
Multi-Trail Statistical Saturation Attacks

B. Collard?, F.-X. Standaert??

UCL Crypto Group, Microelectronics Laboratory, Université catholique de Louvain.
Place du Levant 3, B-1348, Louvain-la-Neuve, Belgium.

baudoin.collard; fstandae@uclouvain.be

Abstract. Statistical Saturation Attacks have been introduced and ap-
plied to the block cipher PRESENT at CT-RSA 2009. In this paper, we
consider their natural extensions. First, we investigate the existence of
better trails than the one used in the former attack. For this purpose,
we provide a theoretical evaluation of the trail distributions using proba-
bility transition matrices. Since the exhaustive evaluation of all possible
distributions turned out to be computationally hard, we additionally pro-
vide a heuristic branch-and-bound algorithm that allows us to generate a
large number of good trails. These tools confirm that the trail of CT-RSA
2009 was among the best possible ones, but also suggest that numerous
other trails have similar properties. As a consequence, we investigate the
use of multiple trails and show that it allows significant improvements
of the previous cryptanalysis attempts against PRESENT. Estimated
complexities indicate that PRESENT-80 is safe against key recovery, by
a small security margin. We also discuss the impact of multiple trails for
the security of the full PRESENT-128. We finally put forward a “statis-
tical hull” effect that makes the precise theoretical analysis of our results
difficult, when the number of block cipher rounds increases.

Introduction

PRESENT is a block cipher presented at CHES 2007, that was designed for
small embedded applications [3]. It has a Substitution Permutation Network
architecture, with a 64-bit block size and 31 rounds. The same 4-bit S-box is
applied 16 times in parallel in each round. The designers have proposed two key
sizes: 80 and 128 bits. Due to its simple and elegant structure, it has been the
focus of different cryptanalysis attempts. In [23], the author presented a first
attack against PRESENT, using differential cryptanalysis. It applies to 16 block
cipher rounds and requires the whole codebook and a time complexity of 265. In
2009, Ozen et al. proposed a related key rectangle attack against up to 17 rounds
of PRESENT, with a time complexity of 2104 and 263 chosen plaintexts [20].
Two papers exploit the linear cryptanalysis and target 26 rounds, respectively
by taking advantage of the linear hull effect [17] and multiple approximations
[10]. These attacks require the whole codebook. Finally, [19] combines linear
cryptanalysis and weak keys and targets up to 28 rounds in this context.
? Work supported by the project Nanotic-Cosmos of the Walloon Region.

?? Associate researcher of the Belgian Fund for Scientific Research (FNRS-F.R.S.).

In this paper, we pay a particular attention to a Statistical Saturation Attack
that was specifically devised for the cryptanalysis of PRESENT (although it
could apply to other ciphers). It exploits the weak diffusion of certain bits (called
the trail) during the encryption process, when some of the plaintext bits are fixed.
This property did lead to an estimated attack against up to 24 rounds, using
approximately 260 chosen plaintexts. As detailed in [6], the main limitation when
trying to extend this technique towards more rounds is the data complexity that
exceeds the complete codebook. We consequently investigated the tracks that
could be used to get rid of this limitation. Our contributions are threefold.

First, we provide tools allowing one to approximate the diffusion in a trail,
using Markov chains. We exhibit that, besides the iterative trail proposed in [6],
there exists many other trails with a similarly weak diffusion. We also propose a
heuristic branch-and-bound algorithm in order to generate them efficiently. We
finally confirm our theoretical analysis with experiments that can break up to
16 rounds PRESENT. Then, in a second part of the paper, we investigate the
exploitation of these multiple trails. We show that they can be used to trade
data complexity for time complexity. As a result, we discuss the possibility to
mount a key-recovery attack against the full 31-round PRESENT-128, using
the complete codebook, and a time complexity below 2128 memory accesses.
We put forward that such an attack could be possible under certain (optimistic)
conditions of independence for the trails - the exact evaluation of these conditions
being an important scope for further research. We note that such an attack would
anyway be of theoretical interest only. In particular, the authors in [3] clearly
suggest PRESENT-80 for their target applications (rather than PRESENT-128).
However, these results question the number of rounds for PRESENT-128 and
highlights that they could have been increased over those for PRESENT-80.
Finally, in a third part of the paper, we put forward a “statistical hull effect”,
i.e. a counterpart of the linear hull effect in linear cryptanalysis. We discuss its
impact for the theoretical analysis of our estimated attack complexities.

