, Y = y]

Pr [X = x] · Pr [Y = y]

)

.

It is directly related to Shannon’s entropy, and can be expressed using entropies:

I (X ; Y ) = H [X ] − H [X |Y ]

= H [X ] + H [Y ] − H [X, Y ]

= H [X, Y ] − H [X |Y ] − H [Y |X ]

It can also be straightforwardly extended to the continuous case:

I(X ; Y ) =

∫

x∈X

∫

y∈Y

Pr [X = x, Y = y] log2

(

Pr [X = x, Y = y]

Pr [X = x] · Pr [Y = y]

)

.

2.2 Pearson’s correlation coefficient

This coefficient is a simpler measure of dependence between two random variables
X and Y . Computing it does not require the knowledge of the probability density
functions of X and Y but it only measures the linear dependence between these
variables (whereas mutual information is able to detect any linear or non-linear
dependence). It is defined as follows (with X the mean value of X):

ρ (X, Y ) =

∑

x∈X ,y∈Y

(

x − X
)

·
(

y − Y
)

√

∑

x∈X

(

x − X
)2 · ∑y∈Y

(

y − Y
)2

.



2.3 Side-channel analysis

In a side-channel attack, an adversary tries to recover secret information from
a leaking implementation, e.g. a software program or an IC computing a cryp-
tographic algorithm. The core idea is to compare key-dependent models of the
leakages with actual measurements. Typically, the adversary first defines the
subkeys that he aims to recover. For example, in a block cipher implementa-
tion, those subkeys could be one byte of the master key. Then, for each subkey
candidate, he builds models that correspond to the leakage generated by the en-
cryption of different plaintexts. Eventually, he evaluates which model (i.e. which
subkey) gives rise to the best prediction of the actual leakages, measured for the
same set of plaintexts. As a matter of fact and assuming that the models can be
represented by a random variable X and the leakages can be represented by a
random variable Y , the side-channel analysis can simply be seen as the problem
of detecting a dependence between those two variables. Pearson’s coefficient and
the mutual information can be used for this purpose.

In the following, we consider side-channel attacks restricted by two important
assumptions. First, we investigate univariate attacks, i.e. attacks in which one
compares the leakage models X with a single sample in the leakage traces. It
means that the variable Y has only one dimension. Second, we consider discrete

leakage models, i.e. we assume that the variable X is discrete (by contrast, the
actual leakage variable Y can be continuous). We note that univariate attacks
are typical scenarios in standard DPA attacks such as [14] and discrete leakage
models are also a very natural assumption as long as the side-channel attacks
cannot be enhanced with profiling and characterization [6]. Hence, these two
assumptions can be seen as reasonable starting points for the analysis of MIA.

3 How to use MIA: the information theoretic toolbox

Following the previous informal description, let us denote the subkey candidates
in a side-channel attack as kj and the models corresponding to those subkeys as
Xj . The distinguisher used in a mutual information analysis is defined as:

dj = Î(Xj ; Y ).

For simplicity, we will omit the j subscript in the following of the paper. The
idea behind this procedure is that a meaningful partition of Y where each subset
corresponds to a particular model value will relate to a side-channel sample dis-
tribution P̂r[Y |X = x] distinguishable from the global distribution of P̂r[Y ]. The
estimated mutual information will then be larger than zero. By contrast, if the
key guess is incorrect, the false predictions will form a partition corresponding
to a random sampling of Y and therefore simply give scaled images of the total
side-channel probability density function (pdf for short). Hence, the estimated
mutual information will be equal (or close) to zero in this case.
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Fig. 1. Probability densities and associated leakage partitions for correct (left) and
wrong (right) subkey hypotheses in the case of a single bit DPA attack.

