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Abstract—Physical attacks against cryptographic devices
typically take advantage of information leakage (e.g., side-
channels attacks) or erroneous computations (e.g., fault injec-
tion attacks). Preventing or detecting these attacks has become
a challenging task in modern cryptographic research. In this
context intrinsic physical properties of integrated circuits, such
as Physical(ly) Unclonable Functions (PUFs), can be used
to complement classical cryptographic constructions, and to
enhance the security of cryptographic devices. PUFs have
recently been proposed for various applications, including anti-
counterfeiting schemes, key generation algorithms, and in the
design of block ciphers. However, currently only rudimentary
security models for PUFs exist, limiting the confidence in the
security claims of PUF-based security primitives. A useful
model should at the same time (i) define the security properties
of PUFs abstractly and naturally, allowing to design and
formally analyze PUF-based security solutions, and (ii) provide
practical quantification tools allowing engineers to evaluate
PUF instantiations.

In this paper, we present a formal foundation for security
primitives based on PUFs. Our approach requires as little
as possible from the physics and focuses more on the main
properties at the heart of most published works on PUFs:
robustness (generation of stable answers), unclonability (not
provided by algorithmic solutions), and unpredictability. We
first formally define these properties and then show that they
can be achieved by previously introduced PUF instantiations.
We stress that such a consolidating work allows for a mean-
ingful security analysis of security primitives taking advantage
of physical properties, becoming increasingly important in the
development of the next generation secure information systems.
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I. INTRODUCTION

Research on Physically Unclonable Functions (PUFs) was
initiated by the work of Pappu [1], [2] and aims to construc-
tively exploit the (random) physical variations that can be

found in various objects. The core concept put forward by
PUFs is the use of unique physical properties in order to
identify a device rather than assigning an arbitrary identity to
it upon creation, like a barcode, an electronic product code,
or a cryptographic key. In fact, the underlying principles
of PUFs were known and applied much earlier, mainly in
different attempts to design anti-counterfeiting mechanisms
(see, e.g., [3], [4], [5], [6]). Following these seminal con-
tributions, it was quickly realized that PUFs can be used
beyond identification and anti-counterfeiting applications for
which they were initially designed. For example, PUFs can
be used to generate and securely store strong cryptographic
keys (see, e.g., [7], [8]). They can even be an integral part
of cryptographic primitives, emerging hardware-entangled
cryptography [9], where security is based on the physical
properties of PUFs instead of mathematical problems. Today,
there are already several PUF-based security products aimed
for the market (e.g., RFID, IP-protection, anti-counterfeiting
solutions) [10], [11]. More generally, the exploitation of
physics is an appealing solution in the evolutionary perspec-
tive of information technologies for at least two reasons:
first, computing and communication devices tend to become
smaller and smaller, and their deep integration leads to
the apparition of many physical effects that were typically
unnoticed in former technologies (including manufacturing
variability or quantum effects). In this context, it appears
natural to exploit the physics, rather than systematically
struggling against it in order to minimize parasitic effects.
Second, the increasing development of distributed (e.g.,
Cloud) computing and the growing interconnection of bil-
lions of objects within the emerging “Internet of Things”
also creates an important trust and security challenge. In
this context, the ability to equip each object or computing
device with a unique identity, which can be used as a trust



anchor in higher level security architectures, would be of
considerable help, and is typically what could be provided
by PUFs at low manufacturing costs [12].

Quite naturally, exploiting physical properties in security
systems also raises important formalization problems. The
core issues are to determine which properties of physical
objects need to be defined, and to find efficient ways to
guarantee them in practice. In other words, one of the main
challenges for using PUFs in future security applications is
to properly integrate them in complex systems, where some
of their physical properties can be a real advantage compared
to purely algorithmic solutions. In this respect, useful and
reasonable security definitions of PUFs should be both
(i) sound for cryptographers, in order to allow the analysis
of PUF-based cryptographic systems, and (ii) empirically
verifiable by engineers, such that the security levels guaran-
teed by the physics can be evaluated (or at least be lower
bounded). These challenges give a strong motivation for
introducing a security model for PUFs that unifies previous
formalization attempts and at the same time satisfies (i)
and (ii). For this purpose, our rationale is based on the
following observations:

1) It is generally difficult to argue about the physical
properties of an object, e.g., compared to classical
cryptography, where explicit security parameters can
do an excellent job in this respect.

2) It is generally unknown if the properties expected for
PUFs, such as unpredictability or unclonability, relate
to any exponentially hard problem. While this situation
can be unsatisfying from a theoretical point of view,
it is in fact similar to the situation of many primitives
used in applied cryptography. For example, there is no
exponential hardness problem on which current block
ciphers are based, e.g., the AES is only expected to
provide a security level of roughly 2128 operations.

3) The interface of PUFs to the outside world usually
does not directly access the physics but uses some
mathematical post-processing of the PUF outputs
(which we denote as extractor algorithm).

As a consequence of (1) and (2), our focus is to start with
a set of three basic properties allowing the design of hybrid
systems combining PUFs with classical algorithms, and to
formalize PUFs by security notions similar to those of,
e.g., block ciphers, with constant security levels that can be
properly quantified by engineers in a physical counterpart
to cryptanalysis. First, PUFs must be robust, i.e., able
to provide stable outputs, since non-robust PUFs would
significantly harm the efficiency of the underlying system.
Robustness essentially captures the resilience of a PUF
system to noisy measurements. Next, we investigate formal
definitions of unclonability, which is a central property of
PUFs that cannot be guaranteed by purely algorithmic so-
lutions. Having improved arguments of unclonability, quan-

tified within a sound model, would better motivate the use
of PUFs in many security applications. Third, we propose
a definition of unpredictability of PUF outputs, which is
the weakest cryptographic property that could be expected
from PUFs. While unpredictability could also be guaranteed
by algorithmic means, we believe that the inherent physical
randomness provided by PUFs is worth to be exploited
as well. As a consequence of (3), we finally propose to
define these cryptographic properties as function of the
extractor algorithm instead of a plain PUF. By applying our
framework and definitions to PUF instances, we show that
our abstractions are useful and properly capture the physical
properties for security purposes.

The rest of the paper is structured as follows: in Section II
we analyze previous approaches to the formalization of the
security properties of physical functions and point out their
weaknesses and drawbacks. Then, we present our general
framework for the formalization of physical functions in
Section III and define robustness in Section IV, physical un-
clonability in Section V, and unpredictability in Section VI.
Finally, we conclude in Section VII.

II. RELATED WORK

This section gives a comprehensive but concise overview
of different constructions of physically unclonable functions
and the attempts to formalize their properties. A more
extensive discussion on all known types of PUFs and their
defining properties is provided by Maes et al. [13].

A. A History of PUFs

The initial idea of Pappu [1], [2] was to use optically
transparent tokens, which are randomly doped with light
scattering particles, as unique and practically unclonable
identifiers, e.g., as an alternative to smart cards. An incident
laser beam on the token creates an unpredictable speckle pat-
tern, which is highly sensitive to the random arrangement of
the scattering particles and to the relative orientation of the
token to the laser beam. The unclonable pattern is captured
and processed into a unique identifier. This construction
became known as the optical PUF and is well studied. Tuyls
et al. [14] showed bounds on the difficulty of learning the
optical PUF in an attempt to make an algorithmic model, and
Pappu already showed that the tokens are tamper-evident,
i.e., an invasive attack on the token, e.g., in order to learn
the positions and sizes of the scatters, significantly changes
the arising speckle patterns and hence can be detected.
Despite these very interesting properties, the optical PUF
has a number of practical drawbacks: the high sensitivity on
the laser orientation poses very high mechanical constraints
on the construction and its strenuous readout setup, which
limits its use in cryptographic and security applications (e.g.,
identification schemes).

Following the introduction of the optical PUF, many
attempts to construct more practical PUFs were introduced.



