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Abstract. By combining the extraction of side-channel information leakages
with classical cryptanalysis techniques, the recently introduced Algebraic Side-
Channel Attacks trade a part of the data complexity in standard DPA attacks
for more computations. But predicting the success rate of such attacks is made
harder because of the numerous parameters that come into play when solving
large algebraic systems of equations. In this paper, we study the impact of three
of these parameters empirically, along with the metrics needed to quantify them.
First, we analyze the efficiency of different representations of the side-channel
information as low degree boolean equations. Second, we investigate the impact
of different types of information leakages on the attack resolution times. Third,
we discuss how these conclusions depend on the target ciphers. From simulated
experiments performed in various contexts, we finally provide some more general
intuitions for the security of leaking devices.

1 Introduction

In the classical cryptanalysis setup for block ciphers, the adversary has a black box
access to the cryptographic device, meaning that he knows a set of plaintexts and
corresponding ciphertexts. In the side-channel cryptanalysis setup, the adversary also
obtains a physical access to the cryptographic device. This physical access can be
used to perform measurements during the encryption process and thus provides useful
information on the computations of the device. With the increasing number of small
electronic devices widely used in everyday life, side-channel attacks can be applied to
various targets (smart cards, RFID tags,...), raising new security issues. Indeed, it turns
out that even if the encryption algorithm is secure in the classical cryptanalysis setup,
its implementation can be insecure in the side-channel cryptanalysis setup.

Usual side-channel attacks like the Kocher’s DPA [9] try to recover the key bits directly
from the observed leakages. Other attacks, though, use the side-channel leakages as
information that is then exploited through an offline cryptanalytic phase. For example,
the idea of the side-channel collision attack (see [4], [10]) is to use the side-channel
information to detect collisions (different intermediate computations that have the same
output) in the first two rounds of the AES. Once several collisions are detected, the
adversary uses an offline algebraic resolution phase in order to compute the secret key.
More recently, the Algebraic Side-Channel Attack (ASCA) was proposed against the
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block ciphers PRESENT [14] and AES [15]. The ASCA can be seen as a generalization
of collision attacks: the adversary tries to recover a lot of small pieces of side-channel
information about the encryption process. This information must not be very precise,
but must be correct with very high probability. For example the adversary can try
to recover the Hamming weights of the data transiting on the bus of the device, but
any other information can be helpful. This side-channel information is used to enhance
an algebraic computation phase: the block cipher is translated into a big system of
equations updated with equations describing the side-channel information. The system
is then given to a solver (a SAT solver for example) which tries to find the correct
values for the key bits. The ASCA presents interesting points: it can succeed with a
data complexity of 1, thus with only one measured encryption (whereas a standard
DPA usually requires tens or hundreds of measurements), it can also succeed in an
unknown plaintext/ciphertext context, and it can break some masked implementations
(e.g. [12]).

Because of this combination of classical and side-channel cryptanalysis, evaluating the
success rate of an ASCA is a difficult task. Indeed, multiple parameters come into
play, some of which are usually not taken into account when studying e.g. standard
DPA. Also, the metrics we need to evaluate this success rate may be different from the
ones used for other side-channel attacks. In this work, we present metrics adapted to
the ASCA and investigate some of the relevant parameters that influence the success
rate of such attacks. More specifically, we focus on three points: (1) representation
dependence - what is the impact of the representation of the problem, (2) leakage
dependence - which leaked information is more or less favorable to the ASCA, and (3)
cipher dependence - what is the impact of the structure of the target block cipher. In
the end, our goal is to gain useful intuitions on how the ASCA behaves in function of
the parameters: which parameters have the most impact in which situation.

The paper is structured as follows. Section 2 begins with a short background presen-
tation, that is the description of the main concepts we use. Section 3 presents our
specific setup: the choices and assumptions we make. In section 4, we detail the first
dependence: the representation of our problem as a CNF formula. Then, in section 5
we investigate the second dependence: the information leakage. Finally, in section 6,
we introduce the third dependence, the target cipher, and we present our observations
about the interactions between these parameters.