Example. Let us imagine a target implementation in which the adversary re-
ceives leakages of the form y = Hw(S(p⊕k))+n where Hw is the Hamming weight
function, S the 4-bit S-box of the block cipher Serpent, p a known plaintext, k

the target subkey of the attack and n is a Gaussian noise. Let us also assume
two different attacks: in the first one, the model X corresponds to a single bit
of S(p ⊕ k); in the second one, the model X corresponds to Hw(S(p ⊕ k)). Fig-
ures 1 and 2 illustrate what happens asymptotically to the correct and a wrong
subkey hypotheses in the case these two attacks. They clearly show the higher
dependence for the correct subkey (i.e. the left figures) that is expected by [12].
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Fig. 2. Probability densities and associated leakage partitions for correct (left) and
wrong (right) subkey hypotheses in the case of a 4-bit DPA attack.



In theory, the MI distinguisher tests a null hypothesis stating that the pre-
dicted leakage values and the side-channel samples are independent if the subkey
hypothesis is false. When this hypothesis is not verified, the adversary assumes
that he found the correct subkey. However, in practice there may exist certain
dependencies between a wrong subkey candidate and the actual leakages (e.g.
ghost peaks as in [5]). Hence, the adversary generally selects the subkey that
leads to the highest value of the distinguisher. This description underlines that
a MIA is essentially composed of the two problems listed in introduction:

1. An estimation of some probability density functions, namely those of the
global samples and of the samples corresponding to each modeled leakage.

2. The test of a null hypothesis stating that the predicted leakages and their
actual side-channel values are independent.

As a matter of fact, different solutions can be considered for this purpose. There-
fore, in the remainder of this section, we first review some possible techniques to
estimate the probability density functions used in a side-channel attack. Then we
present various probability-distance measures that can replace the usual relative
entropy in mutual information analysis. Eventually, we discuss the possibility to
compare two pdf without explicitly estimating them and briefly mention alter-
native attack techniques inspired from “all-or-nothing” multiple-bit DPA.

3.1 Probability density function estimation

The problem of modeling a probability density function from random samples
of this distribution is a well studied problem in statistics, referred to as density
estimation. A number of solutions exist, ranging from simple histograms to kernel
density estimation, data clustering and vector quantization. The authors of [12]
used histograms for density estimation as a proof of concept for MIA. But in
certain contexts, an attack can be greatly improved by using more advanced
techniques. In the following, we summarize a few density estimation tools that
have been initially suggested in [3] as relevant to side-channel attacks and then
applied to MIA in [19]. They are detailed in Appendix A.

Non-parametric methods. One interesting feature of the MIA is that it does
not rely on particular assumptions on the leakages. Hence, it is natural to con-
sider non-parametric estimation techniques first since, e.g. assuming Gaussian
leakages would again reduce the genericity of the distinguisher. In practice, two
techniques can generally be used for this purpose:

– Histograms perform a partition of the samples by grouping them into bins.
Each bin contains the samples of which the value falls into a certain range.
The respective ranges of the bins have equal width and form a partition of
the range between the extreme values of the samples. Using this method,
one approximates a probability by dividing the number of samples that fall
within a bin by the total number of samples (see Appendix A.1).



– Kernel density estimation is a generalization of histograms. Instead of bundling
samples together in bins, it adds (for each observed sample) a small kernel
centered on the value of the leakage to the estimated pdf. The resulting
estimation is a sum of small “bumps” that is much smoother than the corre-
sponding histogram. It usually provides faster convergence towards the true
distribution. Note that although this solution requires to select a Kernel
and a bandwidth (details are given in Appendix A.2), it does not assume
anything more about the estimated pdf than histograms.

Parametric methods. Contrary to the previous techniques, parametric meth-
ods for density estimation require certain assumptions about the leakages. They
consequently trade some of the genericity of the MIA for a hopefully better
effectiveness, i.e. they are an intermediate solution between attacks using the
correlation coefficient and the original MIA of [12]. In this context, a partic-
ularly interesting tool is the finite mixture estimation. A mixture density is a
probability density function that consists in a convex combination of probability
density functions. Given a set of densities p1(x), . . . , pn(x), and positive weights
w1, . . . , wn verifying

∑

wi = 1, the finite mixture is defined as:

P̂r[x] =
n−1
∑

i=0

wi pi(x).