The general trend is to embed PUFs in silicon integrated
circuits (ICs). The rationale behind this is that the PUF’s
outputs or responses can be used directly on the chip, partic-
ularly in combination with a secret key generation algorithm,
to enable more elaborate security applications. In the coating
PUF [15], a silicon chip is covered with a randomized
dielectric coating that affects the exact capacitance values
of underlying metal sensors, leading again to unique and
practically unclonable PUF responses. It was shown that
this construction provides tamper-evidence even for other
components of the chip containing the PUF, which is a very
desirable property for security-critical integrated circuits.
However, the amount of unique information provided by a
coating PUF is limited by the number of sensors that can be
placed on the chip. Moreover, providing randomized coating
is a highly specialized and thus an additional and costly step
in the already complex manufacturing flow of an IC.

Further integration of PUFs on ICs was proposed by
Gassend et al. [16]. The idea is to exploit the intrin-
sic randomness introduced during the fabrication of the
chip. Typical production flows of silicon ICs suffer from
manufacturing variability, i.e., uncontrollable processes that
typically have an effect at the submicron structures of the
IC, which causes every IC to behave slightly different.
Gassend et al. [16], [17] first showed that unique effects of
manufacturing variability can be detected by observing the
frequency of identically designed asynchronous oscillating
loops. More elaborate ring-oscillator based constructions
were proposed later and their statistical properties were
extensively studied [17], [18], [19]. Similarly to these ring
oscillator PUFs, it was shown in [20] that manufacturing
variability also affects the outcome of a race condition
between two identical delay lines, the so-called arbiter
PUF. By using a challengeable delay circuit, the number
of responses of a single delay-based PUF can be made
exponentially large in the dimensions of the PUF. However,
it was realized early that a relatively small number of
challenge-response pairs enables to learn these PUFs to such
detail that unknown responses can be predicted with great
accuracy [20], [21], [22]. A number of attempts to harden
the learning of delay-based PUFs [23], e.g., through the use
of non-linear elements, have not been able to completely
prevent sophisticated learning algorithms from predicting
responses with non-negligible advantage [24].

Another approach towards using manufacturing variability
as a source for on-chip embedded PUFs makes use of bi-
stable memory cells. When such a cell converges from an
unstable to one of both stable states, it will often have a
preference of one state over the other. This effect, which was
first observed in the power-up behavior of SRAM cells by
Guajardo et al. [25] and Holcomb et al. [26], originates from
the mismatch of the symmetry of the memory cell, which
is again caused by silicon manufacturing variability. This
construction has been called SRAM PUF. Similar behavior

has been observed in other bi-stable memory structures such
as flip-flops [27], [28] and latches [29], [30]. The amount of
unique responses of a memory-based PUF is limited by the
number of its memory cells but the information density is
much higher compared to, e.g., a coating PUF. Opposed to
most delay-based PUFs, it is fairly safe to assume that each
response of a memory PUF, originating from an individual
element, is independent of the others and hence unlearnable.

The latter two PUF proposals, based on silicon delay
elements and bi-stable memory structures, have also been
labelled intrinsic PUFs. This is due to the fact that they
exploit the intrinsic device uniqueness caused by manu-
facturing variability, as opposed to, e.g., optical PUFs and
coating PUFs, where randomness is explicitly introduced
during the manufacturing process of the PUF. Additional
properties of intrinsic PUFs are that the whole PUF, in-
cluding the component that measures the PUF responses,
is embedded into the device and can be built using the
standard device manufacturing flow without the need for
custom processes. Intrinsic PUFs are particularly well suited
for applications where physics is used to generate secret data
(e.g., cryptographic keys), since the PUF response must not
leave the device.

Extrinsic (e.g., optical) PUFs have advantages in certain
scenarios as well, e.g., in anti-counterfeiting applications,
where the ability to directly observe the PUF answers (and
the measurement process) can increase the confidence of the
verifier. Notable examples of such extrinsic PUFs are based
on the uniqueness of the structure of regular paper [31], [32].

B. Former Formal PUF Modelling Attempts

PUF behavior can be explained rather intuitively from
physical processes, however, when PUFs should be used
for security purposes, a formal model is often required in
order to bootstrap mathematical reductions for higher level
security claims. Throughout literature, a number of attempts
towards formalizing a PUF definition exist. We briefly
introduce them and point out why none of them captures
the full spectrum of proposed PUFs and their properties,
either by being too restrictive, i.e., excluding certain PUFs,
or by being too ad-hoc, i.e., listing perceived and even
assumed properties of certain PUFs instead of providing a
more general model. A similar overview and discussion has
been given by Rührmair et al. [33]. However, we do not
completely follow all their arguments and moreover point
out why the new models they propose are still insufficient.

Pappu [1] describes the optical PUF as a physical one-way
function (POWF), taking a laser orientation as challenge and
producing a speckle pattern as response. The first part of the
definition of a POWF states that it is a deterministic physical
interaction that is evaluable in constant time but cannot be
inverted by a probabilistic polynomial time adversary with a
non-negligible probability. The second part of the definition
focusses on the unclonability of the POWF: both simulating



a response and physically cloning the POWF should be
hard. The POWF definition was the first formal attempt of
defining a PUF and solely reflects the optical PUF, which
at that time was the only known PUF. As other PUFs were
introduced shortly after, it became clear that this definition
was too stringent, in particular regarding the one-wayness
assumption. Whilst the optical PUF has a very large range
of possible outputs (speckle patterns), many of the discussed
intrinsic PUFs on ICs have a small output length of only
one or a few bits. In the latter case, one-wayness does
not hold any longer, since inverting such a PUF with non-
negligible advantage becomes trivial. It is also noteworthy to
mention that, as also pointed out by Rührmair et al. [33], for
many security applications one-wayness of the PUF is not a
necessary condition. A final issue with the POWF definition
is that it lacks any notion of noise, in fact it even describes
a POWF as a deterministic interaction. This is contradicted
by the fact that virtually all PUF proposals, including the
optical PUF, produce noisy responses due to uncontrollable
physical effects during the response measurement.

With the introduction of delay-based intrinsic PUFs,
Gassend et al. [16], propose the definition of physical
random functions to describe PUFs. In brief, a physical
random function is defined as a function embodied by a
physical device, which is easy to evaluate but hard to
predict from a polynomial number of challenge-response
pairs (CRPs). Note that this definition replaces the very
stringent one-wayness assumption from POWFs by a more
relaxed unpredictability assumption. However, it was quickly
realized that due to the linearity of the internal PUF delays,
simple delay-based PUFs and in particular arbiter PUFs
are relatively easy to model from a limited number of
CRPs [20]. Rührmair et al. [24] show that even more elab-
orate delay-based PUF constructions can be modelled using
advanced machine learning techniques. Once such a model
is made, prediction of unknown responses becomes trivial.
It is clear that for these PUFs the level of unpredictability is
reduced significantly when an adversary learns many CRPs.
Also note that the later introduced memory-based intrinsic
PUFs only possess a polynomial number of CRPs and hence
do not classify as physical random functions since they can
be easily modelled through exhaustive readout. Moreover,
the definition of physical random functions also does not
capture the possibility of noisy responses.

With the introduction of memory-based intrinsic PUFs,
Guajardo et al. [25] further refine the formal specification of
PUFs. They describe PUFs as inherently unclonable physical
systems with a challenge-response behavior. It is assumed
that (i) different responses are independent of each other,
(ii) it is difficult to come up with unknown responses,
and (iii) tampering with the PUF substantially changes its
challenge-response behavior. For the first time, it is made
explicit that PUF responses are observed as noisy measure-
ments. This definition also comes with a division in strong

and weak PUFs, depending on how many CRPs an adversary
is allowed to obtain in order to model the PUF. If the number
is exponentially large in some security parameter, the PUF
is called a strong PUF, otherwise the PUF is called weak.
It can be argued that some of the assumptions made in
this description do not have a solid experimental basis, in
particular regarding the tamper-evidence assumption, which
has not been tested in practice for any of the intrinsic
PUF proposals. Also, strong PUFs seem to be difficult to
characterize in general, as the idea of a security parameter
is specific to each PUF instance, and no practical procedure
is proposed to exhibit the required exponential behavior in
practice. Moreover, the terms weak and strong PUFs are
confusing w.r.t. the classical cryptographic notions of weak
and strong pseudorandom functions, where weak and strong
do not refer to an amount of CRPs but to the ability of the
adversary to select his queries adaptively.

