How Leaky is an Extractor?

Frangois-Xavier Standaert*

Université catholique de Louvain, Crypto Group, Belgium.

e-mails: fstandae@uclouvain.be

Abstract. This paper discusses the security of a leakage-resilient stream
cipher presented at FOCS 2008, instantiated in a practical setting. Based
on a case study, we put forward implementation weaknesses that can be
exploited in a key-recovery attack. We first show that in our experimen-
tal context (8-bit device, Hamming weight leakages, Gaussian noise), a
successful attack against the investigated stream cipher has lower data
complexity than a similar attack against an unprotected AES implemen-
tation. We then analyze the origin of the observed weaknesses and relate
them with the implementation of extractor that is used in the investi-
gated stream cipher. We finally discuss the implications of these results
for the design of leakage-resilient primitives and provide guidelines to
improve the construction of FOCS 2008 and its underlying components.

1 Introduction

In a side-channel attack, an adversary attempts to break a cryptographic primi-
tive, by taking advantage of the physical peculiarities of the hardware on which
it is running. Typical examples include the power consumption or electromag-
netic radiation of small embedded devices. In view of the physical nature of these
implementation issues, the first countermeasures to prevent them were mainly
designed at the hardware level. But recent results have witnessed a growing
interest of the cryptographic community to extend the applicability of prov-
ably secure constructions in this new setting. For example, two constructions
of leakage-resilient stream ciphers have recently been proposed, at FOCS 2008
and Eurocrypt 2009. The first one is based on the combination of a pseudo-
random generator (PRG) and an extractor [4], while the second one only uses
a block cipher based PRG as building block. Both constructions are proven
leakage-resilient in the standard model, the extractor based construction allow-
ing significantly better security bounds. Both constructions rely on the fact that
the amount of information leakage in one iteration of the cipher is bounded in
some sense - which has to be guaranteed by hardware designers. This bound is
usually referred to as a A-bit leakage, intuitively meaning that only a part of
the internal parameters in the target device is revealed by the physics. Different
metrics can be used to quantify this bounded information, e.g. [4, 7] use the HILL
pseudoentropy. In view of the strong nature of these security claims (in particular

* Research Associate of the Belgian Fund for Scientific Research (FNRS - F.R.S.).

compared to the limited results provided by hardware-level countermeasures),
it is natural to challenge these theoretical constructions, by investigating and
quantifying their security properties in actual leaking devices.

In this paper, we consequently study the practical security of the FOCS 2008
stream cipher in an 8-bit device, against standard DPA. In particular, and as a
usual scenario for evaluating countermeasures against side-channel attacks, we
consider a Hamming weight leakage model with Gaussian noise. We use this case
study to discuss some issues left unanswered by theoretical analysis, namely:

— The construction in [4] is based on an extractor, but the actual instance of
extractor to use in a practical implementation is left unspecified. Hence, the
good selection of an extractor in this context is an open question.

— Given that an extractor is specified, does the addition of this new primitive
in the hardware have an impact on the A\-bit leakage assumed in the proofs?
And how does this different A\ modify the global security of the construction?

Our simulated experiments clearly indicate that if no particular attention is
paid, the extractor may be the weak point in this stream cipher construction.
More precisely, the success rate of a standard DPA against one iteration of the
extractor in our target device is (much) higher than the one of a similar standard
DPA attack against several iterations of an unprotected AES implementation.
This is due to the fact that extracting several random bits from weak sources,
as required in [4], implies to manipulate the same secret data several times. In
other words, the implementation of the extractor has a strong impact on the \-
bit leakage and eventually gives rise to little actual security for the PRG in this
case. We then discuss the consequences of these results and provide guidelines,
both for improving the selection of the extractors to use in leakage-resilient
cryptography and for improving the PRG construction of FOCS 2008.