1 The Statistical Saturation Attack

1.1 Principle of the attack

The Statistical Saturation Attack, originally described in [6], takes advantage
of a weakness in the diffusion layer of PRESENT. For the S-boxes 5, 6, 9 and
10 (called the active S-boxes), only 8 out of 16 input bits are directed to other
S-boxes. Figure 1 illustrates this observation (note that there exists many other
examples of weak diffusion in the permutation). Consequently, if we fix the 16
bits at the input of the active S-boxes, then 8 bits will be known at the very
same input for the next round. We can iteratively repeat this process round by
round and observe a non-uniform behavior at the output of the active S-boxes.

Thanks to this non-uniform behavior, 16 bits of the last subkey can be recov-
ered as follows. We first generate a large number of plaintexts with 8 fixed bits.
The plaintexts are encrypted using r-rounds PRESENT and the distribution of

Fig. 1: Permutation layer of PRESENT: bold lines show the weak diffusion property.

the ciphertexts are recorded for the 16 bits at the output of the 4 active S-boxes
in the last round. Given this experimental distribution, it is possible to compute
the output distribution of the target 8-bit trail one round before, using a partial
decryption process. For one key guess, the evaluation of such an r − 1-round
distribution requires 216 computations. Hence the total time complexity for all
the key guesses equals 216 ∗ 216 = 232. Additionally using an FFT-based trick
similar to the technique presented in [4], this complexity can be decreased to
16 · 216 · 28. For the correct key guess, the experimental 8-bit distribution in the
penultimate round is expected to be more non-uniform than for any other guess.
This is because decrypting with a wrong guess is expected to have the same ef-
fect as encrypting one more round. We can thus hope to distinguish the correct
key from the wrong ones by computing the distance between a partially de-
crypted distribution and the uniform distribution. If the attack works properly,
the distribution with the highest distance should correspond to the correct key.

1.2 Extensions of the attack

In [6], the authors propose 3 extensions to improve the cryptanalysis:

(ext. 1) Increase the fixed part in the plaintexts. One can easily gain one
round in the attack by simply fixing the 16 bits of plaintext corresponding to the
4 active input S-boxes of the trail. This way, the 8-bit trail in the second round
is also fixed and the diffusion is postponed by one round. By fixing 32 bits out
of 64 (corresponding to S-boxes 4-5-6-7-8-9-10-11), one can similarly extend the
attack by 2 rounds. However, we are then limited in the generation of at most
232 texts. This limitation may be mitigated with the following extension.

(ext. 2) Use multiple fixed plaintext values. The same analysis can be per-
formed multiple times, using different values for the 8-bit (or 16- or 32-bit) fixed
part of the plaintexts and then combining the results (e.g. taking the sum of the
uniform vs. measured distances corresponding to the different fixed plaintexts).
This allows exploiting more texts and moving to a known-plaintext context. The
resulting attack is similar to multiple linear cryptanalysis: each fixed part of the
plaintext can be seen as analogous to an additional approximation in [2, 11].

(ext. 3) Partial decryption of two rounds instead of one. In this case, 8
S-boxes are active in the last round and 4 S-boxes are active in the penultimate
round. As detailed in [7] and illustrated in Figure 4, one can perform two inde-
pendent partial decryptions in parallel, in order to decrease the time complexity
of the attack down to 2 · (16 · 216 · 28) · (8 · 28 · 24) = 244 elementary operations.

Fig. 2: Practical trails for 2-round partial decryption in PRESENT with reduced time
complexity. The two independent trails are shown in different shades of gray.

2 Evaluating the trail distributions with Markov chains

As a matter of fact, the previous attack essentially exploits the property that
it is possible to evaluate the distribution of a subset of output bits given the
distribution of a subset of input bits for one round of PRESENT. Minier and
Gilbert use a similar technique in their attack against Crypton [16]. In [6], the
authors exploited an iterative trail with 8 active bits in 4 active S-boxes in each
round. However, as already mentioned, this is not the only possible trail and
an interesting problem is to determine if there are other trails leading to better
attacks. In this section, we show how to evaluate the distribution of a trail going
through several rounds of PRESENT. For this purpose, we characterize such a
trail by a matrix containing the transition probabilities between the inputs and
outputs. Additionally, we rely on the assumption that the bits that are not part
of the trail are uniformly distributed. This assumption as well as the Markov
chains that we exploit in the following were also used by Vaudenay in his paper
on χ2 cryptanalysis [21]. As will be discussed in Section 5, this is becoming
incorrect as the number of rounds in the trail increases. But as the next section
will show, this assumption is required in order to limit the computational cost
of our estimations to tractable values, when comparing different trails.

2.1 Transition matrix for an S-box

Let us consider an active S-box with size n∗n, and suppose that the trail includes
i active bits among n in input and j active bits in output. Consequently, there
are 2i possible inputs and 2j possible outputs, and the size of the transition
matrix is 2i ∗ 2j . This matrix is constructed in the following way:

– Initialize a matrix of size 2i ∗ 2j and fill it with zeros.
– For every possible S-box input value, extract a masked i-bit input and the
j-bit output, and increment the matrix in the corresponding position.