2 Background

Comparing side-channel attacks and countermeasures on a fair basis is not an easy
task. Indeed, the success of a side-channel attack depends on many parameters : the
device and implementation targeted, the measurement setup, the resources of the ad-
versary, the statistical tools used,... In [18], Standaert et al. proposed a framework
for the analysis of cryptographic implementations. In this section, we present a short
description of this framework and of the ASCA.
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2.1 The framework

We present here (figure 1) a generic side-channel key recovery to illustrate the main
concepts. The framework considers two distinct parts: the target implementation and
the side-channel adversary.
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Fig. 1. Side-channel key recovery.

The side-channel adversary exploits a leakage from the target implementation. In our
case, this leakage is the power consumption of the device measured through e.g. an os-
cilloscope. The side-channel key recovery consists in recovering a secret key k contained
in the device. To do so, the adversary has to perform several subkey recovery phases.
A subkey is any value depending on the key bits. In practice, every intermediate value
processed during an encryption (noted yr

i - the ith result processed during round r) and
every function of these intermediate values qualify as subkeys (e.g. a straightforward
idea is to consider the bytes of k as subkeys). The important concepts in figure 1 are:

– The leakage function L describes the values leaked by the device. The adversary
cannot choose the leakage function, which is determined by the physics of the device
and the measuring apparatus. For example the leakage can be dependent on the
Hamming weight of the values processed (see [11]).

– The leakage model M is the model used by the adversary to predict the leaked
value in function of the current state of the device. The leakage model is the choice
of the adversary; he can arbitrarily select a leakage model or build a model during
a profiling phase (a training phase on a practice device). For example, the leakage
model could be the Hamming weight model, or the “single bit” model where the
adversary assumes that the leakage is correlated with the value of one specific bit
(typically the msb).
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2.2 Algebraic attacks and ASCA
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Fig. 2. Comparison of a standard DPA adversary and an ASCA adversary.

As illustrated in figure 2, a standard DPA usually targets subkeys such that their
concatenation directly yields the master key k (i.e. it has little offline time complexity).
By contrast, in an ASCA, the adversary will try to recover simpler target subkeys (i.e.
that can be recovered with high probability and little data complexity) and to exploit
this information in a more elaborated offline cryptanalysis step.

The basic idea of algebraic attacks is to describe a block cipher as a system of boolean
equations. The main unknown variables in the system are the key bits, so that solving
the system is equivalent to recovering the key. Theoretically, knowing a few pairs of
plaintext/ciphertext is enough to determine the secret key. However, solving such a
big system of equations is a hard problem and is generally intractable with today’s
computers. There exist several techniques to attempt to solve this kind of systems:
SAT solvers [17], XSL algorithm [5], Gröbner bases [7],...

Algebraic side-channel attacks (ASCA) were recently presented, applied to the block
ciphers PRESENT [14] and AES [15]. The main idea of this type of attacks is to
combine a side-channel recovery phase with an algebraic cryptanalysis phase in order
to recover the secret key. Indeed, side-channel information can usually be translated into
algebraic equations; it seems natural to add this information to the system of equations
describing the targeted block cipher. If enough side-channel information is added, the
resulting enhanced algebraic system can be solved within a reasonable amount of time.
In this paper, we transform the system of equations into an equivalent satisfiability
problem and we solve it using a SAT solver (we use the zChaff solver [19]).
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While the selection of target subkeys is usually straightforward in a standard DPA,
it can be more tricky in ASCA. In this paper, following the suggestion of [14, 15],
we will consider subkeys that directly correspond to the leakage model: s = M(yr

i ).
For example, if the leakage model is the Hamming weight model, the subkeys are the
Hamming weights of the data processed. Then, we use the algebraic computation step
to (try to) recover the master key k in one go.

