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Preface

The focus of this workshop is on all aspects related to cryptanalysis research, mixing symmetric
and asymmetric cryptography, as well as implementation issues. The workshop is a forum for
presenting new software and hardware tools, including their underlying mathematical ideas and
practical applications. Topics of interest include (but are not limited to):

• The automatic search of statistical trails in block ciphers.

• Lattice reduction and its application to the cryptanalysis of asymmetric encryption schemes.

• Fast HW and SW implementations for cryptanalysis (e.g. in FPGAs, graphic cards).

• Algebraic cryptanalysis (e.g. with SAT solvers, Gröbner bases).

• Sieve algorithms for integer factorization.

• Time/memory/data/key tradeoffs and birthday paradox-based attacks.

• Fourier and Hadamard-Walsh transforms and their applications in cryptanalysis.

• Tools for the fast and efficient collision search in hash functions.

• Physical (e.g. side-channel, fault) attacks, in particular their computational aspects.

• Cryptanalysis with alternative models of computation (e.g. quantum, DNA).

Invited Talks

A primer on lattice reduction

Marc Joye, Technicolor, France
Lattice basis reduction has found numerous applications in various research areas. This talk aims
at giving a first introduction to the LLL algorithm. It explains how to use it to solve some simple
algorithmic problems. It also describes how to break several early cryptosystems. The talk is
mainly intended to practitioners wanting to use LLL as a toolbox. No mathematical background
is required.

Factorization of a 768-bit RSA modulus

Paul Zimmermann, INRIA/LORIA, Nancy, France
On December 12, 2009, together with Kleinjung, Aoki, Franke, Lenstra, Thomé, Bos, Gaudry,
Kruppa, Montgomery, Osvik, te Riele and Timofeev, we have completed the factorization of RSA-
768 by the number field sieve. This factorization took the equivalent of about 1700 years on a
2.2Ghz AMD64 core. The talk will recall the main steps of the number field sieve, and will give
the corresponding figures for RSA-768.
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ASCAtoCNF - Simulating Algebraic Side-Channel
Attacks

Mathieu Renauld?

UCL Crypto Group, Université catholique de Louvain, B-1348 Louvain-la-Neuve.

e-mails: mathieu.renauld@uclouvain.be

Abstract

Algebraic Side-Channel Attacks (ASCA) were recently presented ([1, 2]) as a new type of
attack against block ciphers that combines side-channel information (information deduced
from a physical leakage, like the power consumption of the device) and classical crypt-
analysis (in this case algebraic cryptanalysis). These attacks show interesting properties.
Indeed, they can exploit all available side-channel information (a standard DPA exploits
only the first/last round), and thus require a smaller data complexity than other side-
channel attacks. It turns out that ASCA can succeed with a data complexity of 1 (only one
encryption measured), and even in an unknown plaintext/ciphertext context or against a
masked implementation.

An ASCA can be divided in two phases. During the first online phase, the adversary
performs measurements on the device during several encryptions. Then, during the second
offline phase, the adversary translates the block cipher and the recovered side-channel
information into a system of boolean equations, and tries to solve it. One of the possible
techniques to solve this system is to translate it into a satisfiability problem, and to use a
SAT solver.

ASCAtoCNF is a tool that provides the user with a quick way to simulate an ASCA
with a data complexity of 1 to 9. The user specifies the target block cipher (PRESENT or
the AES), the plaintext and secret key used. To simulate the side-channel recovery phase,
the user chooses which operations of the block cipher are leaking information (for example:
all the substitution operations from round 5 to 9). The side-channel recovery phase is
assumed to be perfect (all recovered side-channel information is correct), but the user can
make the attack harder by reducing the quantity of available side-channel information. The
leakage model is the Hamming weight model on 8 bits: the adversary is assumed to recover
the Hamming weight values of the data processed by the device during the specified leaking
operations. The generated SAT problem can then be solved by a SAT solver like MiniSAT
([3]). With this tool, one can easily try various configurations of known leakages and study
the impact of these configurations on the time complexity of the ASCA.

References

1. M. Renauld, F.-X. Standaert, Algebraic Side-Channel Attacks, in the proceedings of INSCRYPT
2009, to appear.

2. M. Renauld, F.-X. Standaert, N. Veyrat-Charvillon, Algebraic Side-Channel Attacks on the
AES: Why Time also Matters in DPA, in the proceedings of CHES 2009, LNCS, vol. 5747, pp.
97-111, Lausanne, Switzerland, September, 2009.