Following a similar analysis as above, Rührmaier et
al. [33] proposed yet a further refinement of a formal PUF
definition. They keep the distinction between strong and
weak PUFs by Guajardo et al. [25] and build upon these
definitions. Both strong and weak PUFs are now defined by
means of a security game with an adversary. Weak PUFs
are called obfuscating PUFs and are basically considered
as physically obfuscated keys. The main statement in the
definition of obfuscated PUFs is that an adversary cannot
learn the key after having had access to the PUF for a
limited amount of time. Strong PUFs are defined similarly,
but here the adversary needs to come up with the response
to a randomly chosen challenge after having had access to
the PUF and a PUF oracle for some limited amount of time.
Some issues are again left unresolved in this formalization:
first, despite building upon the work by Guajardo et al. [25],
responses are not considered to be noisy. Next, the use
of a PUF oracle in the definition of a strong PUF seems
questionable. It is argued that this oracle is introduced to
circumvent any kind of practical access restriction to the
PUF. However, if a PUF-based system is secured against
any attacks possible “by the current state of technology”, the
access to such an oracle provides an unrealistic advantage
to the adversary, which weakens the proposed definition.

Finally, Armknecht et al. [9] introduce another PUF model
that, as opposed to most of the previous proposals, was
not described following the introduction of a new PUF
construction but rather in an attempt to use existing PUFs
as cryptographic building blocks in a block cipher, i.e.,
in an application of hardware entangled cryptography. For
this goal, the previously discussed definitions proved to be
insufficient. Armknecht et al. [9] make a distinction between
algorithmic and physical properties of a PUF. From the
algorithmic side, a PUF is said to be a noisy function
for which the distribution of responses is indistinguishable
from a random distribution with a certain amount of min-
entropy. From the physical side, a PUF is assumed to be



physically unclonable and tamper-evident, i.e., any physical
attack against the PUF will irreversibly and randomly change
its challenge-response behavior. We already pointed out
the lack of experimental evidence for tamper-evidence of
intrinsic PUFs in practice, and the same argument applies to
this definition. Contrarily to most of the previous definitions,
here PUFs are explicitly defined as noisy functions, where
the noise error of the output stays within a certain bound.

As pointed out in this section, existing approaches to
model the security properties of PUFs have several weak-
nesses and drawbacks. In the following, we formalize the
security features of physical functions in accordance to
existing literature on PUFs and propose a general security
framework for physical functions, which modularly captures
the most important properties of PUFs and allows for a
meaningful security analysis of PUF-based constructions.

III. FRAMEWORK

A. Background and Rationale

In this section, we explain the components and procedures
relevant for deploying physical functions (PF). Observe that
we focus not only on PUFs but on physical functions in
general, where unclonability is only one possible security
property. Before we provide formal definitions, we give an
overview of our framework, which is depicted in Figure 1
that shows all components necessary for creating, evaluating
and post-processing the output of a physical function. In the
following, we explain each of these components separately.

1) Physical Function: A Physical Function (PF) consists
of a physical component p that can be stimulated with
some challenge signal x̃, which makes p respond with a
corresponding response signal ỹ. In addition to the physical
component p, a PF contains an evaluation procedure Eval
that, on input a digital representation x of x̃, stimulates
the physical component with x̃ and obtains the resulting
response signal ỹ. Finally, Eval returns a digital represen-
tation y of ỹ. The challenge-response behavior of a PF
heavily relies on the properties of the physical component
p, uncontrollable random noise (e.g., thermal noise and
measurement uncertainties), and an evaluation parameter
αPF (e.g., a quantization factor) chosen by the PF manu-
facturer. Observe that the same physical component p can
yield completely different PFs if combined with different
evaluation procedures. This fact should be representable by
a comprehensive model.

2) Extraction Algorithm: Although the notion of a physi-
cal function suggests differently, a PF is not a function in the
classical sense. The main difference is that, when challenged
with the same challenge x twice, a PF may produce different
responses y. This is because the challenge-response behavior
of a PF heavily relies on the physical properties of its
physical component p, which is subject to uncontrollable
random noise. The effects of noise can be removed up to a
certain threshold by an extraction algorithm Extract, which

maps slightly different responses y to the same challenge x
to a unique output z according to some extraction parameter
αEX, which is typically chosen by the PF manufacturer or
the PF user (i.e., the entity that integrates the PUF into
a higher-level protocol or algorithm). We assume that the
extraction parameter specifies both the deployed extraction
algorithm and all possible parameters (e.g., number of
output bits) of the chosen Extract algorithm. The Extract
algorithm can be executed in two different modes: setup
and reconstruction. If a challenge x is requested for the
first time, setup mode is used to generate an output z and
some appropriate helper data h′. Later, when challenge x
is requested again together with helper data h = h′, the
reconstruction mode is used to recreate z. The purpose of
the helper data h′ is to twofold [34]: (i) h′ supports the
extraction algorithm Extract in recreating the same output
z for a challenge x, and (ii) h′ allows to bind given values
(e.g., cryptographic keys) to a PUF.

3) Physical Function System: As explained above, a PF
is usually coupled with an appropriate extraction algorithm.
Indeed, in a typical application scenario, a user will be
only aware of the challenges given to the PF and the
output returned by the extraction algorithm. Furthermore,
for almost all relevant security notions, both the deployed
PF and the extraction algorithm determine whether a security
property is given or not. Therefore, it is a natural choice to
abstract away the physical function PF and the extraction
algorithm Extract and consider their combination as one
single building block. We term this a Physical Function
System (PF system). Consequently, we will mostly refer to
PF systems only and refer to the underlying PF or extraction
algorithm only if necessary.

4) Creation Process: The creation of the physical com-
ponent p of a physical function PF is the result of a creation
process Create, usually performed by the manufacturer
of PF. The result of this process depends on a creation
parameter αCR that is chosen by the PF manufacturer and
some uncontrollable production variability.

5) Physical Function Infrastructure: We call the combi-
nation of all components described in (1) to (4) a Physical
Function Infrastructure (PFI). We stress that within a PFI
the creation, evaluation and extraction parameters are fixed.
Furthermore, we assume that these parameters uniquely
specify the deployed procedures, e.g., αPF defines the full
details of the Eval procedure.

B. Formalization

In the following, we formalize the concepts described
above. We start by introducing our notation.

1) Notation: Let A be a probabilistic procedure. Note that
with procedure we denote a probabilistic polynomial time
algorithm that may involve some physical process (e.g., the
evaluation of a PF). Then y ← A(x) refers to the event that
on input x, procedure A assigns its output to variable y.
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Figure 1. Generic framework for physical functions.

The term [A(x)] denotes the set of all possible outputs of A
on input x that appear with a probability larger than 0. Let
E be some event (e.g., the result of a security experiment),
then Pr[E] denotes the probability that E occurs. Moreover,
for a set S, the expression s $← S refers to the event that s
has been randomly sampled from S. We denote with ε the
empty string, and with HW(x) the Hamming weight of a
bitstring x, i.e., the number of non-zero bits of x.

2) Definitions: We now formally define the components
and procedures within a physical function infrastructure as
explained in Section III-A.

Definition 1 (Physical Function): A physical function PF
is a probabilistic procedure

PFp,αPF
: X → Y (1)

where X denotes the set of challenges and Y the set of
responses. Internally, a PF is the combination of a physical
component p and an evaluation procedure Eval, i.e.,

y ← PFp,αPF
(x) = Evalp(αPF, x) (2)

Usually, the specification of p and αPF will be discarded in
our notation, that is we simply write PF instead of PFp,αPF

.

Definition 2 (Physical Function System): A physical
function system PFS is a probabilistic procedure

PFSp,αPF,αEX
: X × (H ∪ {ε})→ Z ×H, (3)

where X is the set of challenges, H the set of helper data
values, ε the empty string, and Z the set of outputs.