Phases II and III together in figure 2 form the attack part (phase I being the training
part against a tweakable device). The attack can be evaluated in function of complexity
parameters for these two phases: τ , m and q (time, memory and data complexity; the
data complexity being the number of encryptions measured). The ASCA illustrates
thus the tradeoff that can be made in the attack part: a side-channel attack with a
high number of queries (high q) can usually recover the key without performing many
calculations (τ and m are negligible). But it is also possible to build an attack that
can work with very few queries (q = 1 or 2) at the price of a (possibly very) intensive
computation phase (high τ and m).

2.3 Evaluation metric

In [18], the authors decompose the security evaluation in two metrics: an information
theoretic metric used to compare implementations (how much information leaks, in-
dependently of the adversary), and security metrics used to compare adversaries (how
efficiently the adversary can exploit the available information). The security metric is
based on the success rate of the attack. In our case we have to change this metric.
Indeed, the success rate of the ASCA is very dependent on the amount of time allowed
for the computations. Theoretically, the solver will always find the correct key. The
main difference between a successful and a failed ASCA is the time required to reach
the solution. Thus we define our security metric based on the solving time: the median
solving time, the minimum time t such that at least 50% of the solving times are below
t. We choose the median time over the average time because the solving times follow
an exponential distribution, and the median gives less importance to outsiders.

3 Our setup

In this work, we consider only perfect subkey recovery phases (with 100% accuracy).
Indeed, we would like to study the impact of the leakage function on the success of
the attack, without considering the possibility of recovering several hundred leaked
values with high probability (see [14] for discussions about this problem). So, we did
not perform any real measurement, but we used simulated leakage functions depending
only on the intermediate 8-bit values transiting on the bus of the device: L(yr

i ). Here
we present the other choices we made in our setup.

Algorithm: we consider two encryption algorithms: the block ciphers AES and PRESENT.
The AES [2] is a widely used block cipher, chosen as a standard by the NIST. PRESENT,
proposed by Bogdanov et al. in [13], is a lightweight block cipher designed for con-
strained environments (RFID tags, sensor networks,...). These two targets are comple-
mentary: the AES is a well known and studied block cipher with a complex algebraic

5



structure, whereas PRESENT is a block cipher adapted to small devices with a much
simpler algebraic structure. The impact of the algorithm is investigated in section 6.

Target operations: for each block cipher, it is important to know which operations
leak, or in other words which data are processed by the device. The more operations
during the encryption process (i.e. the more clock cycle in our implementation, the
more side-channel leakage we can recover. We consider the same target operations as
in [14] and [15]: the outputs of the XOR operations (with the subkeys for example) and
the outputs of the substitutions1. The AES is implemented with an operation-based
MixColumn, giving 4*13 additional targets per MixColumn layer, for a total of 788
potential targets. The 31-round PRESENT gives 496 potential targets.

Leakage functions: we simulated different families of leakage functions. All the fol-
lowing leakage functions are defined over an 8-bit intermediate value yr

i processed at
some point by the device.

– rand(n) : L(yr
i ) = Zyr

i
. The leakage function of the simulated device is determined

by a random vector Z; each element of Z being chosen at random between 0 and
n− 1.

– parity(n,m) : L(yr
i ) =

∑j<n
j=0

(
2j .
⊕k<m

k=0 yr
i [j ∗m+ k]

)
. In other words, the leak-

age function provides the adversary with the parity bits of the n first groups of m
bits of yr

i .
– parity− rand(n,m) : L(yr

i ) = m.parity(1, n) + rand(m). It is a combination of the
two previous functions.

– WH : L(yr
i ) =

∑
j y

r
i [j]. The classical Hamming weight function.

– linear(n). Somewhat a generalization of the Hamming weight function. This func-
tion is based on a linear combination of the values of the bits of yr

i :
1. The 256 values of the vector V ∈ R256 are calculated as follows: vyr

i
=
∑

j αjy
r
i [j]

with random αj (here, we choose for each simulated device random αj ∈ R be-
tween 1 and 5).