3. MiniSAT, available online at http://minisat.se/.

? Work supported in part by the Walloon Region research project SCEPTIC.
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Automated Algebraic Cryptanalysis

Paul Stankovski

Dept. of Electrical and Information Technology, Lund University,
P.O. Box 118, 221 00 Lund, Sweden

Abstract. We describe a simple tool for automatic algebraic cryptanalysis of a large
array of stream- and block ciphers. Three tests have been implemented and the best
results have led to continued work on a computational cluster. Our best results show
nonrandomness in Trivium up to 1070 rounds (out of 1152), and in the full Grain-128
with 256 rounds.

Keywords: algebraic cryptanalysis, maximum degree monomial test, automated testing

The core of this work is the Maximum Degree Monomial (MDM) test [1, 2], which we use
for algebraic cryptanalysis of a large array of stream and block ciphers. To facilitate time-
e�cient and automatic testing, we created a tool for running algebraic cryptanalysis
tests. We assembled several specialized implementations that output initialization data,
which is necessary for the algebraic tests. A generic interface then provides uniform
access to all primitives. Algebraic tests can be implemented generically and run for
each of the supported algorithms. This has been done for Trivium, Grain-128, Grain v1,
Rabbit, Edon80, AES-128/256, DES, TEA, XTEA, SEED, PRESENT, SMS4, Camellia,
RC5, RC6, HIGHT, CLEFIA, HC-128/256, MICKEY v2, Salsa20/12 and Sosemanuk.

We have implemented three particularly interesting tests. A greedy incarnation of
the MDM test reveals inadequacies in bit mixing, and does so beautifully. This test can
also point out unexpected key weight anomalies. A bit-�ip test was devised to catch
simple symmetry errors. Also, exhaustive search for small but optimal bit sets for the
MDM test was also implemented.

The greedy approach to �nding promising bit sets for the MDM test works ex-
ceptionally well for Trivium and Grain-128 (compare to [3, 4]). Using a computational
cluster, we then pushed our computational limits to show weaknesses in Trivium re-
duced to 1070 (out of 1152) initialization rounds. The greedy strategy also works well
for Grain-128, revealing nonrandomness through all 256 initialization rounds.

Our vision is that every algorithm designer should use our or other similar testing
tools during algorithm development to catch algebraic weaknesses earlier than what has
been possible before.

References

1. M.-J. O. Saarinen. Chosen-IV statistical attacks on eSTREAM stream ciphers. eSTREAM,
ECRYPT Stream Cipher Project, Report 2006/013, 2006. http://www.ecrypt.eu.org/stream.

2. H. Englund, T. Johansson, and M. S. Turan. A framework for chosen IV statistical analysis of
stream ciphers. In K. Srinathan, C. Pandu Rangan, and M. Yung, editors, Progress in Cryptology

- INDOCRYPT 2007, volume 4859/2007 of Lecture Notes in Computer Science, pages 268�281.
Springer-Verlag, 2007.

3. J.-P. Aumasson, I. Dinur, L. Henzen, W. Meier, and A. Shamir. E�cient FPGA Imple-
mentations of High-Dimensional Cube Testers on the Stream Cipher Grain-128. Available at
http://eprint.iacr.org/2009/218/, Accessed June 17, 2009, 2009.

4. J.-P. Aumasson, I. Dinur, W. Meier, and A. Shamir. Cube Testers and Key Recovery Attacks
on Reduced-Round MD6 and Trivium. In O. Dunkelman, editor, Fast Software Encryption 2009,
volume 5665 of Lecture Notes in Computer Science, pages 1�22. Springer-Verlag, 2009.
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Tools for Algebraic Cryptanalysis

Martin Albrecht?

Information Security Group, Royal Holloway, University of London
Egham, Surrey TW20 0EX, United Kingdom M.R.Albrecht@rhul.ac.uk

Algebraic cryptanalysis of cryptographic primitives such as block ciphers,
stream ciphers and hash functions usually proceeds in two steps. (A) The al-
gorithm is expressed as a system of multi-variate equations F over some field
(usually F2). (B) The system F is solved using some technique such as Gröbner
basis algorithms [2] , SAT solvers [3] or mixed integer programming solvers [1].

