
Efficient FPGA Implementation of Block Cipher MISTY1

Gael Rouvroy, Francois-Xavier Standaert
Jean-Jacques Quisquater, Jean-Didier Legat

Universite catholique de Louvain, Microelectronic Laboratory
Place du Levant, 3, 1348 Louvain-La-Neuve, Belgium

rouvroy,standaert,quisquater,legat@dice.ucl.ac.be

Abstract

NESSIE is a 3-year research project (2000-2002). The
goal of the project is to put forward some algorithms to ob-
tain a set of the next generation of cryptographic primitives.
In order to achieve this objective, the project needs to evalu-
ate mathematical security levels and software/hardware im-
plementations. This paper investigates the significance of
an FPGA implementation of the block cipher MISTY1. Re-
programmable devices such as FPGA’s are highly attrac-
tive solutions for hardware implementations of encryption
algorithms. A strong focus is placed on a high through-
put circuit which completely unrolls all the MISTY1 rounds
and pipelines them in order to increase the data rate. Our
design allows us to change the plaintext and the key on a
cycle-by-cycle basis with no dead cycles. The final core im-
plementation can work at a data rate up to 19.4 Gbps (303
MHZ)1.

1. Introduction

The NESSIE project2 is about to put forward a portfolio

of strong cryptographic primitives that has been obtained

after an open call and been evaluated using a transparent

and open process. These primitives include block ciphers,

stream ciphers, hash functions, MAC algorithms, digi-

tal signature schemes, and public-key encryption schemes.

The technical analysis used in determining which of the

NESSIE candidates will be selected as a standard block ci-

pher includes efficiency testing of both hardware and soft-

ware implementations of candidates algorithms.

The encryption algorithm MISTY1 is a 64-bit block ci-

pher with a 128-bit key and a variable number of rounds.

Mitsuru Matsui, the designer (1996), recommends a 8-

round version. It is a Feistel cipher. MISTY1 is designed

1This bitstream is obtained with a VIRTEXII2000bg575-6 device.
2NESSIE: New European Schemes for Signature, Integrity, and En-

cryption.

on the basis of the theory of provable security against dif-

ferential and linear cryptanalysis. In addition, it allows us

to realize high speed encryption on hardware platforms as

well as on software environments [2]. The detailed spec-

ification can be found in [2, 3]. In this paper, we study

the efficiency of MISTY1 encryption for an FPGA imple-

mentation. Our fast core is detailed and compared to AES

RIJNDAEL, SERPENT, KHAZAD and previous MISTY1

circuits to determine the efficiency of our MISTY1 FPGA

implementation.

The paper is organized as follows: Section 2 de-

scribes the FPGA technology used and the synthe-

sis/implementation tools; Section 3 gives a short mathemat-

ical description of MISTY1; MISTY1 implementation is

detailed in section 4; Section 5 compares our MISTY1 de-

sign to FPGA implementations of AES RIJNDAEL, SER-

PENT, KHAZAD and previous MISTY1; Section 6 con-

cludes this paper.

2. Hardware description

In this section, we briefly describe the structure of a VIR-

TEX FPGA as well as the synthesis and implementation

tools that were used to obtain our results.

Configurable Logic Blocks (CLB’s): The basic build-

ing block of the VIRTEX logic block is the logic cell (LC).

A LC includes a 4-input function generator, carry logic and

a storage element. The output from the function generator

in each LC drives both the CLB output and the D input of

the flip-flop. Each VIRTEX CLB contains four LC’s, or-

ganized in two similar slices. Figure 1 shows a detailed

view of a single slice. Virtex function generators are imple-

mented as 4-input look-up tables (LUT’s). Beside its opera-

tion as a function generator, each LUT can provide a 16×1-

bit synchronous RAM. Furthermore, the two LUT’s within

a slice can be combined to create a 16×2-bit or 32×1-bit

synchronous RAM or a 16×1-bit dual port synchronous

RAM. The VIRTEX LUT can also provide a 16-bit shift

register.
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Figure 1. The VIRTEX slice.