2. The next step is to reduce the number of different values to n. To do so, we
successively merge the two closest values vi and vj together into a new value
vi,j = (vi + vj)/2. The values vi and vj are removed from V and replaced by
vij . We keep track of the indexes of the merged values.

3. The previous step is iterated while V contains more than n elements. When
the number of elements in V becomes equal to n, the procedure is stopped.
The vector Z defining the leakage function is built by assigning to each index i
the final value vi1,...,ik

which contains the original value of index i: zi = vi1,...,ik

if i ∈ {i1, ..., ik}.

Some of these leakage functions are purely theoretical ones (rand, parity − rand),
whereas others could be considered as realistic ones. The Hamming weight/Hamming
distance leakage function is often used (see [3]). The linear leakage function is considered
e.g. in stochastic models [16]. And the parity(1, 1) leakage function (the attacker knows

1 We consider a precalculated key schedule that leaks no direct information about the key
bits.
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the value of one bit of the value processed) corresponds to probing attacks and has
been used in Dinur’s and Shamir’s side-channel cube attack [6]. In section 5, we detail
how we measure these leakage functions.

4 Impact of the representation

Our setup being presented, we can now focus on the first issue we want to investigate:
the representation dependence. The SAT solvers does not use an optimal algorithm, but
rather smart heuristics. These heuristics don’t work the same way with two equivalent
representations2 of the same problem. Finding a “good” representation for a given
problem is thus important for a successful attack. In this section we study the impact
of the representation on the success of the attack.

Most SAT solvers take as input a boolean formula in conjunctive normal form (CNF).
A CNF is a conjunction (AND, ∧) of clauses, each clause being a disjunction (OR,
∨) of literals (a literal is a variable, x, or NOT a variable, −x). The goal of the SAT
solver is to prove that a formula is satisfiable, by finding a valid assignment for all
variables, or unsatisfiable, by finding conflictual clauses. In the case of the ASCA, the
algebraic system of equations is translated into a CNF formula, the SAT solver has
to find the unique solution in order to prove the satisfiability of the system. The SAT
solver principally uses an exhaustive search with some smart heuristics. The solver
usually works better with short clauses, as the literals guessed are propagated faster
through short clauses and thus the possible conflicts appear earlier.

Let F be the CNF formula built from the algebraic system of equations representing
the block cipher, with one known pair plaintext/ciphertext. Without additional infor-
mation, the solver should not be able to prove that F is satisfiable in a reasonable
amount of time. The adversary then adds side-channel information to F : for each dif-
ferent leaked value L(yr

i ) = l, he adds a formula Cl which defines the set of possible
values yr

i associated to l. There are several ways to translate a leakage function into
the different formulas Cl.

Enumeration: the first idea is to simply enumerate all impossible values associated to
l: “if L(yr

i ) = l, then Cl := (yr
i 6= 0) ∧ (yr

i 6= 1) ∧ ...(yr
i 6= 255)”. This is the exhaustive

method which works for every possible leakage function and produces long clauses
(with 8 literals since yr

i is a 8-bit value).

Compact representation: some leakage functions can be represented as a simple al-
gebraic relation between the bits of yr

i . This simple relation can be exploited to describe
the leakage function with very short clauses. For example, the function parity(1, 1)
(that is L(yr

i ) = yr
i [0]) has two possible output values (l = 0 or l = 1) and the corre-

sponding sets of clauses consist only in 1-literal clauses (C0 := −yr
i [0] and C1 := yr

i [0]).
Let us notice that the function parity(1, 1) could also be represented as an exhaustive
enumeration of all impossible values yr

i corresponding to each leakage values l. How-
ever, it seems that the information added to the formula is easier to exploit when it
2 By “equivalent representation”, we mean two CNF formulas that have the same set of valid

assignments.
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is a compact representation and not a full enumeration; C0 := −yr
i [0] and C1 := yr

i [0]
are the optimal representations of l = 0 and l = 1 for parity(1, 1).