A typical choice is to assume a mixture of Gaussian densities (see, e.g. [15]),
which leads to an efficient parametric estimation of the pdf (see Appendix A.3).

3.2 Probability-distance measures

Once the probability densities have been estimated, one has to test whether
the predicted leakages are correlated with the actual measurements. This de-
pendence is tested using a probability-distance measure which allows deciding
which subkey is the most likely to be the correct one. As in the previous section,
different solutions can be used, that we detail and connect to the original MIA.

Kullback-Leibler divergence. The Kullback-Leibler divergence, or relative
entropy [7], is a measure of the difference between two probability density func-
tions P and Q. It is not a distance, as it is non-commutative and does not satisfy
the triangle inequality. The KL divergence of Q from P, where P and Q are two
probability functions of a discrete random variable X , is defined as:

DKL (P‖Q) =
∑

x∈X

Pr [X = x, X ∼ P] log
Pr [X = x, X ∼ P]

Pr [X = x, X ∼ Q]
,

where Pr [X = x, X ∼ P] denotes the probability that the random variable X

equals x when it follows the density function P. The mutual information can be
defined in terms of Kullback-Leibler divergence, as being the divergence between



the joint distribution Pr [X = x, Y = y] and the product distribution Pr [X = x]·
Pr [Y = y], or as the expected divergence between the conditional distribution
Pr [Y = y|X = x] and Pr [Y = y]. In other words:

I (X ; Y ) = DKL (Pr [X = x, Y = y] ‖Pr [X = x] · Pr [Y = y])

= Ex∈X (DKL (Pr [Y = y|X = x] ‖Pr [Y = y]))

Hence, it can be seen as the expected value of the divergence between the leakage
distributions taken conditionally to the models and the marginal distribution.

F-divergences. The f -divergence [9] is a function of two probability distri-
butions P and Q that is used to measure the difference between them. It was
introduced independently by Csiszàr [8] and Ali and Silvey [1] and is defined as:

If (P, Q) =
∑

x∈X

Pr [X = x, X ∼ Q] × f

(

Pr [X = x, X ∼ P]

Pr [X = x, X ∼ Q]

)

,

where f is a parameter function. Some classical examples include:

– Kullback-Leibler divergence: f(t) = t log t

– Inverse Kullback-Leibler: f(t) = − log t
– Pearson χ2–divergence: f(t) = (t − 1)2

– Hellinger distance: f(t) = 1 −
√

t
– Total variation: f(t) = |t − 1|

As detailed in [12], the qualitative motivation for using the mutual information
as a metric of dependence is sound. But one can wonder about its effectiveness.
That is, all the previous f functions ensure an asymptotically successful attack.
But are there significant differences in the convergence of the corresponding
distinguishers? We note that the previous list is not exhaustive. For example, one
could consider the Jensen-Shannon divergence that is a popular method based
on the Kullback-Leibler divergence, with the useful difference that it is always a
finite value: DJS (P‖Q) = 1

2
(DKL (P‖M) + DKL (Q‖M)) , where M = 1

2
(P +Q).

Similarly, the earth mover’s or Mallow distances [4, 17] could also be used.

3.3 Distinguishing without explicit pdf estimation

Interestingly, an explicit pdf estimation is not always necessary and there also
exist statistical tools to compare two pdfs directly from their samples. The
Kolmogorov-Smirnov test is typical of such non parametric tools. For different
samples xi and a threshold xt, it first defines an empirical cumulative function:

F (xt) =
1

n

n
∑

i=1

χxi≤xt
, where χxi≤xt

=

{

1 if xi ≤ xt

0 otherwise.

Then, the Kolmogorov-Smirnov distance is defined by:

DKS (P‖Q) = sup
xt

|FP (xt) − FQ(xt)|.