The storage elements in the VIRTEX slice can be config-

ured either as edge-triggered D-type flip-flops or as level-

sensitive latches. The D inputs can be driven either by the

function generators within the slice or directly from slice

inputs, bypassing function generators.

The F5 multiplexer in each slice combines the function

generator outputs. This combination provides either a func-

tion generator that can implement any 5-input function, a

4:1 multiplexer, or selected functions of up to nine bits.

Similarly, the F6 multiplexer combines the outputs of all

four function generators in the CLB by selecting one of the

F5-multiplexer outputs. This permits the implementation of

any 6-input function, an 8:1 multiplexer, or selected func-

tions up to 19 bits. The arithmetic logic also includes a

XOR gate that allows a 1-bit full adder to be implemented

within an LC. In addition, a dedicated AND gate improves

the efficiency of multiplier implementations.

Finally, VIRTEX FPGA’s incorporate several large RAM

blocks. These complement the distributed LUT implemen-

tations of RAM’s. Every block is a fully synchronous dual-

ported 4096-bit RAM with independent control signals for

each port. The data widths of the two ports can be config-

ured independently.

Hardware targets: For our implementations, we used

VIRTEX and VIRTEXII technologies. We chose these tech-

nologies in order to allow relevant comparisons with the

best-known FPGA cipher implementations. In this paper,

we compare the number of LUT’s, registers and slices used.

We also evaluate the delays and frequencies thanks to our

implementation tools (post-map and post place-and-route

frequencies). The synthesis was performed with FPGA

Express 3.6.1 (SYNOPSYS) and the implementation with

XILINX ISE-4. Our circuits were described using VHDL.

3. MISTY1 block cipher algorithm

The MISTY1 cipher is an iterated block cipher, with a

Feistel structure, that operates on a 64-bit block with a 128-

bit key and with a variable number of rounds n. We de-

scribe the algorithm with n = 8, as recommended in [2, 3].

In the following subsections, we illustrate the data random-

izing part and the key scheduling part with their different

components.

3.1. Data randomizing part

Figure 3 shows the data randomizing part of MISTY13.

The 64-bit plaintext P is divided in two 32-bit parts. Both

parts are transformed into the 64-bit ciphertext using bit-

wise XOR operations, sub-functions FOi (1 ≤ i ≤ (n =
8)) and sub-functions FLi (1 ≤ i ≤ (n + 2 = 10)).

3Where registers needed for efficiency purposes are already mentioned.
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3.1.1 FOi function:

Figure 2 shows the structure of FOi
4. This function split

the input into two 16-bit strings. Then, it transforms both

strings into the output with bitwise XOR operations and

sub-functions FIij (1 ≤ j ≤ 3). KOij (1 ≤ j ≤ 4) and

KIij (1 ≤ j ≤ 3) are the left j-th 16 bits of KOi and KIi,

respectively.

3.1.2 FIij function:

Figure 2 also shows the structure of FIij . The input is di-

vided into two parts: a 9-bit string and a 7-bit string. These

strings are transformed into the output using bitwise XOR

operations and substitutions tables S7 and S9. In the begin-

ning and the end of FIij function, the 7-bit string is zero-

extend to 9 bits, and in the middle part, the 9-bit string is

truncated to 7 bits eliminating its highest two bits (MSB).

KIij1 and KIij2 are the left 7 bits and the right 9 bits of

KIij , respectively.

3.1.3 FLi function:

The structure of FLi function is also shown in Figure 2.

The 32-bit input is divided into two equal parts. The func-

tion transforms both parts into the output with bitwise AND,

OR and XOR operations. KLij1 (1 ≤ j ≤ 2) is the left j-th

16 bits of KLi.

