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ABSTRACT

In this paper, we develop an adjustable Fuzzy Extractor us-
ing the Physical Unclonable Functions (PUF) obtained by a
common laser engraving method to sign physical objects. In
particular, a string (or helper data) is generated by XORing
a binary reduction of the PUF observation with the encoding
of a randomly generated key, or identifier. Since the binary
reduction (or hash) relies on keeping the sign of few random
projections of the observation, a measure concentration prop-
erty bounds, with a controlled accuracy, the distance between
two different hashes in function of this of the original images.
The error correcting code used to encode the identifier stabi-
lizes therefore both the observation noise and the hashing dis-
tortion. In a verification stage, reobserving the PUF with the
helper data in hand allows one to authenticate the object if the
identifier can be exactly recovered. We conclude this work
by calibrating and challenging the system on a database of
laser-written PUFs, balancing helper data size, that is, hash-
ing dimensions, and system security.

Index Terms— Fuzzy Extractor, Unclonability, Random
Projection, Measure Concentration, Hamming Distance.

1. INTRODUCTION
Physical Unclonable Functions, or PUFs, have been proposed
by Pappu et al. in 2002 [11] as a cost-effective way to produce
unclonable tokens for identification. Several physical systems
are known on which PUFs can be based. The main types are
optical PUFs [11], coating PUFs [7], and silicon PUFs [6].
The common point is that the function (such as a signal or an
image) can only be evaluated with the physical system, and is
unique for each physical instance. The identification informa-
tion is contained in an inexpensive, randomly produced, and
highly complicated piece of material.

In this work, we design a Fuzzy key Extractor [5] on the
observations of a new laser-written PUF (or LPUF) tech-
nique, or more precisely, from the 2-D topography (or mark)
of the physical engraving obtained by a laser beam. In short,
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during the registration of an engraved object, a randomly gen-
erated identifier is masked by laser mark observation to pro-
duce the helper data. Any further authentication (or verifica-
tion) of the object can be realized by checking if a new obser-
vation of the PUF together with the helper data may recover
the identifier.

We propose here to build the helper data from a binary
dimensionality reduction (or hashing) of the laser marks. It
proceeds by keeping only the sign of few random projection
of the observed mark. Thanks to a particular measure con-
centration phenomenon [9], the (Hamming) distance between
hashes of two different images is close with high probabil-
ity to the angle made by these images, with a proximity and
a probability accurately controlled by the number of projec-
tions. The impact of this hashing method is therefore to pro-
vide an adjustable system where a balance between the helper
data size and the extractor security may be realized.

The paper is structured as follows. In Section 2, a sim-
ple Unclonability model is introduced to characterize PUF
observations. Section 3 explains the laser engraving method
and assesses its unclonability. Section 4 describes the whole
Fuzzy Selector and the particular binary dimensionality re-
duction that drives it. Finally, Section 5 calibrates and tests
the whole system on a database of LPUFs.

2. OBSERVATION AND UNCLONABILITY MODELS
Let us define a simplified discrete observation model of res-
olution N where the reading of a real PUF provides a vector
x ∈ RN of N samples (or pixels for 2-D PUF1). This vec-
tor is assumed to be the recording of a pure PUF observation
τ ∈ RN corrupted by an additional unknown noise n ∈ RN ,
that is, x(τ) = τ + n.

In our observation space of resolutionN , we select a met-
ric µ : RN × RN → R∗+ that serves us to compare differ-
ent vectors x, y ∈ RN . We assume it unnormalized with
the dimension N . This metric could be the Euclidean dis-
tance µ(x, y) = ‖x− y‖, with ‖x‖2 =

∑
i |xi|2 the `2-norm,

or, for vectors restricted to the unit sphere SN−1 = {x ∈
RN : ‖x‖ = 1}, the normalized angle µ(x, y) = x̂ y ,

1Images are represented as vectors, for instance, by concatenating their
rows.



1
π arccos〈x, y〉 ∈ [0, 1], with 〈x, y〉 =

∑
i xiyi the common

scalar product in RN .
In this paper, we characterize unclonability with respect

to the observation space and the metric µ by the following
model:

(i) the pure observation τ of the PUF at a resolution N is
the realization of a random vector T ∈ RN of proba-
bility density function fT : RN → R,

(ii) the probability of coincidence at radius ε > 0 is
bounded by Pco(ε) = P[µ(Ta, Tb) ≤ ε] ≤ η, where
Ta, Tb ∼ T and η = η(ε;N,µ) is a non-decreasing
function of ε with η(0) = 0.