We provide scripts and tools for the mathematics software Sage [4] to con-
struct polynomial systems of equations for various block ciphers and conversion
routines from algebraic normal form (ANF) to conjunctive normal form (CNF)
and mixed integer programmes. In particular we provide:

ctc.py polynomial systems for the Courtois Toy Cipher (CTC).
des.py polynomial systems for the Data Encryption Standard (DES).
katan.py polynomial systems for the KATAN/KTANTAN family of ciphers.
present.py polynomial systems for the Present block cipher.
sea.py polynomial systems for the SEA block cipher.
anf2cnf.py a converter from ANF to CNF following [3].
anf2mip.py a converter from ANF to linear constraints following [1].

All scripts are available at http://bitbucket.org/malb/algebraic_attacks.

References

1. Julia Borghoff, Lars R. Knudsen, and Mathias Stolpe. Bivium as a Mixed-Integer
Linear programming problem. In Matthew G. Parker, editor, Cryptography and Cod-
ing – 12th IMA International Conference, volume 5921 of Lecture Notes in Computer
Science, pages 133–152, Berlin, Heidelberg, New York, 2009. Springer Verlag.

2. Johannes Buchmann, Andrei Pychkine, and Ralf-Philipp Weinmann. Block Ciphers
Sensitive to Gröbner Basis Attacks. In Topics in Cryptology – CT RSA’06, volume
3860 of Lecture Notes in Computer Science, pages 313–331, Berlin, Heidelberg, New
York, 2006. Springer Verlag. pre-print available at: http://eprint.iacr.org/2005/
200.

3. Nicolas T. Courtois and Gregory V. Bard. Algebraic Cryptanalysis of the Data
Encryption Standard. In Steven D. Galbraith, editor, Cryptography and Coding
– 11th IMA International Conference, volume 4887 of Lecture Notes in Computer
Science, pages 152–169, Berlin, Heidelberg, New York, 2007. Springer Verlag. pre-
print available at http://eprint.iacr.org/2006/402.

4. William Stein et al. SAGE Mathematics Software. The Sage Development Team,
2008. Available at http://www.sagemath.org.

? This author was supported by the Royal Holloway Valerie Myerscough Scholarship.
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Hybrid Approach : a Tool for Multivariate Cryptography

Luk Bettale?

joint work with Jean-Charles Faugère and Ludovic Perret

INRIA, Centre Paris-Rocquencourt, SALSA Project
UPMC, Univ. Paris 06, LIP6

CNRS, UMR 7606, LIP6
Bôıte courrier 169
4, place Jussieu

75252 Paris Cedex 05, France
luk.bettale@lip6.fr

Abstract. In this paper, we present an algorithmic tool to cryptanalysis multivariate cryp-
tosystems. The presented algorithm is a hybrid approach that mixes exhaustive search
with classical Gröbner bases computation to solve multivariate polynomial systems over
a finite field. Depending on the size of the field, our method is an improvement on ex-
isting techniques. For usual parameters of multivariate schemes, our method is effective.
We give theoretical evidences on the efficiency of our approach as well as practical crypt-
analysis of several multivariate signature schemes (TRMS, UOV) that were considered to
be secure. For instance, on TRMS, our approach allow to forge a valid signature in 267

operations instead of 2160 with exhaustive search or 283 with only Gröbner bases. Our al-
gorithm is general as its efficiency is demonstrated on random systems of equations. As
the structure of the cryptosystem is not involved, our algorithm provides a generic tool to
calibrate the parameters of any multivariate scheme. These results were already published
in [5]. We also present an extended version of our hybrid approach, suitable for polynomi-
als of higher degree. To easily access our tools, we provide a MAGMA package available at
http://www-salsa.lip6.fr/˜bettale/hybrid.html that provide all the necessary material
to use our hybrid approach and to compute the complexities.

1 Introduction

Multivariate cryptography is a family of public key cryptosystems. The idea is to present the public
key as a set of (generally quadratic) polynomials in a large number of variables. To introduce a
trapdoor, a special algebraic system F = (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)) is built such that it
is easy to invert. The classical trapdoors are STS, UOV or HFE. To hide the structure of F , two
invertible affine transformations S, T ∈ Affn(K) are chosen and the public key is the system

G = g1(x1, . . . , xn), . . . , gm(x1, . . . , xn) = T ◦ F ◦ S.

To encrypt, the system G is evaluated in the variables m1, . . . ,mn corresponding to a message.
The knowledge of the private key F, S, T allows the legitimate recipient to efficiently recover the
message whereas an attacker has to solve the algebraic system G which should have no visible
structure.