– Multiply the matrix by 2i/2j for normalization.

By construction, any transition matrix has the properties that the sum over any
row is equal to one. For example, the iterative trail represented in Figure 1 uses
the same transition matrix for each active S-box:

A =

0 0.25 0.5 0.25

0.25 0.25 0 0.5
0.5 0 0.25 0.25
0.25 0.5 0.25 0

In this case, the matrix is square, but it is not mandatory as it depends on the
number of active input/output bits. The interpretation of the transition matrix is
easy: each row represents a possible value for the input and the column represents
the probability of transition to a particular output value given the input.

2.2 Transition matrix for the permutation layer

For a permutation layer like the one used in PRESENT, the number of active
bits in output is equal to the number k of active bits in input. Consequently, the
matrix is square with size 2k ∗ 2k. Moreover, at each input value in the trail cor-
responds one and only one output value and thus the transition matrix contains
only zeros and ones (i.e. it is a particular instance of permutation matrix).

2.3 Transition matrix for the subkey addition

The effect of a XOR between the input bits in the trail and unknown key bits
is similar to a permutation. To each value in the trail before the key addition
corresponds only one output value after the key addition. Hence, the transition
matrix for the subkey addition is also a permutation matrix. However, unlike
the transition matrix for the permutation layer, this transition matrix does not
increase the diffusion in the trail. Intuitively, this is because the key addition
does not mix the active bits coming from different active S-boxes as with the
permutation layer. Mathematically, this corresponds to the property that the
transition matrix can be decomposed into a Kronecker product of small subma-
trices. Consequently, given the assumption of uniform distribution for the bits
that are not part of the trail, different subkeys have different output distribu-
tions in the trail, but they present an identical non-uniform behavior. Hence, it
is sound to compute the distribution of a trail independently of the keys.

2.4 Composition of transition matrices

If several S-boxes are active in parallel in a trail, the overall transition matrix is
given by the Kronecker product of the transition matrix related to each S-box.
The transition matrix of a round can then be computed as the matrix product

of the transition matrices for the S-box and permutation layers. Thereafter,
given the transition matrix for a complete trail, the output distribution can be
directly evaluated as the the vector-matrix product of the input distribution and
the transition matrix. The main drawback of this method is that it requires to
compute a matrix product with matrices of size 2n ∗ 2n where n is the number
of active bits involved at any point in the trail during the encryption process.

2.5 Practical example

We illustrate this technique using the iterative trail of Figure 1. This trail is
composed of 4 active S-boxes at each round, with 2 bits out of 4 active in each
S-box. As there are 8 active bits at each round, the full transition matrix has
a size of 28 ∗ 28. It is computed in the following way: The matrix transition for
the 4 parallel S-boxes is computed as: A4 = A ⊗ A ⊗ A ⊗ A, where ⊗ is the
symbol for the Kronecker product. The matrix for one full round is then given
by R = A4 · P (where P is the transition matrix for the permution on 8 bits).
The transition matrix after n rounds is then Rn = R ·R.... ·R︸ ︷︷ ︸

n times

. Given a vector

din of size (1 ∗ 28) describing the distribution of the 8-bits active bits in input,
the distribution of the output active bits is finally given by dout = din ·Rn.

3 Heuristic Branch-and-Bound for trail search

As detailed in the previous section, the evaluation of the distribution for a single
trail can be computationally intensive if this trail involves a lot of active bits.
This was not an issue for the attack in [6], but may become the limiting factor for
other trails (or other ciphers). In order to mitigate this limitation, we now present
a heuristic algorithm based on the branch-and-bound proposed by Matsui for
linear approximation search in [15]. The goal of this heuristic is to perform a
pre-selection of “interesting trails” that minimizes the number of active S-boxes
(so that the treatment of the previous section can still be applied) while trying
to limit the diffusion based on a simpler criteria than a probabilistic distance.

3.1 Description of the algorithm

The basic principle of the heuristic is to maximize the ratio between the number
of active bits and the number of active S-boxes in a trail. While this criteria
does not ensure finding the best trail distributions, it is extremely fast to eval-
uate and to integrate into the execution of a branch-and-bound algorithm. As
will be shown later in the section, it also provides reasonably good results. The
justification is the following: even though all the trails with low diffusion are
not necessarily good trails (because of the influence of the transition matrices
for the S-boxes), all the good trails must have low diffusion in their permuta-
tions layers. Consequently, a good strategy is to first generate a large number
of trail candidates with a branch-and-bound heuristic, then to compute the full
transition matrices for each of these candidates and to select the best ones only.