The point (i) T represents actually the variability of the (con-
tinuous) PUF creation from its subsequent pure observation,
while (ii) really models the unclonability by considering the
possibility of coincidence. Since this latter should be avoided,
we expect that a efficient PUF must minimize η(ε;N,µ) over
a large range ε ∈ [0, ε∗].

3. UNCLONABILITY BY LASER MARKING
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Fig. 1: (a) Two laser marks. (b) Laser engraving principle

Physical systems that are produced by an uncontrolled
production process, i.e., one that contains some intrinsic ran-
domness, turn out to be good candidates for PUFs [13] since
they tend to decrease Pco. In this paper, as a technological
achievement of the TOMO3D [14], we propose a PUF based
on the 3-D profile (or topography) of laser marks, with a di-
ameter of 60µm, engraved on the surface of a physical object.

The uncontrollability of the laser marking process is
mainly caused by laser instability and characteristic of the
object material. The mark profile shows therefore a spatial
variability that cannot be reproduced, at least with reasonably
inexpensive technology. Fig. 1(b) shows the laser engraving
principle illustrating the two main sources of randomness. To
exploit randomness, it requires to measure the profile with a
(reading) resolution finer than the laser beam diameter. In our
scheme, this reading (not illustrated) is performed by White
Light Interferometry (WLI) that achieves a sub-micrometer
transverse resolution and a nanometer longitudinal resolution
[10]. Typical WLI observations of two different laser marks
are given in Fig. 1(a).

For this paper, we have recorded a database S = {xpq =
τp + npq, 1 ≤ p ≤ P, 1 ≤ q ≤ Q} ⊂ RN of P = 20
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Fig. 2: (plain) Cumulative histogram of Upp′ , i.e., P[Upp′ < ε] '
Pco. (dashed) Cumulative histogram for P[R < ε].

different marks τp ofN = 115 600 pixels (340×340) observed
Q = 10 times each in xpq with an unknown noise npq ∈
RN . Notice that each image has been preprocessed to reduce
misalignment, misorientation and gain variations. We have
also renormalized all images so that ‖xpq‖ = 1.

Even if the database is relatively small (#S = 200), we
may estimate Pco for a given metric µ by computing the cu-
mulative histogram of Upp′ = 1

L

∑
q,q′ µ(xpq, xp′q′) for the

L =
(
P
2

)
= 190 choice of distinct pairs of marks p 6= p′. The

averaging in this estimation reduces the effect of the observa-
tion noise, that is, Upp′ ' µ(τp, τp′). In Fig. 2, the plain curve
represents P[Upp′ < ε] ' Pco(ε) in function of ε under the
observation conditions defined above and with µ(x, y) = x̂ y.
For comparison, the dashed curve represent the P[R < ε]
where R = µ(Ta, Tb) where Ta, Tb ∼ T and T ∈ RN is a
random vector such that all its components are identically and
independently (iid) drawn from a uniform random variable in
[0, 1]. The sharp (phase) transition of the dashed curve around
0.23 may be explained by concentration measure arguments
[9] and actually the slope of the transition increases with N .
We see that a slight discrepancy exists between the plain and
the dashed curve. The LPUF are indeed not purely random
and certain structures arise in their generation. However, a
similar gap without any occurrence of Upp′ < ε is detected
between 0 and ε′ = 0.18. For larger database, ε′ would for
sure decrease, but we expect that Pco will remain negligible
over a stable interval [0, ε∗]. A closer inspection of this be-
havior will be realized in the future with a larger database of
laser marks.

4. RANDOMLY DRIVEN FUZZY KEY EXTRACTION
The simple image of a PUF cannot be used as an identifier
of the marked object. First, as described previously, differ-
ent observations of the same PUF are subject to noise (for
LPUFs, this is due to small variations in the WLI measure-
ment setup or because of slight mark degradations) and there-
fore they cannot be perfectly reproduced. Second, any ob-
servation needs to be reduced and digitized in a limited bi-
nary string, or fingerprint, for further comparison, storage or
transmission of data for object authentication. Finally, the ex-



tracted fingerprints from a set of similar objects may not pro-
duce the uniform distributions required by most of the cryp-
tographic applications.