3.1.4 S7 and S9 substitution functions:

For the selection of S7 and S9 substitution functions, Matsui

considers three criteria:

1. Their average differential/linear probability must be

minimal,

2. Their delay time in hardware is as short as possible,

3. Their algebraic degree is high, if possible.

Based on these criteria, for the S7 substitution function,

Matsui chooses the following mathematical description:

y0 = x0 + x1x3 + x0x3x4 + x1x5 + x0x2x5 + x4x5 +
x0x1x6 + x2x6 + x0x5x6 + x3x5x6 + 1
y1 = x0x2 + x0x4 + x3x4 + x1x5 + x2x4x5 + x6 + x0x6 +
x3x6 + x2x3x6 + x1x4x6 + x0x5x6 + 1
y2 = x1x2 + x0x2x3 + x4 + x1x4 + x0x1x4 + x0x5 +
x0x4x5 + x3x4x5 + x1x6x3x6 + x0x3x6 + x4x6 + x2x4x6

y3 = x0 + x1 + x0x1x2 + x0x3 + x2x4 + x1x4x5 + x2x6 +
x1x3x6 + x0x4x6 + x5x6 + 1
y4 = x2x3 + x0x4 + x1x3x4 + x5 + x2x5 + x1x2x5 +
x0x3x5 + x1x6 + x1x5x6 + x4x5x6 + 1
y5 = x0 + x1 + x2 + x0x1x2 + x0x3 + x1x2x3 + x1x4 +
x0x2x4 + x0x5 + x0x1x5 + x3x5 + x0x6 + x2x5x6

4Where registers needed for efficiency purposes are already mentioned.

y6 = x0x1 + x3 + x0x3 + x2x3x4 + x0x5 + x2x5 + x3x5 +
x1x3x5 + x1x6 + x1x2x6 + x0x3x6 + x4x6 + x2x5x6

Based on the same above criteria, the S9 function is also

defined as a logical description:

y0 = x0x4 + x0x5 + x1x5 + x1x6 + x2x6 + x2x7 + x3x7 +
x3x8 + x4x8 + 1
y1 = x0x2 + x3 + x1x3 + x2x3 + x3x4 + x4x5 + x0x6 +
x2x6 + x7 + x0x8 + x3x8 + x5x8 + 1
y2 = x0x1 + x1x3 + x4 + x0x4 + x2x4 + x3x4 + x4x5 +
x0x6 + x5x6 + x1x7 + x3x7 + x8

y3 = x0 + x1x2 + x2x4 + x5 + x1x5 + x3x5 + x4x5 + x5x6 +
x1x7 + x6x7 + x2x8 + x4x8

y4 = x1 + x0x3 + x2x3 + x0x5 + x3x5 + x6 + x2x6 + x4x6 +
x5x6 + x6x7 + x2x8 + x7x8

y5 = x2 + x0x3 + x1x4 + x3x4 + x1x6 + x4x6 + x7 + x3x7 +
x5x7 + x6x7 + x0x8 + x7x8

y6 = x0x1 + x3 + x1x4 + x2x5 + x4x5 + x2x7 + x5x7 + x8 +
x0x8 + x4x8 + x6x8 + x7x8 + 1
y7 = x1 + x0x1 + x1x2 + x2x3 + x0x4 + x5 + x1x6 + x3x6 +
x0x7 + x4x7 + x6x7 + x1x8 + 1
y8 = x0 + x0x1 + x1x2 + x4 + x0x5 + x2x5 + x3x6 + x5x6 +
x0x7 + x0x8 + x3x8 + x6x8 + 1

Both substitution boxes are defined as ROM tables in [2].

To optimize the number of logic cells used for FPGA imple-

mentation, we prefer to implement S7 and S9 functions di-

rectly as logical expressions. With enough pipelined stages,

we keep under control the critical path of the design.

3.2. Key scheduling part

Figure 4 shows the key scheduling part of MISTY15. Ki

(1 ≤ i ≤ 8) is the left i-th 16 bits of the secret input key K.

K
′
i (1 ≤ i ≤ 8) corresponds to the output of FIij where

the input of FIij is assigned to Ki and the key KIij is

set to K(i+1)mod8. The assignment between key scheduling

subkeys Ki/ K
′
i and the round subkeys KOij , KIij , KLij

is defined in Table 1, where i equals to (i−8) when (i > 8).
This concludes the mathematical description of MISTY1

algorithm. The next section explains our FPGA design

choices in order to be efficient in term of speed and re-

sources used.