This distance can then be used to test a null hypothesis. Since it is based on a
supremum rather than a sum as the previous distances, it is better integrated
to the following (MIA-inspired) distinguisher:

Ex∈X (DKS (Pr [Y = y|X = x] ‖Pr [Y = y]))

This is further improved by normalizing each KS distance with the number of
samples used in its computation, taking into account the convergence:

Ex∈X

(

1

|Y |X = x|DKS (Pr [Y = y|X = x] ‖Pr [Y = y])

)

,

where |Y |X = x| is the number of leakages samples with modeled value x. Fi-
nally, an even more efficient alternative to the KS test is the two sample Cramér-
von-Mises test [2], which is also based on the empirical cumulative function.

DCvM (P‖Q) =

∫ +∞

−∞

(FP (xt) − FQ(xt))
2
dxt.

3.4 All-or-nothing comparisons

Eventually, we mention that the MIA is defined as the expected value of a diver-
gence between the leakage distributions conditionally to the model values and the
marginal leakage distribution, i.e. Ex∈X (DKL (Pr [Y = y|X = x] ‖Pr [Y = y])).
But divergences between the conditional distributions could be considered as
well, as in “all-or-nothing” DPA attacks (see, e.g. [3] for an example).

3.5 How much does it matter? Experimental results

The previous sections illustrate that MIA is in fact a generic tool in which dif-
ferent statistics can be plugged in. A natural question is to evaluate the extend
to which different pdf estimations and definitions of divergence affect the effec-
tiveness of the distinguisher. For this purpose, we carried out attacks based on
the traces that are publicly available in the DPA Contest [10] and computed the
success rate defined in [22] in function of the number of traces available to the
adversary (i.e. encrypted messages), over 1000 independent experiments, using a
Hamming weight leakage model. The results of these experiments are in Figure
3 from which we can extract different observations: First, classical attacks using
the correlation coefficient are the most effective in this simple context. Second,
the pdf estimation tools have a stronger impact than the notion of divergence
on the MIA-like attacks. In particular and as far as non-parametric pdf estima-
tions are concerned, the Kernel-based MIA performs significantly better than its
counterpart using histograms. Eventually, it is worth noting the good behavior
of the normalized KS and Cramér-von-Mises tests for which pdf estimation is
not required. They are interesting alternatives to the other tests because of their
simple implementation which makes them comparable to plain histograms in



terms of processing workload. The Cramér-von-Mises criterion seems to behave
as efficiently as the kernel-based methods, while avoiding the (hard) problem
of choosing the kernel bandwidth. Hence, an intriguing open problem is to de-
termine wether this test can be as efficient in more challenging contexts (e.g.
implementations protected with masking or other countermeasures).
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Fig. 3. Success rate of different attacks against the first DES S-box in the DPA Contest.

4 When to use it: MIA versus correlation

The experiments of Figure 3 suggest (as already emphasized by the authors in
[12]) that when a reasonable leakage model is known by the adversary, standard
DPA techniques such as using Pearson’s correlation coefficient are more efficient
than MIA. Hence, an obvious question is to determine the existence of contexts in
which MIA would be necessary. With this respect, it is shown in [19] that higher-
order attacks against masking schemes are good examples of such situations. This
is essentially because MIA easily generalizes to multivariate statistics and hence
does not need to worry about the combination of the leakages such as, e.g. [18].
In this section, we aim to show that MIA can even be useful in a univariate
context, as soon as the adversary’s leakage model is sufficiently imprecise.

Theoretically, this can be easily explained as follows. Let us assume that the
leakages Y can be written as the sum of a deterministic part XP (representing
a perfect model) and a gaussian distributed random part R (representing some
noise in the measurements): Y = XP + R and that a side-channel adversary
exploits a leakage model XA = f(XP ). In ideal scenarios, we have XA = XP but
in practice, there generally exist deviations between the adversary’s model and
the perfect model, here represented by the function f . Correlation attacks are



asymptotically successful as long as ρ(Xg
A, Y ) > ρ(Xw

A , Y ), i.e. the correlation for
the model corresponding to a correct subkey (with g superscript) is higher than
the one for a wrong subkey candidate (with w superscript). If the adversary’s
model can again be written as XA = XP +R′ with R′ another additive Gaussian
noise, then correlation attacks will obviously remain the best solution. But in
general, imprecisions in the models can take any shape (not only additive). This
may lead correlation attacks to fail where, e.g. MIA can still succeed.