The problem of solving a multivariate system of equations, a.k.a. PoSSo, is known to be NP-
hard, and also hard in average (exponential time). Note that PoSSo remains NP-hard even if
the input polynomials are quadratics. In this case, PoSSo is also called MQ. The security of
a multivariate scheme relies directly on the hardness of solving a multivariate algebraic system
of equations. In this context, it is important to have efficient tools to solve polynomial systems.
When the system is considered as hard to solve as a random one (which is ideally required for a
multivariate system), only general tools can be used to solve the system. We present in this paper
an improved tool, namely the hybrid approach, that does not take advantage on the structure
? author partially supported by DGA/MRIS (french secretary of defense)
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of the equations, but rather of the context to enhance the polynomial system solving. We use
the fact that the field of coefficient is finite to perform a mix of exhaustive search and classical
Gröbner bases techniques. For the parameters used in cryptography, our analysis shows that the
hybrid approach brings a significant improvement over the classical methods. In [7], the authors
did not succeed to attack UOV with Gröbner bases. Indeed, the parameters were unreachable
using a standard zero-dimensional approach. With the hybrid approach we were able to break
these parameters. Using this algorithm, we can put the security of general multivariate schemes to
the proof. As our theoretic analysis allows to refine the security parameters, this make it a useful
tool to design or cryptanalyze multivariate schemes.

Not only multivariate cryptography is concerned by the hybrid approach. In [15], the authors
give a new method to solve the discrete logarithm problem on the group of points of an elliptic
curve defined over an extension field. To do so, they have to solve a system of equations with of
high degree in a quite big field. We present in this paper an extended hybrid approach which could
be more suitable for this kind of problems.

Our contributions are available at http://www-salsa.lip6.fr/˜bettale/hybrid.html

Organization of the paper

The paper is organized as follows. After this introduction, we present the general problem of
solving a polynomial system as well as the classical method to address it, namely the zero-dim
solving strategy using Gröbner bases. We also give the definitions of semi-regular sequences and
degree of regularity, necessary to compute the complexity of our approach. In Section 3, we present
the hybrid approach algorithm as well as its complexity. In Section 4, we give a generalization of
the hybrid approach that uses splitted field equations. The scope of the extended hybrid approach
will not be the same as the classical hybrid approach as it will be more efficient on polynomial
systems of higher degree.

2 Polynomial System Solving

The general problem is to find (if any) (z1, . . . , zn) ∈ Kn such that:




f1(z1, . . . , zn) = 0
...

fm(z1, . . . , zn) = 0

The best known method is to compute the Gröbner basis of the ideal generated by this system. We
refer the reader to [1, 10] for a more thorough introduction to ideals and Gröbner bases. Informally,
a Gröbner basis is a set of generators of an ideal which has “good” properties. In particular, if the
system has a finite number of solution (zero-dimensional ideal), a Gröbner basis in Lex order has
the following shape:

{g1(x1), . . . , g2(x1, x2), . . . , gk1(x1, x2), gk1+1(x1, x2, x3), . . . , gkn
(x1, . . . , xn)}.

With this special structure, the system may be easily solved by successively eliminating variables,
namely computing solutions of univariate polynomials and back-substituting the results.

The historical method for computing Gröbner bases was introduced by Buchberger in [8, 9].
Many improvements has been done leading to more efficient algorithms such as F4 and F5 due to
Faugère [11, 12]. The algorithm F4 for example is the default algorithm for computing Gröbner
bases in the computer algebra softwares MAGMA and MAPLE. The F5 algorithm1 is even more
efficient. We have mainly used this algorithm in our experiments. For our purpose, it is not
necessary to describe the algorithm, but we give its complexity.
1 available through FGb
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Proposition 1. The complexity of computing a Gröbner basis of a zero-dimensional system of m
equations in n variables with F5 is:

O
((
m ·

(
n+dreg−1

dreg

))ω)

where dreg is the degree of regularity of the system and 2 ≤ ω ≤ 3 is the linear algebra constant.

From a practical point of view, it is much faster to compute a Gröbner basis for a degree
ordering such as the Degree Reverse Lexicographic (DRL) order than for a Lexicographic order
(Lex). For zero-dimensional systems, it is usually less costly to first compute a DRL-Gröbner basis,
and then to compute the Lex-Gröbner basis using a change ordering algorithm such as FGLM [13].
This strategy called zero-dim solving is performed blindly in modern computer algebra softwares.
This is convenient for the user, but can be an issue for advanced users.