In order to speed-up the execution of the algorithm, we used a similar im-
plementation technique as presented in [4]. That is, we start by exhaustively
counting the couples (input, output) of the permutation for which the number
of active S-boxes is low. Such couples are called permutation candidates and are
entirely defined by the number of active input and output S-boxes, the position
of these S-boxes and their corresponding mask value. The permutation candi-
dates are then stored in a database (a hash table) instead of being generated
on-the-fly during each branching phase. All the candidates having the same ac-
tive output S-boxes are stored in the same list. Once the database is created,
we launch the actual trail search: a trail on r rounds can be obtained by the
concatenation of r permutation candidates, if the positions of the active S-boxes
at the exit of a permutation candidate correspond to those of the active S-boxes
at the input of the next candidate. These constraints are easily checked, as the
candidates are picked up in the database according to the position of their active
output S-boxes. The objective function that we need to maximize is the average
ratio between the number of active bits and the number of active S-boxes in the
trail. Note finally that we pile up the candidates starting with the last round,
then going down gradually until the first round, in order to benefit from the
knowledge of the best ratio in each phase of the branch-and-bound.

3.2 Results

As an illustration, we generated 1000 trails with maximum 5 active S-boxes
in each round and computed the theoretical data complexity as in [6], for the
distinguishers based on each of these trails. That is, following the analysis of
Baignère et al. [1], we estimate the data complexity as proportional to the inverse
of the Euclidean distance between the distributions evaluated in Section 2 and
a uniform distribution. The results in the figure show that after 15 rounds, the
data complexity varies between 250 and 266, according to the trail. The original

Fig. 3: Theoretical data complexity for distinguishers based on 1000 different trails.

trail of Figure 1 is marked with an arrow and is among the best ones (see Figure
3). Note that by increasing the number of trails generated by the branch-and-
bound (beyond 1000), we can easily produce very large amounts of trails with
good theoretical data complexities. As will be detailed in Section 5, the amount
of such trails increases exponentially with the number of rounds.

3.3 Experimental validation of the estimated data complexity

The estimations in the previous section indicate that the data complexity in-
creases by approximately 23 for every additional round. As these estimations
rely on the assumptions needed to evaluate the distributions in Section 2, we
confirmed these predictions experimentally, in order to verify that our assump-
tions hold to a sufficient extent. For this purpose, we complemented the exper-
iments in [6] and attacked up to 15 rounds PRESENT with 232 texts, using a
2-round partial decryption process. Figure 4 illustrates that we gain one round
compared to the original attack of CT-RSA, and confirms the theoretical expec-
tations. Note that the two-round decryption also allows a significantly increased
gain (because there are more key bits guessed in the experiment).

Fig. 4: Average gain of 6 attacks against 4 to 16 rounds PRESENT, using up to 232

texts (these attacks exploit ext. 1, with 32 fixed bits and ext. 3).

4 Multiple trails

The previous section shows that the simple trail of Figure 1 is among the best
ones to perform a Statistical Saturation Attack against PRESENT. On the other
hand, we also observe that a large number of trails perform similarly good in
theory. Hence, a natural idea is to investigate the use of multiple trails, as can be
done in linear cryptanalysis with multiple approximations [2]. In the following,
we consequently consider two questions. First, we study the possibility to exploit
several trails with different input masks and the same output mask, in order to

increase the gain of the attack. Our experiments suggest that this technique
yields good results and allows improving the best-reported cryptanalysis against
PRESENT. Then, in Section 5, we show that there exists many different trails
with the same input and output masks, the combination of which affects the
distribution of the output in a hardly predictable way. We discuss the impact of
such a “statistical hull” effect on the assumptions of Section 2.

4.1 (ext. 4) Multiple trails cryptanalysis

In the Statistical Saturation Attack of [6], the main limitation of the attack
was the number of texts required to find the correct subkey. Above 24 rounds
(and assuming that ext. 2 yields the expected improvements), the data com-
plexity of the attack reaches the codebook size of PRESENT. In this section, we
consequently investigate the possibility to use several distinct trails in order to
partially remove this limitation. Thanks to our branch-and-bound, we were able
to generate many trails with different input masks and the same output mask.
It allowed us to run several independent attacks in parallel, each one using a
different trail and thus different partitioning of the plaintexts. As the output
mask is the same, we can combine the results of the attacks together because
the partial decryption involves the same subkey bits. In practice, each single-trail
attack produces a vector containing the distances between the uniform and out-
put distributions after partial decryption with the keyguess. A straightforward
combination that was used in the context of linear cryptanalysis using multiple
approximations (and for ext. 2) simply consists of taking the mean of these vec-
tors. Such heuristic may not be optimal (e.g. compared to a maximum likelihood
approach), but as detailed in [5], it is convenient when we lack the exact informa-
tion about the expected distribution of the trail output after partial decryption.
In particular, it is useful when linear hull (or related) effects imply errors when
determining the approximated probability density functions of multidimensional
approximations in linear cryptanalysis (see [9]). As will be exhibited in Section
5, this is exactly the type of situation that we face in this paper.