It turns out that every leakage function can be compacted, to a certain extent. The
leakage functions with a simple algebraic representation (parity, WH) benefit the most
from the compact representation, but even for random functions (rand, parity− rand)
one can find more compact representations than the exhaustive enumeration. Ideally, we
need a method to produce the optimal sets of clauses describing a leakage function. It is
not evident of what is an optimal set of clause; we decided to optimize the representation
in regard to the average number of literals per clause, denoted as nlit. An optimal set
of clause is thus a set of clause with the lower nlit possible. We apply the following
heuristic to build the different formulas Cl:

1. Build the set of all 6560 possible clauses from a set of 8 variables.
2. Cl is empty.
3. Each clauses are tested succesively from the shortest to the longest: a clause c is

added to Cl if (1) the clause c is true for every value yr
i associated to the leakage

l, and (2) adding the clause is helpful, that is the formula Cl ∧ c has less satisfiable
assignements than Cl.

The previous heuristic does not always give the optimal representation, as a variation
in the order in which the clauses are tested can lead to a different formula Cl which can
be slightly longer than the optimal representation. However, it seems that this heuristic
is good enough for our attacks. As a comparison, we performed two attacks against a
block cipher PRESENT implemented on a simulated device with a Hamming weight
leakage function (L(yr

i ) =
∑

j y
r
i [j]). The side-channel information is expressed in the

first case as an enumeration (beween 186 and 255 clauses with 8 literals per clause),
and in the second case as a compact set of clauses derived from the simple algebraic
relation of the Hamming weight (between 8 and 112 clauses with 1 to 8 literals per
clause). The median solving time for the first case is 2.95 seconds whereas the median
solving time is only 0.44 second for the second case.

5 Metrics for the information leakage

In the previous section we investigated the representation dependence. In this section,
we define some metrics to evaluate the leakage dependence. More specifically, we present
two metrics. The first one is an information theoretic metric. Indeed, to evaluate the
leakage of information from the device, an information theoretic metric is a natural
candidate. Moreover, as demonstrated in [18], such an information theoretic metric
can be related to the asymptotic security of an implementation in a standard DPA
attack. In the following, we aim to evaluate if such an intuition holds in ASCA. Our
second metric is related to the representation problem. We show that these two metrics
are complementary and related in certain aspects. We finish the section by presenting
an alternative metric, the algebraic immunity.

The information theoretic metric used in [18] measures the information between the
observed leakage l with the target subkey s. In our case, knowing exactly the target
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subkey s is not equivalent to a successful attack; we thus want to go a step further. We
then consider the amount of information that the observed leakage l gives about the
target subkey s along with the amount of information that the subkey s gives about
the intermediate value yr

i . In our setup it is easy to combine these two values, as we
assume perfect subkey recovery phases with 100% accuracy. We can thus say that the
mutual information between L and Y r

i is the same as the mutual information between
S and Y r

i . We use as information theoretic metric this mutual information: I(Y r
i ;L).

Let Y r
i be a variable corresponding to one specific internal data transiting on the bus

of the device (the ith result processed during the rth round) and yr
i is a realization of

this variable. L is the variable corresponding to the side-channel observation and l is a
realization. The mutual information between Y r

i and L is defined as:

I(Y r
i ;L) =

∑
yr

i ,l

Pr [yr
i , l] log2

(
Pr [yr

i , l]
Pr [yr

i ].Pr [l]

)
. (1)

This metric tells us how much the incertitude on the variable Y r
i is reduced if we know

the variable L. This seems a useful metric; intuitively, a leakage function that gives a
lot of information on the values transiting on the bus of the device should provide an
easier to solve SAT problem.