In this Section we present a global scheme build around
a Fuzzy Selector [5] that solves these different issues. This
scheme relies on the use of a specific binary dimensionality
reduction explained hereafter.

4.1. Binary Dimensionality Reduction

The measure concentration phenomenon [9] provides a cer-
tain number of random constructions of linear mappings f :
RN → RM from a high dimensional space RN to a smaller
space of dimension M such that f preserves approximately
and with a certain probability the Euclidean norm of the pro-
jected vectors. Mathematically, there exist a constant c > 0
and a non-decreasing function η (with η(0) = 0) such that,
for any x ∈ RN ,

PΦ

[ ∣∣ ‖f(x)‖ − ‖x‖
∣∣ ≥ ε ‖x‖

]
≤ c e−η(ε)M . (1)

Interestingly, a random matrix Φ = (Φij) ∈ RM×N
such that Φij ∼iid N(0, 1/M) (Gaussian matrix) or Φij ∼iid

±1/
√
M , both with η(ε) = ε2/4−ε3/6, and many other sub-

Gaussian distributions respect this concentration property.
The concentration (1) provides linear dimensionality re-

duction between real-valued domains. In our application,
since we develop a binary identifier extraction, we search
for a mapping between RN and the space of M -bits string
BM , {0, 1}M . Andoni and Indyk have proposed the Lo-
cally Sensitive Hashing methods (LSH) for that purpose [1].
We use however a simpler method, the binary dimensionality
reduction, defined by

h : RN → BM , x 7→ x = h(x) = signb(Φx),

where Φ ∈ RM×N is a Gaussian random matrix, signb(λ) =
1 if λ > 0 and 0 else, and for u ∈ RM , signb(u) ∈ BM with
(signb(u))i = signb(ui) for 1 ≤ i ≤M .

Interestingly, the non-linear mapping h satisfies also a cer-
tain measure concentration with respect to the angle made
by two distinct vectors and the (normalized) Hamming dis-
tance of their projections, that is, the distance dH(u, v) =
1
M

∑M
i=1 ui ⊕ vi ∈ [0, 1] that counts the number of distinct

bits between two strings u, v ∈ BM with the XOR operation
⊕. Indeed, for any x, y ∈ RN and ε > 0,

PΦ

[ ∣∣ dH(x, y)− x̂ y
∣∣ ≥ ε x̂ y

]
≤ 2 e−2ε2M . (2)

This may be proved by first showing that, thanks to the
isotropy of the Gaussian distribution and whatever the com-
ponent 1 ≤ i ≤ m, P[hi(x) ⊕ hi(y) = 1] = P[hi(x) 6=
hi(y)] = π−1 x̂ y, as given by the probability that x and y be
separated by a plane normal to ϕi = (Φij)1≤j≤N and con-
taining the origin, and second, by observing therefore that
M dH(x, y) follows a binomial distribution B(M,p) of M

trials of success probability p = x̂ y that exponentially con-
centrates around its mean Mp when M increases [8, 3].

Another useful reading of Eq. (2) is as follows. Given the
dimensions N and M , if we fix a level of failure η > 0, for
two point x, y ∈ RN , we have

(
1− ε(M)

)
x̂ y ≤ dH(x, y) ≤(

1 + ε(M)
)
x̂ y, with a probability higher than 1 − η if we

accept the distortion

ε(M) =
»

(ln 2/η)/(2M). (3)

4.2. Fuzzy Key Extraction
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Fig. 3: Randomly Driven Fuzzy Extraction

We propose to combine the binary dimensionality reduc-
tion of Section 4.1 with a Fuzzy Extraction procedure com-
posed of a registration and a verification steps. This associa-
tion creates an adjustable, robust and secure object signature
from the unclonability of a LPUF.

The pipeline of this procedure is summarized in Fig. 3.
During the registration a LPUF is first engraved on the object
to be marked. A random matrix Φ is generated in a repro-
ducible way, that is, there exists a string sΦ ∈ BM

′
such

that Φ = Φ(sΦ) can be reproduced from it (e.g., by using
few seeds in a pseudo-random generation procedure). A WLI
observation x ∈ RN is obtained from the PUF with some
preprocessing aiming at reducing observation noises (such as
realignment and reorientation from some landmarks). This
image is hashed into a M bits string x = h(x) using Φ. In
parallel, an identifier s of K < M bits is generated by a
Random Number Generator (RNG) and extended into a string
se ∈ BM by an Error Correcting Code encoding (ECC) of
error-correction capability T < K < M . Finally, x is XORed
(⊕) with se to form sx = se ⊕ x ∈ BM . The helper data of
M + M ′ bits is composed of (sΦ, sx). This data constitutes,
together with the PUF and the identifier s, the information
required to authenticate the object.