Internally, a PF system is the combination of a physical
function PF = PFp,αPF

(Definition 1) and an extraction
algorithm Extract (see Section III-A), i.e.,

(z, h′)←PFSp,αPF,αEX(x, h)

= ExtractαEX(PFp,αPF(x), h)
(4)

Hereby, we require that if h 6= ε, then h′ = h. Only in
case h = ε, a new helper data h′ is generated for x. in the
following, we omit the internal components and abbreviate
PFS = PFSp,αPF,αEX

.

Note that h = ε means that Extract should be executed
in setup mode to generate a new helper data h w.r.t.
challenge x. In case h 6= ε, Extract should be executed
in reconstruction mode to recreate output z associated with
challenge x and helper data h. Note that, for the sake of
consistent notation, in this case we require h′ = h to be
returned by Extract.

Definition 3 (Creation Process): A creation process
Create is a probabilistic procedure that, on input of a
creation parameter αCR, produces a physical component p
(Definition 1).

Definition 4 (Physical Function Infrastructure): A phys-
ical function infrastructure F refers to a fixed creation
process Create (Definition 3) and the set of all PF systems
PFS (Definition 2), where the physical component p is the
result of Create, i.e.,

FαCR = (Create, {PFSp,αPF,αEX : p← Create(αCR)}) (5)

where αCR, αPF and αEX are fixed.

C. Example

As a practical example of an implementation of a PF
system, we consider an SRAM PUF [25] as physical func-
tion and a fuzzy extractor [34] as the Extract procedure.
This example is used throughout this paper to illustrate the
practical relevance of the introduced formal properties (see
Figure 2). However, the generic nature of the introduced
model allows to apply it to a very broad class of physical
functions including all known types of PUF constructions.
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Figure 2. An illustrative and practical example of a PF system implementation based on an SRAM PUF and a fuzzy extractor.

The behavior of an SRAM PUF is based on the power-up
values of SRAM memory cells. An SRAM memory address
range is considered as the challenge x to the PUF, and the
power-up values of these cells are considered as the PUF
response y. SRAM memory cells are typically implemented
on a silicon chip using a CMOS1 production process. The
parameter αCR of the SRAM PUF creation process includes,
among others, the different design options for an SRAM cell
and the controllable parameters of the CMOS production
process. The evaluation parameter αPF describes the settings
of the measurement process, e.g., typically the resolution
of the analog-to-digital converter. In the SRAM PUF, this
resolution is fixed by construction to produce 1-bit values,
hence αPF is considered to be fixed by design. Finally, the
extraction parameter αEX is used to describe the settable
options of the extractor such as the correction capabilities of
the used error correcting codes. For instance, in the example
described in Figure 2, αEX would be fixed and specifies a
BCH[255, 13, 59] error correcting code.

Experimental results by Guajardo et al. [25] show that
under normal conditions, consecutive power-ups of the same
SRAM memory differ on average only in 3.57% of the bits,
which can rise up to 12% when large environmental varia-
tions are taken into account. Two power-ups of distinctive
but identically implemented memories differ in 49.97% of
the bits, which is extremely close to the optimum of 50%.
These figures point out clearly the identifying properties of
this structure. For the extraction procedure, a fuzzy extractor
is used as introduced by Dodis et al. [34]. A further
discussion on the goal and operation of a typical fuzzy
extractor can be found in Section IV-C. The implementation
of this SRAM PUF-based PF system is shown in Figure 2.

1Complementary Metal-Oxide-Semiconductor

IV. ROBUSTNESS

A. Rationale

As explained in Section III, a PF might respond to
the same challenge with different responses, when queried
several times. However, if these responses are “similar”, it is
possible to overcome this problem by using an appropriate
extraction algorithm. By robustness, we refer to the property
that former outputs of a PF system can be reconstructed at
a later time. Obviously, a certain level of robustness is a
necessary prerequisite for using PF systems as functions in
the classical sense.

Robustness could refer to at least two properties: (i) the
ability to reconstruct the output of a PF system that has been
produced by the setup mode, or (ii) the ability to always
recreate the same output in reconstruction mode (that may be
different from the output in setup mode). We decided for the
first option for two reasons: first, one can show that a high
probability for (i) implies also a high probability for (ii).
Furthermore, (i) directly reflects the basic criterion that is
necessary in a typical PUF-based key generation scenario.

B. Formalization

Following the consideration mentioned above, we for-
mally define the robustness of a PF system as follows:

Definition 5 (Robustness): Let PFS be a PF system (Def-
inition 2) and let x ∈ X be a challenge. The challenge
robustness of PFS w.r.t. x is defined as the probability

ρPFS(x) := Pr [(z, h)← PFS(x, h) :

(z, h)← PFS(x, ε)]
(6)

This means that robustness is the probability that an output
generated by Extract in reconstruction mode matches the
output generated earlier by Extract in setup mode.

In practice, the best estimate of the challenge robustness
is the sample mean over many evaluations of the same chal-
lenge on the same PF system. For cases where it is important



that each challenge has at least a certain robustness, the
notion of minimum robustness is introduced:

Definition 6 (Minimum Robustness of a PF System):
The minimum robustness of a PF system PFS (Definition 2)
w.r.t. to a set of challenges X ′ ⊆ X is defined as

ρmin
PFS := min {ρPFS(x) : x ∈ X ′} (7)

In some cases it may be difficult to estimate the minimum
robustness. Actually, from a practical point of view, it can be
sufficient that the average challenge robustness over many
challenges of a PF system is high enough. This is where the
notion of average robustness comes in:

Definition 7 (Average Robustness of a PF System): The
average robustness of a PF system (Definition 2) w.r.t. a
set of challenges X ′ ⊆ X is defined as

ρavgPFS :=
∑
x∈X ′

Pr[x
$← X ′] · ρPFS(x) (8)

So far we considered PF systems, where the underlying
physical function PF is fixed. Moreover, it is important
to consider the probability of finding PF systems with
a certain minimum/average robustness within a given PF
infrastructure. The corresponding terminology is given in
the following definitions:

Definition 8 (Minimum Robustness of a PF Infrastructure):
Consider a PF infrastructure F = (Create,P) (Definition 4),
where P = {PFSp,αPF,αEX

: p← Create(αCR)}. The
minimum robustness of F is defined as

ρmin
F := min

{
ρmin
PFS : PFS ∈ P

}
(9)

Analogously, we define the average robustness of a PF
infrastructure as follows:

Definition 9 (Average Robustness of a PF Infrastructure):
Let F = (Create,P) be a PF infrastructure (Definition 4),
where P = {PFSp,αPF,αEX

: p← Create(αCR)}. The
average robustness of F is defined as

ρavgF :=
∑

PFS∈P

Pr[PFS
$← P] · ρavgPFS (10)

Here, PFS $← P denotes the event that a random physical
component p has been created, i.e., p← Create(αCR), and
that a PF system PFS has been generated based on p, i.e.,
PFS = PFSp,αPF,αEX

for a fixed αPF and αEX.

C. Example

Consider the practical PF system implementation (based
on the SRAM PUF) described in Section III-C. For assessing
robustness, we are interested in the difference between
responses to the same challenge on the same PF, which
in this case is caused by thermal noise and uncontrollable
environmental variability. At large environmental fluctua-
tions, the average percentage of differing bits in an SRAM

PUF response can go up to 12% [25], which is too high
for any practical cryptographic application. Industry-grade
implementations require an average robustness of at least
1−10−6 to 1−10−9 or even higher. To achieve this with an
SRAM PUF as physical function, an appropriate extraction
algorithm must be used.

Different techniques are possible to decrease the error rate
of PF responses. The typical choice is a fuzzy extractor [34],
which is an algorithm that can be used to increase the
robustness and the unpredictability of the responses of the
PF system. In this section, we focus on the former process,
which is called information reconciliation. The goal of an
information reconciliation algorithm is to generate with high
probability in the reconstruction phase the same output as
in the setup phase, ensuring a high robustness level as
defined in Definition 5. The inputs to the reconciliation
algorithm, which are the responses of the physical function,
i.e., ysetup and yreconstruct, are not necessarily equal but can
be distorted by noise. A secondary requirement is that the
information reconciliation algorithm preserves as much of
the information as possible that is present in the input2. This
is necessary to provide acceptable levels of unclonability and
unpredictability as defined in Section V and VI, respectively.