5Where registers needed for efficiency purposes are already mentioned.
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Encrypt Round KOi1 KOi2 KOi3 KOi4 KIi1 KIi2 KIi3 KLi1 KLi2

Key round Ki Ki+2 Ki+7 Ki+4 K
′
i+5 K

′
i+1 K

′
i+3 K i+1

2
(odd.i) K

′
i+1
2 +6

(odd.i)

K
′
i
2+1

(even.i) K i
2+4(even.i)

Table 1. Subkeys distribution.
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Figure 2. FOi, FIij , FLi functions.

4. MISTY1 FPGA implementation

FPGA’s are very efficient devices and they are suitable

for high work frequencies. Results available in the public

literature sometimes mention encryption rates comparable

with software ones. We believe that these performances can

be greatly improved using today’s technology as soon as

inherent constraints of FPGA’s are taken into account. Ac-

cording to VIRTEX FPGA technology, we have the oppor-

tunity to implement a 4-input function within a LUT. Within

a slice, we can also use two additional XORs, one F5 and

one F6 functions. In order to optimize the frequency of the

design, we choose to limit the critical path to only one 4-

input LUT and route. So we do not use additional XORs

and F5, F6 functions which will probably increase the criti-

cal path6.

Based on this delay constraint, we modify the mathemat-

ical algorithm description to regroup a maximum number of

functions in a minimum number of 4-input LUT’s.

4.1. S7 and S9 implementations

For S7 and S9 implementations, we use the logical ex-

pressions in place of substitution tables in order to reduce

the number of logic cells used. The logical functions have

to be enough pipelined to keep the critical path to only one

4-input LUT and route. For S7 and S9, we obtain two 2-

stage pipelined versions. Table 2 shows the results that we

obtain after synthesis.

Component Nbr of Nbr of Nbr of

LUT’s FF’s pipelined stages

S7 45 45 2

S9 44 35 2

Table 2. S7 and S9 synthesis results.

6Although these function could be used to reduce the number of logic

cells consumed.
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Figure 3. The data randomizing part of
MISTY1.

4.2. FOi, FIij , FLi implementations

Figure 2 details how we implemented FOi, FIij , FLi

functions in order to keep a critical path of only one 4-input

LUT and route. As mentioned on the figure, we have to put

an additional output pipelined stage into FIij function only

for the key scheduling part. We do it to be speed efficient.

Table 3 shows the results that we obtain after synthesis.

Component Nbr of Nbr of Nbr of

LUT’s FF’s pipelined stages

FOi 655 671 24

FIij 172 181 7

FLi 32 32 1

Table 3. FOi, FIij , FLi synthesis results.

4.3. The data randomizing part of MISTY1

For the same delay constraints, we obtain the design de-

tailed in Figure 3. We put additional registers for input and

output bits that we pack into IOBs to increase our speed

performance. We finally get a 208-stage pipelined design.

4.4. The key scheduling part of MISTY1

In order to change the secret key dynamically, we choose

to also implement the key scheduling in hardware. This al-

lows us to change the encryptor with a new key on a cycle-

by-cycle basis with no dead cycles. Figure 4 shows the key

scheduling part of MISTY1. Additional registers for input

key bits are also packed into IOBs in order to increase per-

formances.

The assignment between key scheduling subkeys Ki/ K
′
i

and the round subkeys KOij , KIij , KLij is defined in Ta-

ble 1. We do the same in hardware putting the correct num-

ber of pipelined stages for every round subkeys. Therefore,

to achieve the key distribution, we use 16-bit shift registers,

every one fitting in one LUT. Figure 5 represents the sub-

keys distribution.

Table 4 summarizes the synthesis results that we obtain

for the complete key scheduling part.

Nbr of LUT’s Nbr of FF’s Nbr of pipelined stages

4800 5016 208

Table 4. Key scheduling synthesis results.
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Figure 5. Subkeys distribution.