As an illustration, an interesting case that is reasonably connected to practice
is to assume a data bus in a micro-controller such that one bit (say the LSB)
leaks significantly more than the others (e.g. because of a larger capacitance).
Taking the example of Section 3, this time with the 8-bit AES S-box, we could
imagine that the leakages equal: y =

∑8

i=1
ai · [S(p ⊕ k)]i. If the bit coefficients

ai = 1 for all i, we have Hamming weight leakages again. But by increasing
a coefficient (e.g. a1) and keeping the same Hamming weight model for the
adversary, we can force this model to be arbitrarily wrong. Figure 4 illustrates
the results of attacks that simulate this scenario. It shows that the number of
messages required to reach a given success rate always increases with a1 for the
attacks using the correlation coefficient. By contrast, it stabilizes at some point
for the MIA and KS test. Hence, for a sufficiently “wrong” leakage model, MIA-
like attacks become useful. It is worth noting that the stabilization observed
for the MIA and KS tests can be understood by looking at the pdf for a correct
subkey candidate in Appendix B (again simplified to a 4-bit example): once a1 is
sufficiently heavy for the global pdf to be made of two disconnected pdf (one for
[S(p⊕ k)]1 = 0, one for [S(p⊕ k)]1 = 1), the effectiveness of these distinguishers
remains constant. Eventually, it is worth mentioning that while the MIA better
resists to incorrect models than correlation attacks, it is not immune against
them. One still requires that I(Xg

A; Y ) > I(Xw
A ; Y ). In other words, choosing

random models will obviously not lead to successful attacks.
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success rate of 50% (left), 75% (middle) and 90% (right), for different attacks.



5 Why to use it: MIA as an evaluation metric

Since the primary goal of the MIA is to distinguish subkeys, an adversary is not
directly concerned with the value of I(Xg

A; Y ) but rather with the fact that it is
higher than I(Xw

A ; Y ). However, once a successful attack is performed, one can
also wonder about the meaning of this value. In other words, can the mutual in-
formation I(Xg

A; Y ) additionally be used as an evaluation metric for side-channel
attacks, as the information theoretic metric suggested in [22]?

In order to discuss this question, we can again take the simple example of
the previous section in which the leakages are the sum of a perfect model and
a Gaussian noise: Y = XP + R. Say the target subkey in a side-channel attack
is denoted by a variable K. The model in [22] suggests to evaluate a leaking
implementation with H[K|Y ]. Because of the additive noise, this can be written
as: H[K|Y ] = H[K|XP ] + H[XP |Y ]. Additionally assuming that R = 0, we
find: H[K|Y ] = H[K|XP ]. By contrast, the MIA does not directly apply to the
subkey variable, but to subkey-dependent leakage models. That is, assuming
that an adversary performs MIA with a perfect leakage model, it computes:
I(XP ; Y ) = H[XP ] − H[XP |Y ] with H[XP |Y ] = 0 if R = 0. Using the relation:

I(K; XP ) = H[K] − H[K|XP ],

we have that if an adversary performs the MIA with a perfect leakage model
and no noise (and a perfect pdf estimation tool), the following equation holds:

H[K|Y ] = H[K|XP ] = H[K] − I(XP ; Y ),
or similarly: I(K; Y ) = I(XP ; Y ).

It implies that MIA and the metric of [22] can be used equivalently in this case.
Adding additive noise R to the leakages will not change the situation since it
will simply add a term H[XP |Y ] to the previous equations. But as in Section 4,
this equality does not hold anymore if the adversary’s model is not perfect and
the imperfections are not simply additive, i.e. if we have Y = f(XP ) 6= XP +R.
Then, the previous equality will turn into an inequality:

H[K|Y ] ≤ H[K] − I(XP ; Y ),
or similarly: I(K; Y ) ≥ I(XP ; Y ).