Obtaining a reliable and information-bearing result from
a noisy measurement implies the use of error-correcting
codes, which are the basis for most information recon-
ciliation algorithms. Directly correcting the response of a
physical function is not possible since this typically is not a
noisy version of a code word but an arbitrary noisy vector.
Most information reconciliation algorithms deploy a clever
technique, which allows the use of decoding algorithms on
arbitrary words. A relatively simple but powerful construc-
tion is the code-offset method proposed by Dodis et al. [34].
The idea is to transform an arbitrary bit vector ysetup, which
represents the response of a physical function during the
setup phase, to a random code word c of a predefined
error correcting code. In the reconstruction phase, the same
transformation maps the noisy version of the PF response
yreconstruct to a noisy version of the code word, provided
that the transformation is transitive and isometric. The noisy
code word can be decoded to the correct code word c if
the amplitude of the noise is smaller than the code’s error
correcting capability. The original PF evaluation during the
setup phase can now be easily recovered by applying the
inverse transition on the corrected code word c. Note that the
random transformation of a code word is chosen in the setup
phase and needs to be known in the reconstruction phase.
For the code-offset method, this transformation is defined
by the vector difference (offset) h between the PF response
ysetup in the setup phase and the corresponding code word
c. This offset vector is called helper data. The helper data

2A trivial algorithm, which gives a constant output regardless of the
input, achieves perfect robustness but is not considered a good information
reconciliation algorithm since all information of the input is lost.



h does not disclose the full output z of the PF system3 to
challenge x and hence can be stored in plaintext format, e.g.,
in a public database or in an external non-volatile memory.

A practical example of a PF system based on an SRAM
PUF and an Extract algorithm using the code-offset tech-
nique is shown in Figure 2. The SRAM PUF generates
255-bit responses with an average bit-error rate of 12%
between consecutive responses to the same challenge of
the same PUF. The Extract algorithm transforms the PF
responses to a random code word of a BCH[255, 13, 59]
error-correcting code by computing the bitwise exclusive-
or of the PF response and an offset, as depicted in Fig-
ure 2(a). Assuming a binomial distribution for the num-
ber of errors in a single response, one can calculate that
Pr [HW(ysetup ⊕ yreconstruct) ≤ 58] < 10−6. Hence, in order
to achieve an average robustness ρavgPFS > 1 − 10−6 in this
example, all occurrences of 58 or less bit errors must be
correctable. The Extract algorithm achieves this since all
occurrences of 59 or less bit errors in a code word of the
BCH[255, 13, 59] code can be corrected successfully by the
decoder in the reconstruction phase, as shown in Figure 2(b).
By using this extraction algorithm, a 12%-noisy physical
function can be used to construct a PF system with an
average robustness of 1− 10−6.

The code-offset method is powerful and generic. It can be
used as an Extract algorithm for every type of PUF imple-
mentation, provided that a suitable error-correcting code is
available and a transitive and isometric transformation from
PUF responses to a random code words exists. Besides error-
correcting codes, other signal processing techniques can be
used to reduce the amount of noise of responses [35]. How-
ever, some degree of error-correction is usually inevitable.
Note that most known PUF constructions have an average
bit error probability of their responses of less than 10%.

V. PHYSICAL UNCLONABILITY

A. Rationale

As this work is motivated by the increasing usage of
physically unclonable functions, it is a natural choice to in-
clude unclonability into the model, which is the key property
of PUFs that cannot be achieved by algorithmic solutions.
In this section, we formally define the notion of physical
unclonability. We stress that we consider only clones on
the physical level and exclude mathematical clones. This
restriction is motivated by the fact that an adversary in
general has different possibilities for creating (i.e., cloning)
a PF system that shows the “same” behavior as another PF
system. For instance, the adversary could choose an Extract
algorithm that maps all inputs to the same output. Clearly,
two different PF systems using this Extract algorithm would
behave exactly the same, independent of the underlying PFs.
It is obvious that protection against such attacks can only

3An outsider only learns the offset h but not the code word c itself.

be provided by mechanisms outside of the PF system. In
general, while physical unclonability is an intrinsic feature,
this is not true for mathematical unclonability, which hence
is outside of the scope of a PF security model. We propose
a definition of physical unclonability that can informally be
stated as follows: A PF system PFS′ is a physical clone of
another PF system PFS if both PF systems show the same
behavior and deploy the same Extract algorithm. By the
second condition, we guarantee that we consider clonability
on a physical level only.

It remains to discuss how to formalize the notion of
“same behavior”. Recall that PFs are assumed to be noisy
in general, which raises the question of when two PFs
can be considered being the same. A good starting point
is to consider at first only one PF system. Recall that the
extraction procedure is deployed to make a PF system “as
deterministic as possible”. Nonetheless, in certain cases, the
same PF system might produce the same output twice only
with a certain probability. We referred to this probability as
the robustness of the PF system and termed it ρPFS(x) in
dependence of the considered challenge x (see Definition 5).
Intuitively, a clone PFS′ cannot be more similar to the
corresponding original PF system PFS than PFS itself. On
the other hand, any PF system should be formally seen as
a clone of itself. Therefore, the robustness marks a natural
upper bound on “how similar a clone can become” and it
seems to be natural to integrate the notion of robustness into
the definition of clones.

Another aspect that needs to be considered is the follow-
ing: depending on the use case, only the responses of PFS to
a subset of challenges might be known at all. Thus, any other
PF system PFS′ that coincides on this subset of challenges
could be seen as a clone. Therefore, it is sufficient that the
definition of a clone captures only the set of challenges
X ′ ⊆ X that are relevant w.r.t. the underlying use case.

Note that a cloning attack might have different meanings:
• Selective cloning refers to the event that for a given PF

system PFS a clone PFS′ is constructed.
• Existential cloning: means that two arbitrary PF sys-

tems PFS and PFS′ are produced, where one is the
clone of the other.

The difference between selective and existential cloning is
that in the latter case no “original PF system” is given and
instead, the adversary is free to choose which PF system is
cloned. Observe that this classification has some similarities
to the security properties established for digital signatures
and message authentication codes (MACs).

B. Formalization

We start with formalizing the notion of a clone:

Definition 10 (Physical Clone): Let αPF and αEX be
a fixed evaluation and extraction parameter, respectively.
Moreover, let PFS = PFSp,αPF,αEX and PFS′ =
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Figure 3. Existential unclonability security experiment Expex-uncl
A (q).

PFSp′,αPF,αEX be two PF systems (Definition 2), that are
identical except of their physical component, i.e., p 6= p′.
We define that PFS′ is a δ-clone of PFS w.r.t. X ′ ⊆ X if
for all x ∈ X ′ it holds that

Pr
[
(z, h)← PFS′(x, h) : (z, h)← PFS(x, ε)

]
≥ δ · ρPFS(x)

(11)

For simplicity, we write PFS′
δ,X ′

≡ PFS if Eq. 11 holds.

Next, we formalize both notions of unclonability by means
of two security experiments that specify the capabilities and
the goal of the adversary A. On a high level, the adversary A
is capable of creating arbitrary physical components, which
in turn determine PF systems. In practice, A will be limited
to a certain set of creation processes, e.g., by increasing
the sensitivity of his production facility. We capture this
formally by allowing A to choose the creation parameter
αCR from a set ACR of possible creation parameters. In
practice ACR is expected to be small. We start by defining
existential unclonability, where A must produce two arbi-
trary clones. In this scenario, which is depicted in Figure 3,
A can query the Create process for αCR ∈ ACR to create
physical components p (see Definition 3).

Note that a physical function p implicitly defines a PF
system PFS = PFSp,αPF,αEX for some fixed evaluation
and extraction parameter αPF and αCR, respectively (see
Definition 2). Typically, only adversaries for which the
time and computational effort are bounded are relevant for
practice. Hence, we assume that A can do at most q ≥ 2
queries to Create.