If we use n such trails, the time complexity is multiplied by the same factor
because we have to repeat the partial decryption for each trail. The overhead
required to combine the results is negligible. The effect on the data complexity
is more intricate because each input mask defines a different partition of the
plaintexts, according to the bits that are fixed and those that can change. For
example, if the whole codebook is used, each plaintext will be used exactly once
for each trail. The plaintexts can either be stored, requiring 267 bytes of memory,
or they can be generated on-the-fly, which would require n ∗ 264 encryptions.

In order to evaluate the feasibility of this technique, we applied the statistical
saturation attack on 9-round PRESENT for 128 different input masks with 228

texts each. We selected the trails according to two different rules:
1. Best trails: we generated masks using our branch-and-bound and we selected

the 8-round trails leading to the lowest theoretical data complexity.
2. Random trails: we generated trails from random (compatible) masks.

The results of our experiments are in Figure 5, which compares the mean
gain (as defined in [2]) of attacks against 9-round PRESENT, exploiting different
amounts of trails (up to 128), in function of the number of plaintexts used in
the attacks. They illustrate that the combination of the information coming
from different trails can be done constructively (i.e. lead to increased gains). For
example, reaching a gain of 10 bits with a single trail requires approximately 224

texts in the left part of the figure. But a combination of 27 trails leads to a nearly
equivalent gain after 218 texts in this case. Interestingly, the positive impact of
combining several trails appears to be reduced for the random trails case (in the
left part of the figure). In addition, there are two phenomenons that are worth
being mentioned. First, the practical gains of trails having similar theoretical
data complexity turned out to be quite different. For example, in the context
of the best selected trails, we observed that 12.5% of them led to relatively
low bias (less than 4 bits) even after 228 texts. Second, the difference between
the best and random trails was not as strong in practice as expected from the
theoretical data complexities computed in the previous section. In both cases,
this observation relates to the “statistical hull” effect discussed in Section 5.

Fig. 5: Gains of attacks using multiple trails (left: best trails, right: random trails).

Note that, since the experiments in Figure 5 are far from using the full code-
book of PRESENT, the attacks using different trails also use different plaintexts.
By contrast, when estimating the effectiveness of attacks against more than 26-
round PRESENT, the data complexity gets close to the full codebook. It means
that exploiting multiple trails will require to rearrange (and hence, reuse) the
codebook several times. Such a context raises the question to evaluate whether
these multiple partitions of the codebook also improve the gain of the attack.
Quite naturally, generating the full codebook is unfeasible for a 64-bit cipher.
As a first step, we consequently considered a reduced-size version of PRESENT,
with 16-bit blocks [12]. This allowed us to compute the average gain of one versus
a combination of 128 trails, for different amounts of plaintexts. The results of
these experiments are in Figure 6, for attacks against different number of rounds.

Fig. 6: Comparison between the gain of a single trail and the combined gain of 128
trails, using the full codebook against a simplified PRESENT with 16-bit block size.

A first observation is that, even in this extreme context, the combination of
the trails improves the overall gain of the attack significantly. That is, the bold
plain curves (representing the combined gains) exceed the bold dotted curves
(representing the average gains of single trails - the other curves representing
all the 128 single-trail experiments). On the other hand, the improvements are
not as large as in Figure 5, arguably because in such a small scale example,
the input masks of the different trails are correlated. Also, it is noticeable that
for the 9-round case, the gain of the multi-trail attack is similar to the one of
a single-trail attack. This illustrates a context where the key-dependent signal
provided by a single trail is so small that combining 128 multiple trails is not
sufficient to reach a significant gain (since multiple trails can only be used to
amplify an existing signal, here too small for the considered data complexities).

Summarizing, in the best case, different trails bring independent information,
meaning that using two trails is equivalent to doubling the amount of texts with
a single trail (this is the expectation in multiple linear cryptanalysis [2, 9])1. In
practice, these (best) conditions of independence (e.g. for the masks) are not
perfectly respected in our context. But as the previous experiments illustrate for
reduced-round PRESENT, different trails yield useful information, even when
recombining the same set of plaintext with correlated masks. We leave the exact
evaluation of these dependencies as an important scope for further research.

1 Just as it is expected when using multiple fixed values in ext. 2.

4.2 Consequence for the security of PRESENT-128

The previous section showed experimentally that combining multiple trails can
lead to an improvement of the attack’s gain with constant data complexity.
In this section, we consider the impact of this observation for the security of
PRESENT and quantify the overheads that it causes in terms of time and
memory complexity. In particular, we analyze the possibility to perform a key-
recovery attack exploiting the complete codebook of PRESENT-128.