That is, the mutual information computed by the MIA with an incorrect leakage
model will tend to underestimate the amount of information leaked by the chip.
In other words, MIA is a generic distinguisher while the conditional entropy
H[K|Y ] is a generic evaluation metric for side-channel attacks. The reason of this
genericity comes from the information theoretic nature of these tools. In practice,
MIA can be used to approach a fair evaluation metric if a perfect leakage model
is available to the adversary but it deviates from this metric as soon as this
conditions is not respected anymore1. This deviation essentially comes from the

1 When moving to multivariate statistics, perfect models should be considered for each
sample which yields the open question of how to efficiently exploit multiple models.



need to use an intermediate variable (corresponding to an intermediate value in
the target algorithm, e.g. an S-box output) in non profiled side-channel attacks
rather than considering the subkey leakages directly. That is, MIA computes
I(XP ; Y ) rather than H[K|Y ]. Summarizing, the MIA and the model of [22] have
different objectives, namely recovering keys for MIA and allowing fair evaluations
of leaking devices for the model. They also generally exploit different adversarial
contexts, namely non-profiled attacks for the MIA and profiled attacks for the
model. But eventually, the reason for using these tools is similar since they
both allow capturing any kind of dependencies in the physical leakages and
consequently lead to generic attacks and evaluation of the attacks and leakages.
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4. P. Bickel, E. Levina. The earth’s mover’s distance is the mallows distance: some
insights from statistics. In Computer Vision 2001, vol 2, pp 251-256.

5. E. Brier, C. Clavier, F. Olivier. Correlation power analysis with a leakage model.
In CHES 2004, LNCS, vol 3156, pp 16-29, Boston, MA, USA, August 2004.

6. S. Chari, J. Rao, P. Rohatgi. Template attacks. In CHES 2002, Lecture Notes in
Computer Science, vol 2523, pp 13-28, CA, USA, August 2002.

7. T.M. Cover, J.A. Thomas. Elements of Information Theory. Wiley, 1991.
8. Imre Csiszár. Information-type measures of difference of probability distributions

and indirect observation. Studia Sci. Math. Hungar. vol 2, pp 229-318, 1967.
9. Imre Csiszár and Paul C. Shields. Information theory and statistics: a tutorial.

Commun. Inf. Theory, vol 1, num 4, pp 417-528, 2004.
10. DPA Contest 2008/2009, http://www.dpacontest.org/
11. David Freedman and Persi Diaconis. On the histogram as a density estimator.

Probability Theory and Related Fields, vol 57, num 4, pp 453-476, December 1981.
12. B. Gierlichs, L. Batina, P. Tuyls, B. Preneel. Mutual information analysis. In

CHES 2008, LNCS, vol 5154, pp 426-442, Washington DC, USA, August 2008.
13. Wolfgang Härdle. Smoothing Techniques: With Implementation in S. Springer

Series in Statistics. December 1990.
14. P. Kocher, J. Jaffe, B. Jun, Differential power analysis. In Crypto 1999, LNCS, vol

1666, pp 398-412, Santa-Barbara, CA, USA, August 1999.
15. K. Lemke, C. Paar. Gaussian mixture models for higher-order side channel analysis.

In CHES 2007, LNCS vol 4227, pp 14-27, Vienna, Austria, September 2007.
16. Nan Laird, Arthur Dempster, Donald Rubin. Maximum likelihood from incomplete

data via the em algorithm. Journal of the Royal Statistical Society, Series B
(Methodological). vol 39, num 1, pp 1-38, 1977.

17. C. L. Mallows. A note on asymptotic joint normality. The Annals of Mathematical
Statistics, vol 43, num 2, pp 508-515, 1972.

18. T.S. Messerges. Using second-order power analysis to attack DPA resistant soft-
ware. In CHES 2000, LNCS vol 1965, pp 238-251, Worcester, USA, August 2000.



19. Emmanuel Prouff and Matthieu Rivain. Theoretical and practical aspects of mu-
tual information based side channel analysis. In ACNS, Applied Cryptography and
Network Security, LNCS, vol 5536, pp 499-518, Paris, June 2009.