Definition 11 (Existential Physical Unclonability):
Let ACR be a set of creation parameters and let αPF

and αEX be fixed parameters for the evaluation and
extraction procedures, respectively. Note that this implicitly
defines a family FACR

:= {FαCR
: αCR ∈ ACR} of PF

infrastructures (Definition 4).
A family of PF infrastructures FACR

is called (γ, δ, q)-
cloning-resistant w.r.t. X ′ ⊆ X , if

Pr
[
PFS′p′,αPF,αEX

δ,X ′

≡ PFSp,αPF,αEX
:

(p, p′)← Expex-uncl
A (q);

p ∈ [Create(αCR)];αCR ∈ ACR;

p′ ∈ [Create(α′CR)];α′CR ∈ ACR

]
≤ γ

(12)
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Figure 4. Selective unclonability security experiment Expsel-uncl
A (q).

This means: the probability that A generated, as output of
the security experiment depicted in Figure 3, two physical
components p and p′ which (i) imply clones on the PF
system level and (ii) that have been created using creation
parameters αCR ∈ ACR, is less than γ.

Note that Definition 11 covers different situations:

• Honest manufacturer: This case reflects the probability
that an honest manufacturer creates two clones by
coincidence and captures clonable PFs. In the case
of ACR = {αCR}, i.e., where only one creation
parameter is involved, the set FACR

“collapses” to a
single PF infrastructure FαCR

. Likewise, A can perform
Create only with this specific creation parameter. In
other words, A is restricted to actions that an honest
manufacturer could do within FαCR

.
• Malicious manufacturer: This case covers the scenario,

where ACR contains more than one possible choice
for the creation parameter αCR, which allows A to
influence the Create process in order to create a clone.

Finally, we formalize selective physical unclonability in
terms of the security experiment depicted in Figure 4. The
difference to the security experiment of existential unclon-
ability is that the adversary A is given a PF system PFS
for which A must create a clone. Therefore, in addition to
queries to Create, A is allowed to query PFS with challenges
x ∈ X ′. Again, we consider only restricted adversaries A
that can do at most q ≥ 1 queries to Create and PFS.

Definition 12 (Selective Physical Unclonability):
Let ACR be a set of creation parameters and let
αPF and αEX be fixed parameters for the evaluation
and extraction procedures, respectively. Moreover, let
FACR := {FαCR : αCR ∈ ACR} be the corresponding
set of PF infrastructures (Definition 4). Further, let PFS
be a PF system (Definition 2) within the family of PF
infrastructures FACR

, i.e., PFS ∈ [Create(αCR)] for some
αCR ∈ ACR. We denote with A the adversary.



PFS is called (γ, δ, q)-cloning-resistant w.r.t. X ′ ∈ X , if

Pr
[
PFS′p′,αPF,αEX

δ,X ′

≡ PFSp,αPF,αEX
:

p′ ← Expex-uncl
A (q);

p′ ∈ [Create(αCR)];

αCR ∈ ACR

]
≤ γ

(13)

C. Example
As an example, we consider the implementation of an

SRAM PUF as described in Section IV-C. We consider
the case of existential physical unclonability by an honest
manufacturer (ACR = {αCR}).

Experiments by Guajardo et al. [25] show that the relative
amount of differing bits between two responses coming
from distinct SRAM PUFs is on average close to one half.
Independent experiments by Holcomb et al. [26] confirm
that for common SRAM implementations, power-up states
of different instances differ on average by approximately
40%. The exact relative difference depends on the way the
considered SRAM cells are designed (which is specified
by αCR). It is expected that this probability will always
tend to 50%. As a safe margin, we consider an SRAM
PUF with an average relative difference of 40% between
responses coming from distinct PUFs and a 12% bit error
rate between responses coming from the same PUF. In both
cases the challenge is fixed. It is reasonable to assume
that the 40% differing bits are independent and uniformly
distributed over all the responses, i.e., there is no particular
bit position in a response that is more likely to differ
between two PUFs than any other. This is explained by
the random manufacturing processes affecting each SRAM
memory cell independently and is confirmed by extensive
experiments [25]. As discussed in Section IV-C, applying
information reconciliation in Extract can turn this 12%-
noisy SRAM PUF into a PF system with a robustness
of ρavgPFS > 1 − 10−6. For simplicity, we consider clones
w.r.t. average robustness rather than the individual chal-
lenge robustness. To assess the cloning-resistance of this
SRAM PUF, we calculate the probability that an honest
manufacturer produces two clones “by accident”, relative to
the average robustness and a particular challenge set X ′.

Consider an SRAM PUF that accepts 8-bit challenges
and produces 255-bit responses We assess the physical
unclonability of this PUF w.r.t. a challenge set consisting of
a single challenge, i.e., X ′ = {x}. Therefore, we estimate
the probability of producing the same output to the same
challenge on two independently created PF systems (i.e.,
q = 2). We denote y ← PFp,αPF

(x), (z, h)← Extract(y, ε)
and y′ ← PFp′,αPF(x). The event, where PFSp(x) =
Extract(y, ε) and PFSp′(x) = Extract(y′, h) produce the
same output z, only happens when y and y′ are by accident
similar enough such that the error correcting capability of
Extract corrects y′ to y.

To calculate the probability of this event, we start by
evaluating the probability of a particular creation event (see
Eq. 12) and determine to what extent this creation event
produces a pair of clones according to Definition 10. We
first introduce the following notation: ∆y = y ⊕ y′ is
the offset between the two expected responses of different
SRAM PUFs solely caused by the random manufacturing
variability affecting the Create process. Moreover, by e we
denote the error vector representing the effect of random
noise occurring in the Eval process of a single SRAM PUF.
py and pe are the respective probabilities of a bit of ∆y

or e being one. Note that in our example py = 40% and
pe = 12%. We also use fbino(t;n, pi) and Fbino(t;n, pi),
respectively, as the probability distribution and the cumu-
lative distribution function of the binomial distribution in
t with parameters n and pi. We start by upper bounding
HW(∆y) with HW(∆y) ≤ 50. This bound determines
the probability of these “clones” being created according
to Eq. 12: Pr[HW(∆y) ≤ 50] = Fbino(50; 255, py) =
2.66 · 10−12, which is taken over the randomness of the
Create process. It is yet to be evaluated to what extent the
two PF systems based on these SRAM PUFs are considered
clones according to Definition 10. Both PF systems produce
the same output z if both SRAM PUF responses (this
time including bit errors) differ by no more than the error
correcting capability of the Extract algorithm (i.e., 59 bits),
given that the expected difference is 50 bits. The probability
of this event corresponds to the left-hand side of Eq. 11 and
is calculated as

Pr[HW(∆y ⊕ e) ≤ 59 : HW(∆y) ≤ 50]

=

50∑
i=0

Pr[HW(∆y ⊕ e) ≤ 59 : HW(∆y) = i]

· Pr[HW(∆y) = i : HW(∆y) ≤ 50]

=

50∑
i=0

Fbino

(
59; 255,

i

255
− 2 · i

255
· pe + pe

)
· fbino(i; 255, py)

Fbino(50; 255, py)
= 0.11 ≥ 0.11 · ρavgPFS

The last equality uses the fact that the considered Hamming
weights are binomially distributed and evaluates the bit
probability of the exclusive-or sum of two independent
random bit vectors.

It follows that the considered PF infrastructure FαCR of
this example, which is based on an SRAM PUF and a fuzzy
extractor, is (2.66 · 10−12, 0.11, 2)-cloning resistant against
an honest manufacturer. In practice, this means that with
probability 2.66 · 10−12, a manufacturer produces two PF
systems that generate the same output on the same challenge
with probability 0.11. Other values for (γ, δ) and q = 2 can
be obtained by considering different bounds for ∆y . Smaller
bounds on ∆y will result in increasingly larger chances of
producing the same output but at much smaller probability to



Table I
DIFFERENT LEVELS OF (γ, δ, q = 2)-CLONING-RESISTANCE FOR THE

EXAMPLE PF INFRASTRUCTURE DISCUSSED IN SECTION V-C.

max ∆y γ δ
0 2.68 · 10−57 1.00
10 1.32 · 10−41 0.9998
20 2.39 · 10−31 0.986
30 1.75 · 10−23 0.83
40 2.96 · 10−17 0.43
50 2.66 · 10−12 0.11
100 0.43 3.01 · 10−7

110 0.86 1.49 · 10−7

120 0.99 1.29 · 10−7

255 1.00 1.28 · 10−7

create such a PUF. At the other end of the spectrum are pairs
of PF systems, which are very likely to be constructed but
very unlikely to produce the same output. This is illustrated
in Table I, which shows a few other unclonability levels of
the considered PF systems based on SRAM PUFs.