We note that our results are not in contradiction with [4,7] but emphasize
the gap existing between the assumptions of these theoretical works and the
specificities of actual implementations. That is, any single gate added in a hard-
ware device, or single line added in a software code, have a potential impact on
the information leakages. Hence, it is difficult (if not impossible) to discuss the
physical security of a primitive without a precise understanding of the relations
between its algorithmic description and its implementation properties. This is
especially true when considering primitives such as extractors for which very few
experimental attacks have been performed, e.g. compared to block ciphers such
as the AES Rijndael. That is, as acknowledged by the authors of [4, 7], providing
means to exploit a bounded leakage per iteration in a stream cipher construction
solves only one half of the side-channel issue. It then remains to ensure that a
good leakage bound can be guaranteed in practice, using existing hardware. In
this paper, we additionally show that the good understanding and evaluation of
the low-level characteristics in physical leakages may also motivate better choices
for the selection of algorithms to use in order to best face side-channel attacks.

The rest of this paper is structured as follows. Some background information
is given in Section 2. The implementation of the FOCS 2008 stream cipher that
we target is described in Section 3. Our security analysis and experimental results
are in Section 4. Eventually, Section 5 provides guidelines to improve the design
and analysis of leakage-resilient primitives and Section 6 concludes the paper.

2 Background

The construction. Our analysis focuses on an instantiation of the leakage-
resilient stream cipher of FOCS 2008, represented in Figure 1, in which ext de-
notes a two-source extractor and PRG a length-tripling Pseudo-Random number
Generator'. The components of this construction are as follows.

S(1) X(0) S(0)

192

PRG

S(3) X(2)

Fig. 1. Leakage-resilient stream cipher from FOCS 2008.

! This construction does not directly correspond to the one of Dziembowski and
Pietrzak. In [4], Figure 2, the extractor’s output is split in two parts: (K41, Xi41) =
ext(K;, B;), and only one part is sent to the PRG: B;y1 = PRG'(X;+1). In our de-
scription, the extractor’s output is fully transmitted to the PRG. But the instance
in Figure 1 can be seen as a generalization of the FOCS stream cipher by defining
our PRG as PRG(K 41, Xi1+1) = Ki+1||PRG'(X;+1), using notations from [4], which
also makes an easy connection to the Eurocrypt 2009 proposal.

Length-tripling PRG. For convenience, and because they are usual targets in
side-channel attacks, we use a length tripling PRG that is based on a block ci-
pher. Let AES,(z) denote the encryption of a plaintext « under a key k, we have:

PRG: {0,1}" — {0,1}%" : 2 (AES$(01)7AESI(CQ),AESQE(Cg)),

where ¢y, ca, c3 are three public constant values.

Two-source extractor. We consider the constructions in [3]. They allow ex-
tracting many random bits from two weak sources X,Y of the same length I.
Let Ay, As, ..., A, be l X | matrixes over GF[2]. The proposed extractor is:

exts: {0,1} x {0,1}' — {0,1}" : (z,9) — ((Alx) -y, (Agx) -y, ..., (Apx) -y),

where - is the inner product mod 2 and A;z is a matrix-vector multiplication
over GF[2]. In practice, the matrices A; can be specified in different ways, giving
rise to different tradeoffs between the quality of the extraction and the imple-
mentation efficiency. For example, [3] mentions cyclic shift matrices, right shift
matrices or matrices obtained from error correcting codes.

In the following, and for illustration (no particular constraints are imposed
on the extractors in [4]), we will consider cyclic shift matrices [12]. That is, we
just define A; as the linear transformation matrix corresponding to a cyclic shift
of 1 — 1 bits, with [a prime having 2 as primitive root, e.g. for [= 5:

10000 01000 00001
01000 00100 10000
A;=(00100], A,=]000101, ... ,A5=101000
00010 00001 00100
00001 10000 00010

3 Implementation

In order to investigate the practical security provided by a stream cipher, it is
needed to implement it in a reference device. As a case study (and because they
are standard targets in side-channel attacks), we will consider an implementa-
tion in a small 8-bit microcontroller. For the AES Rijndael, we can rely on the
implementation description provided in [2] for 8-bit processors. In this section,
we discuss the implementation of the extractor in a similar device.