According to [6], an attack against 24 rounds requires between 257 and 260

texts and the data complexity increases by a factor of 23 for every additional
round. This was experimentally confirmed in Figure 4 for up to 16 rounds. If
we extrapolate these estimations for 7 more rounds, it amounts to a total of
approximately 260+3·7 = 281 texts for 31 rounds, which is more than the whole
codebook. However, using multiple trails, we can decrease this complexity by
extracting more information from a reduced number of texts. For example, using
281/264 = 217 trails with similar distributions as the one in [6] with the whole
codebook - and assuming that they give rise to independent information ! -
should be enough to recover 48 bits of the key with a significant gain.

The time complexity of such an hypothetical attack would be 264 memory
accesses for each trail, meaning 281 memory accesses for all the 217 trails. It
would additionally require 267 bytes to store the codebook. This complexity is
slightly higher than an exhaustive search for 80-bit keys, but is a significant
improvement for a 128-bit key. Also, there is a possible time-memory tradeoff
since one can avoid storing the codebook by re-generating it for each trail.

Again, it is important to emphasize that these complexities are optimistic
compared to what would be observed if experiments could be launched with the
full codebook. This is because they assume that multiple trails bring independent
information. As experimented in the previous section, this is only correct up to a
certain (for now, hard to quantify) extent. Hence, it is necessary to multiply our
estimated time complexities by a constant factor (as it was done with the data
complexities in [6]). These corrective terms should mainly incorporate two effects:
first, the possible correlation between different mask and trails as mentioned
in this section; second, the possible deterioration and key dependencies of the
statistical biases of single trails when the number of rounds increases, due to
the statistical hull effect that we detail in the next section. Since we do not
have a sound theory to analyze this statistical hull effect, and its experimental
evaluation beyond 16 rounds is computationally intensive, we can only conjecture
that the combination of multiple trails can be used to trade data complexity for
time complexity up to a certain level. Yet, it remains that multiple trails improve
the previous results from CT-RSA 2009. And the approximated time complexity
of the hypothetical attack (i.e. 281) is small enough compared to 2128, so that
there is a reasonable chance that it will remain faster than exhaustive key search,
even after the introduction of these corrections. At least, these estimations raise
interesting questions about the number of rounds in PRESENT-128.

5 Statistical hull effect

As detailed in Section 4.1, the theoretical data complexities computed following
the transition matrices in Section 2 do not always correspond to our practical
experiments. In this section, we underline one possible reason explaining this
divergence, in relation with the assumption of uniform distributions for the bits
that are not part of the trail. That is, while this assumption is nicely respected
for the input plaintexts, it becomes incorrect as the number of rounds increases.
In fact, this behavior can be related to the statistical hull effect that has been
put forward in the context of linear cryptanalysis. A linear hull describes a set
of linear approximations that share the same input and output masks, but have
different trails and different biases. Consequently, each of these approximations
contributes to the bias of the overall approximation [18]. This phenomenon ex-
plains why linear cryptanalysis can perform better than expected by the theoret-
ical bias evaluated for a particular approximation. Differential cryptanalysis has
a similar concept of differential that is made of several differential characteristics
with the same input and output differences, e.g. described in [14].

Fig. 7: 4-round trails with the same input and output masks.

In Statistical Saturation Attacks, an analogous phenomenon can also be ob-
served. Namely, several trails with the same active input and output bits can be
found, each of them having its own specific transition matrix. For example, two
trails with the same input and output masks as the one of Figure 1 are given in
Figure 7. By running our branch-and-bound algorithm, we could find numerous
other trails corresponding to this input and output masks, as detailed in Table 1.

#rounds #trails

2 1
3 5
4 54
5 1044

Table 1: Number of trails with the same input and output masks as in Figure 7.

The table directly suggests that the number of such trails increases expo-
nentially with the number of rounds. For a large enough number of trails, it
consequently becomes difficult to estimate their global effect on the distribution
of the output bits. That is, as the trails may be correlated, the combined output
distribution is not a simple combination of the theoretical output distributions
of each trail. This observation can in fact be related to the work of Keliher et
al. [13], in which the estimation of an upper bound for the linear hull effect was
shown to be computationally hard in the number of rounds.