For other PUF types, a comparable quantitative analysis
of existential unclonability can be made based on statisti-
cal data and estimated distributions of PF responses. The
assumed distribution of responses and noise will often be
normal rather than uniform, as it is the case for SRAM
PUFs. Another issue could be that responses to different
challenges and/or on different physical functions are not
independent. Due to their construction, it is reasonable to
assume response independence for SRAM PUFs but in
general this is not the case for other PUF types. In such
cases an additional post-processing step is required in the
extraction algorithm that amplifies the randomness in the
PFS output and removes dependencies between different
PF instantiations and responses. This step is called privacy
amplification and is implemented by means of an adequate
compressing (e.g., a hash) function. Note that a typical
fuzzy extractor implementation already includes a privacy
amplification step [34]. We stress that the results obtained for
unclonability are almost always based on estimated distribu-
tion parameters. Hence, a statistical analysis of the accuracy
of these results is preferred. Based on such an analysis,
adequate safety margins should be taken into account when
assessing the security of a PF system.

Discussing unclonability against malicious manufacturers
and adversaries in general is often very difficult in practice.
The reason is that, in practice it is often not possible to take
the effort and implications of all possible technical capabil-
ities of such adversaries into account. For such cases, we
suggest a more ad-hoc approach that measures the cloning-
resistance of a PF system against a malicious adversary by
the efficiency of the best known cloning attack that can
be performed by that adversary. This means that the cost
and effort of the adversary need to be considered as an
additional parameter of cloning resistance. This approach
is very similar to the cryptanalysis approach of standard

cryptographic primitives such as block ciphers and hash
functions, where the security is measured based on the com-
putational effort to perform the best known attack possible
against the primitive.

VI. UNPREDICTABILITY

A. Rationale

One common application of PUFs is to use them to
securely generate secret values (e.g., cryptographic keys).
Examples include secure key storage [7], [8], [36] or
hardware-entangled cryptography [9]. Such applications im-
plicitly require that the adversary cannot predict the output
of a PF system. Moreover, for typical PUF-based challenge-
response identification protocols, e.g., as presented by
Gassend et al. [37], it is important that the adversary cannot
predict the response to a new challenge from previously
observed challenge-response pairs. Therefore, the notion of
unpredictability is an important property that needs to be
included into a model for physical functions. Classically,
the notion of unpredictability of a random function f is
formalized by the following security experiment consisting
of a learning and a challenge phase: in the learning phase,
A learns the evaluations of f on a set of inputs {x1, . . . , xn}
(which may be given from outside or chosen by A). Then,
in the challenge phase, A must return (x, f(x)) for some
x 6∈ {x1, . . . , xn}.

Given that this formalization is common and widely
accepted in cryptography, one may be tempted to adapt
it in a straightforward manner to PUFs. This would mean
to take the same definition but to consider PF systems
instead of functions. However, this approach not always
makes sense: first, the output of a PF system depends on
a challenge x and some helper data h. Thus, the helper data
h must be taken into account as well. Moreover, we stress
that different applications may require different variants of
unpredictability. For instance, the concept of PUF-based
secure key storage [7] is to use a PF system for securely
storing a cryptographic secret k. This secret k is usually
derived from the output z of a PF system for some input
x. In some cases, x is public and/or possibly fixed for all
instantiations. Note that in such a scenario it is required
that each device generates a different secret k for the same
challenge x. Hence, the outputs of different devices (i.e.,
their PF systems) should be independent. This requirement
is captured by the following security experiment: given the
outputs PFS1(x, ε), . . . ,PFSn(x, ε) of a set of PF systems to
a fixed challenge x within the learning phase, the adversary
A has to predict the output PFS(x, ε) for another PF system
PFS 6∈ {PFS1, . . . ,PFSn} in the challenge phase.

Clearly, there is a fundamental difference between the
classical definition of unpredictability and this security ex-
periment: in the original definition of unpredictability de-
scribed in the previous paragraph, A is given the evaluation
of one PF system on many challenges, while in the latter



experiment A learns the evaluation of many PF systems on
one fixed challenge.

Obviously, a useful definition of unpredictability of a PF
system should cover both unpredictability in the original
sense and independence of the outputs of different PF
systems. Therefore, we define a security experiment that
involves the following sets:
• Let PL be the set of PF systems that are allowed to be

queried by A in the learning phase
• Let PC be the set of PF systems that are allowed to be

queried by A in the challenge phase
• Let X be the set of challenges that are allowed to be

queried during the whole experiment
Now we consider two extreme cases:4

1) Independence of the outputs of a single PF system:
Consider the case, where PL = PC = {PFS} consists
of one single PF system only, while X contains several
challenges. During the learning phase, the adversary A
learns PFS(xi) for several challenges xi ∈ X . Later,
in the challenge phase, A has to predict PFS(x) for
a new challenge x ∈ X . It is easy to see that this is
the direct translation of the classical unpredictability
experiment described at the beginning o this section
to the scenario of physical function systems.

2) Independence of the outputs of a different PF systems:
Now consider the scenario, where X = {x} consists of
one single challenge only, while PL and PC contains
several PF systems. In this case, during the learning
phase, A learns PFSi(x) for several different PF
systems PFSi ∈ PL. Afterwards, in the challenge
phase, A has to predict PFS(x) for a new PF system
PFS ∈ PC that has not been queried before. Note that
this reflects the requirements of PUF-based secure key
storage [7].

The definition of unpredictability should cover both extreme
and all intermediate cases.

B. Formalization

We now are ready to define unpredictability. The defini-
tion is based on the security experiment Expw-uprd

A shown
in Figure 5.

Definition 13 (Weak Unpredictability): Let PL,PC ⊆ P
be subsets of the set of all possible PF systems. Let T = ∅
and q ∈ N with q ≥ 0. With A we denote the adversary that
takes part in the security experiment depicted in Figure 5.
A PF system is weak (λ, q)-unpredictable if

Pr
[
z = z′ : (z, z′)← Expw-uprd

A (q)
]
≤ λ · ρp(x) (14)

Note that the robustness of a PF system PFS is an upper
bound for the predictability of the outputs of PFS. For
instance, a true random number generator is a PF system

4For the sake of readability, we omit the helper data here.

Oracle Ow-uprd Adversary A

(PFSi, xi, zi, hi)

PFSi
$← PL

(zi, hi)← PFSi(xi, ε)

T ← T ∪
{
(PFSi, xi, zi, hi)

}

(z, h)← PFS(x, ε) (PFS, x, h)

z′

Learning phase
A obtains 0 ≤ i ≤ q tuples

Challenge phase

xi
$← X

PFS
$← PC

x
$← X

z

if (PFS, x, ·, ·) 6∈ T then

Figure 5. Weak unpredictability security experiment Expw-uprd
A (q).

Oracle Os-uprd Adversary A

(PFSi, xi, hi)

(zi, h
′
i)

if PFSi ∈ PL and xi ∈ X ′

(zi, h
′
i)← PFSi(xi, hi)

T ← T ∪
{
(PFSi, xi, zi, h′i)

}

(PFS, x, h)
if PFS ∈ PC and x ∈ X ′

(z, h′)← PFS(x, h) h′

z′

Learning phase
A can do 0 ≤ i ≤ q queries

Challenge phase

z

and hi ∈ H ∪ {ε} then

and (PFS, x, ·, ·) /∈ T then

Figure 6. Strong unpredictability security experiment Exps-uprd
A (q).

with very low reliability and thus, its outputs are highly
unpredictable.