Let us notice that knowing the amount of information given by the leakage function
on the byte yr

i is useful, but not enough to fully characterize the leakage function. For
instance, the distribution of this information over the 8 bits of yr

i could be also an
important factor for the success of the computation phase. For example, let L1 be a
leakage function defined by L1(yr

i ) = yr
i [0] (with yr

i [j] the jth bit of the 8-bit value
yr

i , and a realization of the variable Y r
i [j]) and let L2 be a leakage function defined

as L2(yr
i ) =

∑
j y

r
i [j] (that is the classical Hamming weight function). As it can be

observed in table 1, L1 concentrates all its information on the first bit of yr
i , while L2

spreads its information evenly over the 8 bits of yr
i .

Leakage funcion I(Y r
i ; L) I(Y r

i [0]; L) I(Y r
i [1]; L) ... I(Y r

i [7]; L)

L1 1 1 0 ... 0
L2 2.544 0.0976 0.0976 ... 0.0976

Table 1. Comparison of two leakage functions.

In the end, we could also consider the mutual information between L and subsets of
1,2,...,8 bits of Y r

i (Y r
i [j], Y r

i [j, k], ... with 0 ≤ j < k ≤ 7). Each of these values could
be important to evaluate the success of the computation phase. However, we choose to
consider only the value I(Y r

i ;L) as our information theoretic metric.

Our second metric is related to the CNF representation of the leakage function. When
we defined the optimal representation, we used the average number of literals per clause
nlit. We thus consider this as the second metric of the leakage function. The mutual
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information on the whole byte I(Y r
i ;L) and the average number of literals per clause

are complementary in order to characterize a leakage function: the two metrics give
a different input on the same leakage function. This complementarity is illustrated in
table 2. But the two metrics are also somewhat related. More precisely, the average
number of literals per clause nlit of the optimal compact representation is related
to the mutual information between the leakage function and the sets of 1,2,...,8 bits
of yr

i . Typically, a lot of information about a set of n bits means that the optimal
representation will probably contain clauses of n or less literals. For example, the
leakage functions parity(n,m) are translated into clauses of n literals.

Leakage function L nlit I(Y r
i ; L)

parity(1, 1) 1 1
parity(2, 1) 1 2
parity(1, 2) 2 1

Table 2. Comparison of three different leakage functions. Both the average number of literals
in a clause and the mutual information on the whole byte are useful to distinguish these
leakage functions.

Independently of the success rates, the different leakage functions can be compared
on the basis of the mutual information I(Y r

i ;L) and the average number of literals
in a clause nlit (see figure 3). We observe that nlit can be in a linear relation with
I(Y r

i ;L), in the case of the random leakage functions (rand, parity − rand) or quite
uncorrelated from I(Y r

i ;L) (linear and parity). Indeed, a random leakage function
is essentially characterized by its number of different leaked values nl, but a leakage
function with a specific algebraic structure cannot be reduced to this single value.
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Fig. 3. Average number of literals per clause in function of the mutual information.
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Other metrics could be considered in order to evaluate the complexity of a leakage
function, but none is expected to give a perfectly accurate relation between the leakage
function and the median solving time. We would like to mention the algebraic immunity
AI. AI is a concept introduced to evaluate the resistance of stream ciphers to algebraic
attacks (see for example [1]). The concept was extended in [8] to block ciphers, where
the function f considered is the S-box of the block cipher. In our case, the AI of the
leakage function L could be computed in order to find a measure of the resistance of
the implementation to the ASCA. However, it seems that the AI is not very helpful
in our case: the AI is a discrete criterion and it turns out that many very different
leakage functions share the same AI value. Some results using the algebraic immunity
as a metric are presented in appendix C.

6 Impact of the leakage function and block cipher
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Fig. 4. Median solving time in function of the mutual information I(Y r
i ; L). Left: attack

against the AES, right: attack against PRESENT.