First note that, since we use a length tripling PRG based on the AES, the
extractor in Figure 1 must generate 128 bits out of two sources of 192 bits. Hence,
we will use [= 193 and pad one constant bit to the inputs of the extractor?.

2 This is necessary to meet the constraint that [has to be prime.

Second, the extractor applies to one public and one secret value. In order
to minimize the amount of computations applied to the secret value, we will
assume that, when computing (A4;z) -y, = is public (hence corresponding to X (i)
in Figure 1) and y is private (hence corresponding to S(¢) in Figure 1).

Let us denote the cyclic shift of by i — 1 bits as z; = rot(z,7 — 1). Im-
plementing the extractor essentially corresponds to computing n inner products
between 128 public x;’s and the secret y. In an 8-bit device, producing one bit
b; corresponding to one input z; can be done as follows:

. Denote the 16 bytes of x; and y as xz and y, respectively, j € [1;16].

. Compute 16 bitwise AND operations: z/ = 7 © y/,
. Compute the bitwise XOR, between the 16 zg’s: w; = @;6:1 zg,

. Compute the XOR between the bits of w;: b; = @?:1 w;(7),

W N~

where w;(j) denotes the jth bit of the word w;. This process then has to be
repeated 128 times in order to produce a PRG input (i.e. an AES key).

4 Attacking the leakage-resilient stream cipher

The stream cipher in Figure 1 is composed of a PRG and the previously de-
scribed extractor. Looking at this construction from an adversarial point of view
directly leads to the question: which part of the scheme is better to target? For
this purpose, we will consider the resistance of these two parts of the construc-
tion against a standard DPA attack, such as formalized in [6]. As far as the
PRG implementation is concerned, the situation is quite standard. Following
the discussion about practical security in [11], we have a 3-limiting construction,
meaning that an adversary is allowed to observe the leakage corresponding to
the encryption of three different plaintexts (i.e. the constants c1, co, ¢3).

Choice of a leakage model and target implementation. In order to com-
pare the security of the PRG to the one of the extractor with respect to side-
channel attacks additionally requires to define a leakage model. In the following,
we assume the so-called Hamming weight leakage model that is frequently con-
sidered to attack CMOS devices. It yields the implementation represented in
Figure 2: for each byte of the public x; and secret y, the adversary recovers the
Hamming weight of their bitwise AND (possibly affected by some noise).

It is interesting to note that Figure 2 is very similar to a standard DPA tar-
geting the key addition in the first round of a block cipher. In such a scenario, an
adversary would use different plaintexts z; and obtain the leakages correspond-
ing to I = WH(z] @ y7). In the context of our extractor implementation, the
only difference is that the bitwise XOR @ is replaced by a bitwise AND ©.

Ai : x! . z] 4@—‘% b,
I \\/

WH(z)

Fig. 2. Leaking implementation of the extractor.

Specificities of a DPA against the extractor. The main feature of a DPA
against the implementation of Figure 2 is that the leakages do not have symmetry
properties (discussed, e.g. in [9]), which leads to key dependencies that are rarely
observed in side-channel attacks. A simple way to put forward these dependencies
is to compute an information theoretic metric such as advocated in [10]. Namely,
considering leakages of the form I = WH(z! ® y’) and removing the i, j indices
for clarity, we can compute the following conditional entropy:

HY|L X] = - 3 Prfy) 3 Prfe /Prl|y, 2] log, Prly|l, 2] di,

yey TeEX

that is, in our case: HIY |WH(Y ® X), X]. This quantity reflects the amount of
information that is provided by the leakage (here in a known plaintext scenario).