In the context of linear cryptanalysis, such experiments explain why, as the
number of rounds increases, random masks can be almost as effective in recov-
ering a key than a carefully selected trail (as witnessed, e.g. by Vaudenay’s χ2

cryptanalysis [21]). Strong hull effects may also imply key dependencies in the
sense that the behavior of a trail for different keys may not be identical any-
more (hence illustrating that the key equivalence hypothesis first discussed in [8]
would not hold for PRESENT). In our (mainly experimental) setting, we con-
jecture that similar effects explain the deviations between the practical gain of
trails having similar deviations from uniform under the assumptions of Section
2. However, we note that for a number of trails (e.g. the iterative one in Figure
1), these assumptions holds nicely. Analyzing the possible differences between
these experimental observations and the ones made in the context of a linear
cryptanalysis in another interesting scope for further research.

6 Conclusion and further works

A summary of the published cryptanalysis results against PRESENT is given
in Table 2. It shows that Statistical Saturation Attacks outperform other types
of cryptanalyses (in particular linear and differential) against this cipher. This
is due to the design of its permutation layer. The main outcome of this paper
is to show that the use of multiple trails allows improving the previous result
of CT-RSA 2009. Also, if the assumptions in this paper are verified for larger
number of rounds, the use of multiple-trails could lead to attacks with smaller
time complexity than exhaustive key search against the full PRESENT-128.

As discussed in the previous sections, these estimations have to be considered
with care, which is made explicit with the constant multiplicative factor c that
we give for the time complexities in the table. This situation is similar to the
one in linear cryptanalysis, where the precise estimation of the complexities is
made difficult by the large cardinality of the trails to investigate.

In fact, the situation in the present paper is even more difficult, since we have
to deal with complete distributions rather than scalar bias values. Positively,
the experimental attacks that we performed against reduced number of rounds
confirm our theoretical estimations to a reasonable extent. They at least show a
significant improvement of the attacks when using multiple trails.

#rounds Attack Data compl. Time compl. Memory compl. Ref.

16 SSA c ∗ 236CP 228 MA 216 counters [6]

16 DC 264CP 265 MA 6 ∗ 232 bits [23]

17 RKR 263CP 2104 MA 253 counters [20]

24 SSA c ∗ 260CP 228MA 216 counters [6]

26 LH 264KP 298.7 MA 240 counters [17]

26 MLC 264KP 272 MA 234 bytes [10]

27 MT-SSA 264CP c · 269MA 267 bytes This paper

29 MT-SSA 264CP c · 275MA 267 bytes This paper

31 MT-SSA 264CP c · 281MA 267 bytes This paper

CP-Chosen Plaintext, KP-Known Plaintext, MA-Memory Access
DC-Differential Cryptanalysis, SSA-Statistical Saturation Attack, RKR-Related
Key Rectangle, MLC-Multidimensional Linear Cryptanalysis, LH-Linear Hull

Table 2: Summary of attacks (italic are not experimented and use ext. 2, ext. 4.).

While these results do not threaten the practical applications of PRESENT
(especially since it is mainly its 80-bit version that was advertised in [3]), they
raise interesting open questions. For example, they make a case for designing effi-
cient ciphers in which all the statistical effects that can be exploited in cryptanal-
ysis are taken into account. The decorrelation theory appears as an interesting
alternative in this respect [22]. But most importantly, the present experimental
work implies the need of a better understanding of the statistical saturation at-
tack and its extensions (in particular, ext. 2, i.e. using multiple fixed values in
the trails, and ext. 4, i.e. using multiple trails). This implies providing sound
explanations for the statistical hull and correlation effects between masks and
trails, informally described in this paper. The similarities of our results with
recent works in multidimensional cryptanalysis [9] also need to be investigated.

References

1. T. Baignères, P. Junod, S. Vaudenay, How Far Can We Go Beyond Linear Crypt-
analysis?, in the proceedings of ASIACRYPT 2004, Lecture Notes in Computer
Science, vol 3329, pp 432-450, Jeju Island, Korea, December 2004.

2. A. Biryukov, C. De Cannière, M. Quisquater, On Multiple Linear Approximations,
in the proceedings of CRYPTO 2004, Lecture Notes in Computer Science, vol 3152,
pp 1-22, Santa Barbara, California, USA, August 2004.

3. A. Bogdanov, L. Knudsen, G. Leander, C. Paar, A. Poschmann, M. Robshaw, Y.
Seurin, C. Vikkelsoe, PRESENT: An Ultra-Lightweight Block Cipher, in the pro-
ceedings of CHES 2007, Lecture Notes in Computer Science, vol 4727, pp 450-466,
Vienna, Austria, September 2007.

4. B. Collard, F.-X. Standaert, J.-J. Quisquater, Improving the Time Complexity of
Matsui’s Linear Cryptanalysis, in the proceedings of The International Conference
on Information Security and Cryptology - ICISC 2007, Lecture Notes in Computer
Science, vol 4817, pp 77-88, Seoul, Korea, November 2007.