In the two previous sections, we investigated the representation problem and the differ-
ent metrics for the information leakage. In this section, we introduce the third param-
eter: the cipher dependence. As announced in section 3, we compare two block ciphers:
PRESENT and the AES. This comparison focuses on the number of leakages required
to perform an ASCA and on the impact of the leakage function.
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attack against the AES, right: attack against PRESENT.

The first point of comparison between PRESENT and the AES is the number of leak-
ages required in order to perform a successful attack. Indeed, the ASCA assumes that
the adversary is able to recover the correct value for an important fraction of the total
number of available leakages. Comparing the resuls from [14] and [15] (see table 3),
we observe that an ASCA against the AES requires a lot more leakages than against
PRESENT (in this case, the leakage model is the Hamming weight model).

PRESENT AES

Consecutive known WH 64 known WH 252 known WH

Random known WH 224 known WH >756 known WH

Total number of WH 496 WH 788 WH

Table 3. Required number of known Hamming weights in order to perform an ASCA with
about 90% success rate. The detailed setups for this results are found in [14, 15].

The second point of comparison is the leakage function (see figures 4 and 5; each dot is
an averaging over 100 experiments). Now we assume that the adversary recovers all the
leaked values; let us notice that such an adversary recovers more side-channel leakages
from the AES than from PRESENT.

The first observation we make is that, except for the short times (< 2 seconds), the
solving times are similar for PRESENT and the AES. For example, the instance of the
rand(6) leakage function gives a median solving time of 4.94 s for the AES and 4.33 s for
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PRESENT. This means that, in this case (all leakages are known), the attack is nearly
independant from the target algorithm. On the other hand, the attack is dependent on
the implementation of the cipher. For example, an AES implemented with less available
leakages is much harder to break (see [15]).

Our second observation is about the link between the success rate and our 2 metrics
(information theoretic metric I(Y r

i ;L) and averag number of literals per clause nlit). We
notice that there is a relation between the metrics and the success rate. This relation,
for most of the leakage function families, is similar for PRESENT and the AES. Again,
the impact of the leakage function is independent of the target algorithm. There are
exceptions: namely, the parity family proves to be a very different challenge depending
on the algorithm. The function parity(1, 1), for example, gives a median solving time
of 0.05 s when attacking PRESENT, but over 1800 s when attacking the AES.

The big difference between PRESENT and the AES in the last example can be ex-
plained if we take a closer look at the key schedules of both algorithms (see appendix B
for illustrations). Knowing the first bits of every values processed by the device means
that the adversary knows some key bits at each round. In the AES, it turns out that the
16 known key bits are always lost for the next round. On the other hand, in PRESENT,
the 2 known key bits are very often conserved from round to round (they are only lost
when they go through the key schedule substitution, but this substitution takes no
more than 4 key bits per round). That means that after several round, a big amount
of the key is known to the adversary, just by looking at the key schedule. From this
example, we conclude that part of the variability of our results is due to unexpected
interactions between the algorithm and the leakage function. As a corroborative indi-
cation, let us notice that the rand leakage functions, that present no specific algebraic
structure, don’t give noticeably worse times for the AES than for PRESENT.

7 Conclusion

In this paper, we studied the representation, leakage and cipher dependencies in Alge-
braic Side-Channel Attacks. Our goal was to observe the impact of these parameters
on the success rate of the ASCA, and to provide general intuitions for the security of
leaking devices.

As our results show it, these dependencies are real. Namely, a compact representation
has a positive impact on the attack, same as a high quantity of information between the
leakage and the value processed by the device. We observed that the cipher dependen-
cies is really preponderant only in “extreme” cases, that is lot of missing information
or specific interactions between the leakage function and the algorithm. When the
adversary can recover all available side-channel information, the preponderant factor
becomes the implementation rather than the algorithm. In general, coutermeasures like
increasing the size of the bus of the device or reducing the number of clock cycles of
the implementation are always effective.