Consider a standard DPA where the leakages equal lf = WH(a:z @y7). Then,
because the bitwise XOR is a group operation, we have that:

HIY|L,X] =) Prfx /Pr |y, 2] log, Pr[y|l, «] dlI, for a giveny, (1)
rzeX

=— Z Prly /Pr lly, x] log, Prly|l,] dl, for a given x. (2)
yeY

In other words, on average over the public «’s, all the secret y’s are equally
difficult to recover. And on average over the secret y’s, all the public x’s yield
the same amount of information. Quite naturally, the situation becomes different

when the bitwise XOR is replaced by a bitwise AND. As a simple example, imag-
ine that one byte j of the public x; is null. Then, observing the Hamming weight
of 0 ® 47 leaks no information at all about y/. Clearly, the information leakage
now depends on both z and y and Equations (1), (2) do not hold anymore.

In fact, one can show that the amount of information leakage in the implemen-
tation of Figure 2 depends on the Hamming weights of x and y, by computing:

H[Y|L,X] = — 3 Prly /Prl|y, 2] log, Prly|l, 2] di,
yey

Hy[Y|L,X] = - Prfx /Prl|y,] log, Pry|l, z] dI,
zeX

that is, the conditional entropies where either the z’s or the y’s are not uniformly
distributed but fixed to an arbitrary value. By computing these quantities for
Hamming weight leakages, we observe that they are equal for all x’s and #’s
having the same Hamming weight. It yields the following vectors:

HW () 0 1 2 3 4 5 6 7 8
H,[Y|L,X] | 800 7.00 650 6.19 596 580 566 555 545

HW(y) 0 1 2 3 4 5 6 78
H,[Y|L,X] | 400 504 575 6.17 630 6.17 575 504 4.00

Intuitively, this means that, on average over the secret y’s, the public x’s with
high Hamming weight yield more information. And on average over the public
x’s, the secret y’s with extreme Hamming weights are easier to recover.

Experimental results. We now compare the security of the extractor with
the one of the AES Rijndael. More specifically, the construction in Figure 1 is
3-limiting for the AES and 1-limiting for the extractor. The question we tackle
is to know whether it is easier to attack 3 iterations of the AES versus a single
iteration of the extractor, in the previously described setting.

Regarding the AES implementation, the typical target operations in a DPA
are the first round key addition and S-box layers. Here, we will consider two
different attacks. First, a basic (univariate) attack in which only the leakage
of the S-box is exploited. Second, an improved (bivariate) attack in which the
leakage of both the key addition and the S-box are exploited. In both cases, we
use a Bayesian distinguisher (aka template attack) such as described in [1].

Regarding the implementation of the extractor in Figure 2, the key observa-
tion is that it re-uses each secret byte n times in order to produce n random bits.
Considering the same adversary as for the AES, i.e. a template attack recovering
the secret bytes of the extractor one by one, each secret byte can be identified
by n = 128 bitwise AND computations, even if the construction is 1-limiting.

The success rates of our experiments (each averaged over 1000 independent
experiments) evaluated in four different noise scenarios (from low noise: o, = 0.5
to high noise o,, = 4), and assuming uniformly random inputs, are represented
in Figure 3. For the AES implementation, the X axis represents a number of
queries and the bold dots represent the success rates after 1, 2 and 3 queries,
as allowed by the construction. For the extractor implementation, the X axis
represents the number of elementary operations, that is upper bounded to 128

(i.e. a single execution). It yields the

extractor
' AES S-box

‘' AES S-box + XOR

success rate

.
0 5 10 15 20 25 30 35 40
number of queries / elementary operations

45

091

0.8

0.7F

0.6

0.5F

success rate

0.4

03 -

02f - °
I3 extractor
©'®@ ' AES S-hox

'® ' AES S-box + XOR
T T

0 . . T
0 20 40 60 80 100
number of queries / elementary operations

120

success rate

success rate

following observations:

08r - -
o7t - -

06 - -

extractor
' AES S-box
'® ' AES s-hox + XOR
T T

. . . T
20 40 60 80 100
number of queries / elementary operations

120

0.9

extractor RS N
@ AES S-box o 1
'@ AES S-box + XOR :

0.8r

0.71

0.6

05r

0.4r

0.3r

0.2r

01t

0
0

!
20 40 60 80 100 120
number of queries / elementary operations

Fig. 3. Success rates of simulated experiments.