5. B. Collard, F.-X. Standaert, J.-J. Quisquater, Experiments on the Multiple Linear
Cryptanalysis of Reduced Round Serpent, Fast Software Encryption 2008, Lecture
Notes in Computer Science, vol 5086, pages 382-397, Springer, February 2008.

6. B. Collard, and F.-X. Standaert, A Statistical Saturation Attack on the Block Cipher
PRESENT, in the proceedings of CT-RSA 2009, Lecture Notes in Computer Science,
vol 5473, pages 195-210, San Francisco, California, USA, April 2009.

7. B. Collard, and F.-X. Standaert, A Statistical Saturation Attack on the Block
Cipher PRESENT, Errata and Improvement, available for download from:
http://www.dice.ucl.ac.be/ fstandae/PUBLIS/62b.pdf

8. C. Harpes, G. Kramer, J. Massey, A Generalization of Linear Cryptanalysis and the
Applicability of Matsui’s Piling-Up Lemma, in the proceedings of EUROCRYPT
1995, LNCS, vol 921 , pp 24-38, Saint-Malo, France, May 1995.

9. M. Hermelin, J.Y. Cho, K. Nyberg, Multidimensional Extension of Matsui’s Algo-
rithm 2, in the proceedings of FSE 2009, Lecture Notes in Computer Science, vol
5665, pp 209-227, Leuven, Belgium, February 2009.

10. Joo Yeon Cho, Linear Cryptanalysis of Reduced-Round PRESENT, Cryptology
ePrint Archive: Report 2009/397, available on: http://eprint.iacr.org/2009/397.

11. B.S. Kaliski, M.J.B. Robshaw, Linear Cryptanalysis using Multiple Approxima-
tions, in the proceedings of CRYPTO 1994, Lecture Notes in Computer Sciences,
vol 839, pp 26-39, Santa Barbara, California, USA, August 1994.

12. G. Leander, Small Scale Variants of the Block Cipher PRESENT, IACR ePrint
Archive, http://eprint.iacr.org/2010/143.

13. L. Keliher, H. Meijer, S.E. Tavares, New Method for Upper Bounding the Maximum
Average Linear Hull Probability for SPNs, proceedings of EUROCRYPT 2001, Lec-
ture Notes in Computer Science, vol 2045, pp 420-436, Innsbruck, Austria, May 2001.

14. X. Lai, J.L. Massey, and S. Murphy, Markov Ciphers and Differential Cryptanal-
ysis, Advances in Cryptology - EUROCRYPT 1991, Lecture Notes in Computer
Science, vol 547, pp. 17-38, Brighton, United Kingdom, April 1991.

15. M. Matsui, Linear cryptanalysis method for DES cipher, in the proceedings of
EUROCRYPT 1993, LNCS, vol 765, pp 386-397, Lofthus, Norway, May 1993.

16. M. Minier, H. Gilbert, Stochastic Cryptanalysis of Crypton, in the proceedings of
Fast Software Encryption 2000, Lecture Notes in Computer Science, vol 1978, pp
121-133, New York, USA, April 2000.

17. J. Nakahara Jr, P. Seperhdad, B. Zhang, M. Wang, Linear (Hull) and Algebraic
Cryptanalysis of the Block Cipher PRESENT, to appear in the proceedings of CANS
2009, Kanazawa, Japan, December 2009.

18. K. Nyberg, Linear Approximation of Block Ciphers, proceedings of EUROCRYPT
1994, LNCS, vol 950, pp 439-444, Perugia, Italy, May 1994.

19. K. Ohkuma, Weak Keys of Reduced-Round PRESENT for Linear Cryptanalysis,
in the proceedings of SAC 2009, Lecture Notes in Computer Science, vol 5867, pp
249-265, Calgary, Alberta, Canada, August 2009.

20. O. Özen, K. Varici, C. Tezcan, Lightweight Block Ciphers Revisited: Cryptanalysis
of Reduced Round PRESENT and HIGHT, proceedings of ACISP 2009, Lecture
Notes in Computer Science, vol 5594, pp 90-107, Brisbane, Australia, July 2009.

21. S. Vaudenay, An Experiment on DES Statistical Cryptanalysis, In the proceedings
of the third ACM Conference on Computer and Communications Security (CCS
1996), ACM, pp. 139-147, New Delhi, India, March 1996.

22. S. Vaudenay, Decorrelation: A Theory for Block Cipher Security, Journal of Cryp-
tology, vol 16, num 4, pp 249-286, Springer, 2003.

23. M. Wang, Differential Cryptanalysis of Reduced-Round PRESENT, in the pro-
ceedings of AFRICACRYPT 2008, Lecture Notes in Computer Science, vol 5023,
pp 40-49, Casablanca, Morocco, June 2008.