During the verification stage, the PUF is reobserved into a
image x′ ∈ RN undergoing the same preprocessing. From the
helper data (sΦ, sx), Φ is regenerated and used to compute x′.
After XORing this later with sx and sending the output to the
ECC decoder (ECC−1), a final K-bits string s′ is produced.
Since (u ⊕ v) ⊕ v = u for any two strings u, v ∈ BM , if
the ECC capability T is set higher than the maximal hashing
distortion of different observations of the same PUF, and if we



do observe the same object with the same unclonable PUF,
then the system guarantees s = s′ [5]. The security of the
whole system under a copy-paste attack (namely against the
unclonability) may be assessed by evaluating the probability
that s = s′ conditionally to the observation of different PUFs.

5. EXPERIMENTS
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Fig. 4: (left) Concentration of Z = ıx y/dH(x, y). (right) False
Acceptance Rate (in %) of the Fuzzy Selector.

The system of Section 4 has been tested with the database
S of LPUFs described in Section 3. In particular, we have
first selected the versatile BCH Error Correcting Code pro-
cedure [12]. Second, the hashing method has been realized
with another random matrix construction, the Random Noise-
let Ensemble (RNE) [4, 2]. The matrix Φ corresponds to
picking uniformly at random M “frequencies” in a orthonor-
mal Noiselet transform of RN [4]. This induces both a fast
evaluation of x from x ∈ RN in O(N logN) computations
(compared to O(MN) for Gaussian hashing) and a repro-
ducibility of Φ by recording in sΦ the M selected frequen-
cies2. Moreover, Noiselets are optimal for signals x described
with few coefficients in standard Wavelet basis (like Haar or
Daubechies 7/9) [2], a property that the laser marks respects
due to the structure they contain (see Fig. 1(a)). The left
plot on Fig. 4 confirms by a Montecarlo simulation over 1000
randomly generated Φ and x, y ∈ RN that the random vari-
able Z = x̂ y/dH(x, y) is well centered around its mean.
This confirms the existence of a concentration property for
the RNE hashing with a distortion respecting (3). Third, the
level of observation noise in S has been estimated by comput-
ing H0 = maxp,q 6=q′ ˚�xpq xpq′ = 0.0775. Finally, by setting
a probability failure η = 0.01, the BCH-ECC capability has
been tuned to T = dM (1 + ε(M))H0e, while the length K
of the random identifier has been set to the maximal value al-
lowed by BCH given M and T . This last point guarantees
that, with a probability higher than 1 − η = 0.99, the same
PUF presented at the registration and at the verification leads
to recover the identifier, i.e., s = s′. This fact has been con-
firmed experimentally.

An interesting challenge amounts to test when different
PUFs may produce equal identifiers. This possibility exists
since for small M the hashing distortion can produce close
hashes even if they are generated from different PUFs. The

2Or alternatively the seed of their pseudorandom selection.

identifier may then be erroneously recovered since in addi-
tion the capacity of the ECC decoding increases when M
decreases. This phenomenon is measured by the False Ac-
ceptance Rate P[ s′ = s | τ ′ 6= τ ]. It is estimated with the
laser mark database S in the right part of Fig. 4 in function
of the reduced dimensionality M . Clearly, for M bigger than
M0 = 128 ' N/900, this rate is considered as negligible
(smaller than < .01 %). A future study will have to estimate
if the trade-off value M0 between helper data size and sys-
tem security is stable when the size of the testing database S
increases.

6. CONCLUSION AND FURTHER WORK
In this work we have presented how unclonability of laser
marks may be both modeled mathematically and used as a
possible foundation for robust material object authentication.
This motivated the construction of an adjustable fuzzy key
extractor relying on a binary dimensionality reduction of con-
trolled distortion. In the future, we will examine deeper the
cryptographic properties of that scheme, compared to other
methods like LSH [1]. Different random hashing methods
connected to the recent field of Compressed Sensing [2] will
also be assessed..
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