— The success rate of a 3-limited adversary against the AES implementation
is anyway (much) smaller than the one of a 1-limited adversary against the
extractor implementation. This answers the question in the beginning of
this section. That is, an adversary who has to attack the PRG in Figure 1
implemented as described in this paper should focus on the extractor (rather
than on the AES) in order to recover the secrets S(i).

— Without considering the ¢-limit, the elementary operations of the extrac-
tor are “less informative” than the ones of the AES (as underlined by the
previous information theoretic analysis). So, for a similar number of ele-
mentary operations observed (e.g. considering the AES S-box computations
only, meaning one operation per query), the success rate against the AES
implementation is higher than the one against the extractor.

5 Consequences

According to the results in the previous section, it is unlikely that any extractor
will be able to provide high security levels (specially in small devices) without
being combined with other (e.g. hardware-level) countermeasures. For example,
in view of the implementation in Figure 2, the (time) randomization of the opera-
tions to execute could be done quite efficiently, following what has been achieved
for the AES Rijndael in [5]. More generally, investigating the applicability of clas-
sical countermeasures such as masking and hiding to extractor implementations
is an interesting scope for further research, and a necessary step to demonstrate
the practical relevance of the FOCS 2008 construction.

Next to these general observations, we now investigate the possibility to
propose more specific guidelines for the design of a leakage-resilient stream cipher
using underlying principles similar to the ones described in [4].

Improving the extractor. Since it is necessary to protect the extractor im-
plementation with countermeasures in order to guarantee a small enough A-bit
leakage, a natural guideline is to first consider low-complexity extractors. This
is motivated both by the intuition that more computation generally give rise to
more exploitable information [8] (although this is not a strict statement) and,
maybe more importantly, by the need of efficient constructions that can run on
a variety of low cost devices. In this respect, it is interesting to note that the
majority of previous work in the area of randomness extraction focus on produc-
ing outputs as close to uniform as possible, much more than on implementation
efficiency. So although constructions such as [3] are already quite efficient, there
is probably room for further research in carefully designing extractors that are
easy to implement and to protect against side-channel attacks.

Improving the construction. Since the extractor is actually the weak point in
the implementation of Figure 2, another possibility is to modify the construction
in order to impose a more challenging adversarial context when targeting the
extractor with a DPA. For example, in Figure 1, the extractor takes two inputs:
one public and one secret. This allows to mount a DPA in a known-plaintext
scenario. But by applying the extractor to secret values only (possibly at the cost
of some performance loss), the adversary would only be able to mount unknown-
plaintext attacks. Interestingly, it is quite easy to quantify the impact of such a
modification, in exactly the same setting as in the previous section. That is, we
can now compute the following conditional entropy:

Hy[Y|L] == > Prlz /Pruy,] log, Prly|l] dl

zeX

where the input x is now kept secret. Doing this, the first consequence is that
it is impossible to distinguish the secret x values having the same Hamming
weight. The second consequence is that the information leakage is reduced as:

HW(y) | 0 1 2 3 4 5 6 7 8
H,[Y[L,X] | 467 638 729 7.76 792 784 753 7.03 6.33

6 Conclusions

This work first shows that the use of randomness extractors in physically observ-
able cryptography can be paradoxical. On the one hand, they allow recovering
(pseudo) entropy losses if the implementation of the extractor does not leak too
much. On the other hand, the implementation of the extractor can become a
better target for a DPA than an AES-based PRG, if no attention is paid. This
observation makes a case for always discussing side-channel resistant primitives
together with a clear specification of the algorithms they use and the devices on
which they run. In particular, the selection of algorithms generally has an impact
on both the security level that can be achieved assuming a bounded (so-called
A-bit) leakage per iteration and on the very value of the bound A (as quantified
by a success rate in our experiments). Problematically, not considering the over-
all impact of an algorithm and its implementation features in leakage-resilient
cryptography may lead to inconsistencies in the resulting analysis. For exam-
ple, the stream cipher of FOCS 2008 [4] has better security bounds than the
one of Eurocrypt 2009 [7]. But in the practical analysis provided in this paper,
the opposite conclusion holds (i.e. it is significantly easier to attack the FOCS
2008 construction in our setting). Admittedly, this observation is only based on
a single case-study, and it should stimulate further research on the design and
implementation of extractors in leakage-resilient cryptography, because of their
interesting theoretical properties. However, we believe that our analysis, and the
methodological conclusions that it brings, is reflective of a general situation and
makes a case for reviewing several recent results in the field in light of a more
practical security analysis, e.g. using the evaluation tools in [10].