20. David W. Scott. On optimal and data-based histograms. Biometrika, vol 66, num
3, pp 605-610, December 1979.

21. Bernard W. Silverman. Density Estimation for Statistics and Data Analysis. Chap-
man & Hall/CRC, April 1986.

22. Francois-Xavier Standaert, Tal G. Malkin, and Moti Yung. A unified framework for
the analysis of side-channel key recovery attacks (extended version). Cryptology
ePrint Archive, Report 2006/139, 2006. http://eprint.iacr.org/.

23. Berwin A. Turlach. Bandwidth selection in kernel density estimation: a review. In
CORE and Institut de Statistique, 1993.

24. M.H. Zhang, Q.S. Cheng. Determine the number of components in a mixture
model by the extended ks test. Pattern Recogn. Lett., 25 (2), pp 211–216, 2004.

A Density estimation techniques

A.1 Histograms

For n bins noted bi, the probability is estimated as:

P̂r[bi ≤ x ≤ bi] =
#bi

q
, where q =

∑

0≤j≤n

#bj

The optimal choice for the bin width h is an issue in Statistical Theory, as
different bin sizes can greatly modify the resulting model. For relatively sim-
ple distributions, which is usually the case of side-channel leakages, reasonable
choices are Scott’s rule [20] (h = 3.49 × σ̂(x) × n−1/3) and Freedman-Diaconis’
rule [11] (d = 2× IQR(x)×n−1/3, IQR = interquartile range). While histograms
are quite easy to implement, they generally provide a very slow convergence
towards the target pdf, lack smoothness and heavily depend on bin width.

A.2 Kernel density estimation

The probability is estimated as:

P̂r[X = x] =
1

nh

∑

i

K

(

x − xi

h

)

,

where the kernel function K is a real-valued integrable function satisfying
∫ ∞

−∞
K

(u) du = 1 and K(u) = −K(u) for all u. Some kernel functions are in Table 1.
Similarly to histograms, the most important parameter is the bandwidth h. Its
optimal value is the one minimizing the AMISE (Asymptotic Mean Integrated
Squared Error), which itself usually depends on the true density. A number of
approximation methods have been developed, see [23] for an extensive review.
In our case , we used the modified estimator [21, 13]:

h = 1.06 × min

(

σ̂(x),
IQR(x)

1.34

)

n− 1
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Kernel K(u) Kernel K(u)

Uniform 1

2
i(u) Triweight 35

32
(1 − u2)3i(u)

Triangle (1 − |u|)i(u) Tricube 70

81
(1 − |u|3)3i(u)

Epanechnikov 3

4
(1 − u2)i(u) Gaussian 1

√

2π

exp
(

− 1

2
u2

)

Quartic 15

16
(1 − u2)2i(u) Cosinus π

4
cos

(

π

2
u
)

i(u)

Table 1. Some kernel functions. i is defined as: i(u) = 1 if |u| ≤ 1, 0 otherwise.

A.3 Gaussian mixtures

This parametric method models the pdf as:

P̂r(X = x) =
n−1
∑

i=0

wi N (x, µi, σi),

where the µi and σi are the respective means and deviations of each mixture
component. This method can be thought of as a generalization of the kernel
density estimation with gaussian kernels, where one is not restricted to wi = 1

nh
or σi = 1

h . The main advantage of the finite mixture method is that it usually
leads to a number of mixture elements significantly smaller than the number
of samples used to form the model in a kernel density estimation. An efficient
algorithm called the Expectation Maximization (EM) algorithm [16] allows one
to give a good approximation of a pdf in the form of a finite mixture. Given the
number of components in the mixture, it computes their weights and gaussian
parameters. Some additional procedures have been proposed that help choosing
the number of components to be used in a mixture, for example in [24].

B Effect of incorrect leakage models

all x ∈ X X = 0 X = 1

X = 2 X = 3 X = 4

y

Pr [X = x, Y = y]

y

Pr [X = x, Y = y]

Fig. 5. Behavior of the probability densities for the correct subkey in a 4-bit DPA,
assuming a Hamming weight leakage model and a1 = 3 (up) and a1 = 5 (down).