While stronger notions of unpredictability exist (see be-
low), the consideration of weak unpredictability is nonethe-
less important for at least the following reasons: (i) weak un-
predictability is an established property in cryptography and
has been used for stronger constructions, e.g., see [38], and
(ii) PF constructions may be weakly unpredictable only, e.g.,
arbiter PUFs, and hence should be covered by the model.
Some use cases require a stronger notion of unpredictability,
where the adversary is allowed to adaptively query the PF
system in the challenge phase. We therefore define strong
unpredictability based on the security experiment Exps-uprd

A

depicted in Figure 6.

Definition 14 (Strong Unpredictability): Let PL be the
set of PF systems that are allowed to be queried by A in the
learning phase and let PC be the set of PF systems that are
allowed to be queried by A in the challenge phase. Moreover,
let T = ∅ and q ∈ N with q ≥ 0. With A we denote the
adversary that takes part in the security experiment as shown
in Figure 6. A PF system is strong (λ, q)-unpredictable if

Pr
[
z = z′ : (z, z′)← Exps-uprd

A (q)
]
≤ λ · ρp(x) (15)



C. Example

In general, there are no straightforward methods to strictly
bound the unpredictability of a PF system. However, un-
predictability can be assessed w.r.t. the best known attacks
against the security experiments defined in Definition 13
and 14. This is very similar to measuring the security of
a classical computational cryptographic primitive, where
security is measured based on the effort needed for its best
known cryptanalysis. However, in contrast to most classical
primitives, physical functions do not have a well-defined
algorithmic description against which cryptanalysis can be
launched. In order to win the unpredictability experiment,
the adversary needs to apply different methods, e.g., using
additional information about the implementation of the phys-
ical function, or alternatively taking advantage of previously
unknown statistical deviations or dependencies in the PF
responses. The former method is used for modelling attacks
against delay-based PUFs [20], [24], [22], where the adver-
sary exploits the linearity of the delay circuits to build an
accurate mathematical model of the PUF. The vulnerability
of abusing any statistical deviation is assessed by running
statistical tests on the outputs of the PF system and can be
prevented by applying an appropriate privacy amplification
algorithm on the PF system output (see Section V-C) [34].

For the SRAM PUF of our example, the first type of
attack is considered to be infeasible. The reason is that
learning the physical implementation of the SRAM cells
in such detail that allows predicting their power-up state is
infeasible in practice. Regarding the second class of attacks,
an interesting result has been obtained for SRAM PUFs. A
particular statistical test, called the context-tree weighting
method (CTW) [39], has been performed on experimental
SRAM PUF data to estimate its min-entropy content. Min-
entropy is a notion from information theory measuring the
uncertainty any adversary has about a particular value5. This
means that min-entropy provides a strict lower bound for
the unpredictability against any adversary. It must be noted
that, in general, estimating the min-entropy of a physical
function response is very difficult and relies on statistical
tests that offer only limited assurance. For SRAM PUFs,
min-entropy was nonetheless estimable due to their simple
structure. Moreover, it was shown that their relative min-
entropy content is relatively high (up to 95%). This can be
explained by two reasons:

1) The bias of the bits of the response of a typical SRAM
PUF is very low, i.e., on average the number of ones
and zeros in an SRAM PUF response is almost equal.

2) Since every single SRAM PUF response bit is gener-
ated by a spatially separate piece of physical material
(i.e., an individual silicon SRAM cell), it is very
reasonable to assume that the produced bits are to a

5Formally, the min-entropy of a distribution D over a set X is defined
as H∞(D) = − log2 max{Pr[x← D : x ∈ X ]}.

large extent statistically independent.
It is clear that both effects greatly increase the unpredictabil-
ity of SRAM PUF responses.

Following this, we assume the SRAM PUF discussed in
the previous example sections to have a min-entropy of 80%,
which is a very safe estimation given the experimental ob-
servations discussed in the previous paragraph. This means
that every 255-bit response of the SRAM PUF contains on
average 204 bits of min-entropy, i.e., any adversary can
guess the correct SRAM PUF response with a probability
of at most 2−204, which is negligible. However, we must
assess the unpredictability of the PF system output. For that
we need to take the extractor algorithm and the helper data
into account. The fuzzy extractor construction, as described
in Section IV-C and shown in Figure 2, outputs besides the
SRAM PUF response z = y also some helper data h, which
is the offset between y and a random codeword c from the
BCH[255, 13, 59] error correcting code. Since there are only
213 possible codewords c and since the helper data h is
stored or transferred publicly, the adversary knows that the
255-bit output of the PF system has the form z = c ⊕ h,
which can only take one of 213 possible values. Hence,
the effective uncertainty of the adversary about z is at
most 13 bits, and due to the 80% relative min-entropy, we
estimate it to be 10.4 bits per 255-bit response. This is
a significant reduction, which illustrates the cost we have
to pay for achieving high robustness. Indeed, the extent of
this min-entropy loss is directly related to the required error
correction capability of the underlying error correction code.
On the other hand, the remaining min-entropy provides a
strong lower bound for the predictability. More in detail,
no matter how strong the adversary is, its best guess of z
will be correct only with a probability of at most 2−10.4.
Hence, the example PF system based on an SRAM PUF
and a fuzzy extractor is (2−10.4, 28 − 1)-unpredictable for
PL = PC = {PFS}, both in the weak and the strong sense.
This means that, even if all but one of the PF system outputs
is learned, an adversary cannot predict the last output with a
probability greater than 2−10.4. Since the assumptions made
above can be generalized to many SRAM PUFs, equivalent
unpredictability bounds hold for PL = PC = P .

If the PF system is used to generate a secret key, it
must be evaluated on different challenges multiple times to
collect enough min-entropy. For instance, to generate a 128-
bit key using the PF system in our example, it is required
to obtain at least 13 challenge-response-pairs leading to
13 · 255 = 3315 response bits containing 13 · 10.4 = 135.2
bits of min-entropy. In order to obtain the 128-bit key from
the PF responses, these 3315 bits have to be compressed by
an appropriate strong extractor. This can be done using a
universal hash function [40]. Typically, the strong extractor
is integrated into the PF system as part of the Extract
algorithm to ensure that the PF system generates full entropy
outputs. This process is called privacy amplification and is



typically part of a fuzzy extractor construction [34].
In general, it is more difficult to obtain strong quantitative

unpredictability bounds for other PUF types since there are
no known methods to estimate the min-entropy content of
their responses. Moreover, statistical dependencies between
responses on different challenges and of different PUF
instantiations need to be taken into account but can be
difficult to detect. Note that min-entropy provides a very
strict information-theoretical lower-bound on unpredictabil-
ity, even against computationally unlimited adversaries.
However, typically the computational power of the adversary
is limited in practice. This means that even PUFs with
a low min-entropy content can still produce unpredictable
responses if their simulation is computationally complex.
Alternatively, the unpredictability of a particular type of PUF
can be assessed w.r.t. the effort of the best known modeling
attack, as is done for symmetric cryptographic primitives
(see Section V-C).

VII. CONCLUSION

Physically Unclonable Functions (PUFs) have been pro-
posed in literature to exploit physical characteristics for
security purposes. Various practical instantiations of PUFs
exist, ranging from real-life products to theoretical PUF-
based primitives and protocols (e.g., for identification and
authentication). In view of the very different physical fea-
tures they are based on, PUFs have mainly been developed in
independent models and under different assumptions that are
specialized for the corresponding applications. This absence
of a unifying view typically makes the integration of PUFs
in secure information systems a difficult task, hence limiting
their further development and deployment. In this paper, we
consequently formalized the security features of physical
functions, in accordance to the existing literature on PUFs.
More precisely, we proposed a new general security model
for physical functions, that modularly captures the most
important properties required for the integration of PUFs
into cryptographic primitives and security applications. Our
current model focuses on the minimum requirements on
PUFs and can be easily extended by defining additional
security-relevant properties required by future use cases.

In fact, the extension of the model to other security
properties is one of the important remaining challenges,
e.g., for covering tamper-evidence, meaning the property that
unauthorized manipulations of PUFs are detectable. Another
challenge is to develop new cryptographic mechanisms
based on PUFs where the security can be reduced to the
(alleged) properties of the deployed PUFs. Moreover, our
present examples are mainly based on SRAM PUFs. Hence,
a scope for further research would be to analyze other PUF
types w.r.t. the properties formalized in our model.
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