4.5. The complete cipher

The implementation of the complete MISTY1 cipher

is the combination of the data randomizing part and the

key scheduling part from the precedent descriptions. Our

design allows us to change the plaintext and the key on

a cycle-by-cycle basis with no dead cycles. The results

are summarized in Table 5 for VIRTEX1000bg560-6 and

VIRTEXII2000bg575-6 devices7. We propose a post-map

and a post-implementation estimated frequency. Second

one considers the routing delays.

From Table 5, we observe very high frequencies after

mapping phase but the final designs only run at 159/303

MHz. Comparing with post-map frequencies, we see that

we spend to much time in the routing part. Thanks to the

FloorPlanner tool, we can conclude that:

1. It is not so easy to deal with additional routing de-

lays. They are no systematic tools to prevent these

delays. All we can do, is to locate the problem and

to redesign the global circuit. Nevertheless, routing

problems come usually from high fanout.

2. Trying to reduce the critical path to only one 4-input

LUT is not always the best choice. Indeed, if a big part

7The latency corresponds to the number of pipelined stages.

of the critical path is due to route, it is better to use the

additional XORs, F5 and F6 can reduce the number of

logic cells used without increasing the critical path.

Anyway, the resulting design is very efficient and suit-

able for FPGA, as proved in the next section.

5. Comparison with AES RIJNDAEL, SER-
PENT, KHAZAD and previous MISTY1

In order to evaluate our implementation results and

the hardware suitability of MISTY1, we compare them

with similar results obtained with the Advanced Encryption

Standard RIJNDAEL, SERPENT, KHAZAD and previous

MISTY1 designs [4, 7]. We chose RIJNDAEL because of

its status of new encryption standard and SERPENT be-

cause it seems that it was the best AES candidate regard-

ing FPGA implementations. However, comparisons with

KHAZAD seems to be more relevant because it was im-

plemented using the same methodology as we used in this

paper.

In [4], the Xilinx VIRTEX1000bg560-4 was selected as

the target device for evaluation of AES candidates. Ta-

ble 6 compares RIJNDAEL8, SERPENT, MISTY1 and

KHAZAD encryption circuits in terms of hardware cost,

frequency and throughput for VIRTEX1000bg560-6 com-

ponent. The hardware cost in LUT and registers is re-

placed by a number of slices. We also investigate the ratio

Throughput/Area which is a good measurement of hard-

ware efficiency.

8Result every 2.1 clk edges means that we get a new output cipher every

2.1 cycles (on average).
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Devices Nbr of Nbr of Nbr of Latency Output every Frequency (MHz) Frequency (MHz)

LUT registers slices (cycles) (cycles) Post-map Post-implementation

VIRTEX1000 11160 11920 6322 208 1 204 159

VIRTEXII 11160 11920 6322 208 1 352 303

Table 5. Implementations of MISTY1.

Type Nbr of Result every Estimated Throughput Throughput/Area

slices (clk edges) frequency(Mhz) (Mbits/s) (
Mbits/s
slices )

RIJNDAEL 10992 2.1 31.8 1938 0.18

SERPENT 9004 1 38 4860 0.54

Previous MISTY1 8386 1 140 8960 1.07

Fast KHAZAD 8800 1 148 9472 1.07

Low area KHAZAD 7175 1 123 7872 1.09

Our MISTY1 6322 1 159 10176 1.61

Table 6. Comparisons with RIJNDAEL, SERPENT, KHAZAD and previous MISTY1.

6. Conclusions

We propose an optimized FPGA implementation of the

block cipher MISTY1. We finally get a design that can op-

erate up to 303 MHz (19.4 Gbps) using 6322 slices of the

FPGA. Upon comparison, our MISTY1 implementation of-

fers better results than those reported for RIJNDAEL, SER-

PENT, KHAZAD and previous MISTY1 in [4, 7]. MISTY1

gives big advantages in terms of hardware cost: it has the

Feistel structure and low-cost substitution boxes. Its key

scheduling is also less expansive. Looking at the final re-

sults, the ratio Throughput/Area illustrates that MISTY1

is very efficient and suitable for FPGA implementation. It

seems that reconfigurable hardware implementations will

not be the bottleneck for the selection of MISTY1 as a

NESSIE cipher.
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