For this work, we used a SAT solver in order to deduce the secret key from the system
of equations. Due to this solving strategy, our work is empirical (using different solvers
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can give very different computation times for the same problem). An interesting ex-
tension would be to use a more systematic solving strategy in order to produce sound
explanations of the observed phenomenons. For this purpose methods like Gröbner
bases [7] seems promising.
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A Leakage functions used

For our experiments, we used the following leakage function families:

– rand(4), rand(5) and rand(6): the leakage corresponding to each value yr
i is chosen,

for each simulated device, at random between 4, 5 or 6 different values.
– parity(1, 1), parity(2, 2) and parity(3, 2): the first leakage function is equivalent

to knowing the first bit of each byte yr
i processed by the device (the “single bit”

leakage function). For the second (third) leakage function, we know the value of
the parity bit for the first two (three) groups of 2 bits of yr

i .
– parity − rand(n,m), with n = {6, 7, 8} and m = {2, 3, 4, 5}.
– WH : the classical Hamming weight function on 8 bits.
– linear(3), linear(4), linear(5) and linear(6).

Let us notice that the generation of leakage functions from families rand, parity −
rand and linear involve some random value; each leakage function generated from the
same family with the same parameters values can be different (but with some general
properties shared with all functions from this family).

B Interactions between the “single bit” leakage function and
the key schedule

Figure 6 illustrates the interaction between the “single bit” leakage function and the
key schedule of PRESENT. The “single bit” leakage model assumes that the adversary
knows the value of the first bit of each 8-bit data processed by the device. With such
a model and a known plaintext, the adversary knows 8 bits from the subkey of the
first round. In the subsequent rounds, the adversary learns 2 additional subky bits per
round. Even if some of the known subkey bits at round i can be lost at round i+ 1 due
to the S-box used in the key schedule, the adversary is still able to learn a big portion
of the key, without even attempting to solve the algebraic system.

Figure 7 shows the same situation but applied to AES key schedule. In this case, the
adversary knows 16 subkey bits at the first round (assuming a known plaintext). Each
following round brings 16 new known bits. The main difference between PRESENT
and the AES in this regard is that, here, the 16 previously known bits are lost. Thus,
the total number of known bits per round stays the same. Moreover, only the first 4
bits are really new; the remaining 12 ones can be computed from the first 4 ones and
the 16 bits known at the previous round.

C Results using an algebraic immunity-based metric

The algebraic immunity of an S-box is defined in [8] as follows:
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PRESENT

Round 1: 8 known key bits out of 80

S Round 2: 10 known key bits out of 80

S Round 3: 12 known key bits out of 80

= known bits

Fig. 6. PRESENT key schedule (omitting the constant addition).

AES Round 1: 16 known key bits out of 128

S S S S

Round 2: 16 known key bits out of 128

Fig. 7. AES key schedule.
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Definition 1. Consider an S-box S : Fn → Fm. Given some fixed output y, let d be
the minimum degree of a non-zero conditional equation Fy(x) which holds for every
x ∈ S−1(y). Then the algebraic immunity AI of S is defined by the minimum of d over
all y ∈ Fm.
We wanted to extend this discrete value in order to take in account all possible leaked
values. We define thus the weighted algebraic immunity as:
Definition 2. Consider an S-box S : Fn → Fm. Given some fixed output y, let dy be
the minimum degree of a non-zero conditional equation Fy(x) which holds for every
x ∈ S−1(y). Then the weighted algebraic immunity wAI of S is defined by the average
value of dy over all y ∈ Fm, weighted by the probability of getting the output y: wAI =∑

y∈Fm
|S−1(y)|
|Fm| dy, where |s| is the cardinality of set s. (|S−1(y)| is the cardinality of

the set of preimages of y for example).

Figure 8 presents the success of the attack (measured by the median solving time) in
function of the weighted algebraic immunity of the leakage function used.
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Fig. 8. Median solving time in function of the weighted algebraic immunity of the leakage
function. Left: attack against the AES, right: attack against PRESENT.

18