We note again that these observations do not invalidate theoretical analyzes
in physically observable cryptography but reduce their practical relevance. They
mainly emphasize the need for interaction between formal proofs of physical
security and low-level implementation issues. In the end, a useful construction
needs to face the full complexity of the attacks, i.e. not only to assume small
A-bit leakages but also to find algorithms, and in the end, implementations, for
which these small leakages can be obtained. In this respect, a first (and easy
to manipulate) design criterion for leakage-resilient constructions would be to
minimize the computational complexity of the algorithms that they exploit.

10

References

1.

2.
3.

S. Chari, J. Rao, P. Rohatgi, Template Attacks, in the proceedings of CHES 2002,
Lecture Notes in Computer Science, vol 2523, pp 13-28, CA, USA, August 2002.

J. Daemen, V. Rijmen, The Design of Rijndael, Springer, 2002.

Y. Dodis, A. Elbaz, R. Oliveira, R. Raz, Improved Randomness Extraction from Two
Independent Sources, in the proceedings of APPROX-RANDOM 2004, pp 334-344,
Cambridge, Massachussets, USA, August 2004.

S. Dziembowski, K. Pietrzak, Leakage-Resilient Cryptography, in the proceedings of
FOCS 2008, pp 293-302, Washington, DC, USA, October 2008.

C. Herbst, E. Oswald, S. Mangard, An AES Smart Card Implementation Resistant
to Power Analysis Attacks, in the proceedings of ACNS 2006, Lecture Notes in
Computer Science, vol 3989, pp 239-252, Singapore, June 2006.

S. Mangard, E. Oswald, F.-X. Standaert, One for All - All for One: Unifying Stan-
dard DPA Attacks, Cryptology ePrint archive, report 2009/449.

K. Pietrzak, A Leakage-Resilient Mode of Operation, in the proceedings of Eurocrypt
2009, LNCS, vol 5479, pp 462-482, Cologne, Germany, April 2009.

M. Renauld, F.-X. Standaert, N. Veyrat-Charvillon, Algebraic Attacks on the AES:
Why Time also Matters in DPA, in the proceedings of CHES 2009, Lecture Notes
in Computer Science, vol 5747, pp 97-111, Lausanne, Switzerland, September 2009.

. W. Schindler, K. Lemke, C. Paar, A Stochastic Model for Differential Side-Channel

Cryptanalysis, in the proceedings of CHES 2005, Lecture Notes in Computer Science,
vol 3659, pp 30-46, Edinburgh, Scotland, September 2005.

10. F.-X. Standaert, T.G. Malkin, M. Yung, A Unified Framework for the Analysis of

Side-Channel Key Recovery Attacks, in the proceedings of Eurocrypt 2009, LNCS,
vol 5479, pp 443-461, Cologne, Germany, April 2009, extended version available on
the Cryptology ePrint Archive, Report 2006/139.

11. F.-X. Standaert, O. Pereira, Y. Yu, J.-J. Quisquater, M. Yung, E. Oswald, Leakage

-Resilient Cryptography in Practice, Cryptology ePrint Archive, report 2009/341.

12. U. Vazirani, Efficient Considerations in Using Semi-Random Sources, in the pro-

ceedings of STOC 1987, pp 160-168, New York, USA, May 1987.

11