Proposition 2. Given a Gröbner basis G1 ⊂ K[x1, . . . , xn] w.r.t. a monomial ordering ≺1 of a
zero-dimensional system the complexity of computing a Gröbner basis G2 ⊂ K[x1, . . . , xn] w.r.t. a
monomial ordering ≺2 with FGLM is:

O (n ·Dω)
where D is the degree of the ideal generated by G1 (i.e. the number of solutions counted with
multiplicity in the algebraic closure of K).

We see easily that the cost of change ordering is negligible when the system has very few solutions.
For a finite field K with q elements, one can always add the field equations xq

1−x1, . . . , x
q
n−xn

to explicitly look for solutions over the ground field K and not in some extensions. By doing this,
we will always obtain an over-defined system. This technique is widely used, and improves the
computation of solutions if q � n. Otherwise, the addition of the field equations does not lead
to a faster computation of a Gröbner basis. Even worse, this can slow down the computation due
to the high degrees of the equations. In multivariate cryptography, some schemes use for example
the field F28 whose elements can easily be represented with a byte. The hybrid method that we
will present is especially suitable in such situation.

2.1 Semi-regular sequences

In order to study random systems, we need to formalize the definition of “random systems”. To
do so, the notion of regular sequences and semi-regular sequences (for over-defined systems) has
been introduced in [2]. We give the definition here.

Definition 1. Let {p1, . . . , pm} ⊂ K[x1, . . . , xn] be homogeneous polynomials of degrees d1, . . . , dm

respectively. This sequence is semi-regular if:

– 〈p1, . . . , pm〉 6= K[x1, . . . , xn]
– for all 1 ≤ i ≤ m and g ∈ K[x1, . . . , xn]:

deg(g · pi) < dreg and g · pi ∈ 〈p1, . . . , pi−1〉 ⇒ g ∈ 〈p1, . . . , pi−1〉.

This notion can be extended to affine polynomials by considering their homogeneous compo-
nents of highest degree. It has been proven in [2, 3] that for semi-regular sequences, the degree of
regularity can be computed explicitly.

Property 1. The degree of regularity of a semi-regular sequence p1, . . . , pm of respective degrees
d1, . . . , dm is given by the index of the first non-positive coefficient of:

∑

k≥0
ck · zk =

∏m
i=1(1− zdi)
(1− z)n

.

Let D = {d1, . . . , dm}, we will denote the degree of regularity by dreg (n,m,D).
17



This property allows us to have a very precise knowledge of the complexity of the computation
of a Gröbner basis for semi-regular systems. For semi-regular systems it has been proven that the
degree decreases as m goes larger. Thus, the more a system is over-defined, the faster its Gröbner
basis can be computed.

For more convenience, we denote from now on the complexity of F5 for semi-regular systems
of equations of degree d1, . . . , dm as the function

CF5 (n,m,D) =
(
m ·

(n+dreg(n,D)−1
dreg(n,D)

))ω

where D is the set {d1, . . . , dm}.

3 Hybrid Approach

In many cases (especially in multivariate cryptography), the coefficient field is much bigger than
the number of variables. In this case, as we have seen in Section 2, adding the field equations can
dramatically slow down the computation of a Gröbner basis.

We present in this section our hybrid approach mixing exhaustive search and Gröbner bases
techniques. First we will present the algorithm and discuss its complexity. Its efficiency depends
on the choice of a proper trade-off. We take advantage of the behavior of semi-regular systems to
find the best trade-off. After that, we give some examples coming from proposed cryptosystems
as proof of concept.

3.1 Algorithm

In a finite field, one can always find all the solutions of an algebraic system by exhaustive search.
The complete search should take qn evaluations of the system if n is the number of variables and q
the size of the field. The idea of the hybrid approach is to mix exhaustive search with Gröbner basis
computations. Instead of computing one single Gröbner basis of the whole system, we compute
the Gröbner bases of qk subsystems obtained by fixing k variables. The intuition is that the gain
obtained by solving systems with less variables may overcome the loss due to the exhaustive search
on the fixed variables. Algorithm 1 describes the hybrid approach.

Algorithm 1 HybridSolving
Input: K is finite, {f1, . . . , fm} ⊂ K[x1, . . . , xn] is zero-dimensional, k ∈ N.
Output: S = {(z1, . . . , zn) ∈ Kn : fi(z1, . . . , zn) = 0, 1 ≤ i ≤ m}.
S := ∅
for all (v1, . . . , vk) ∈ Kk do

Find the set of solutions S ′ ⊂ K(n−k) of
f1(x1, . . . , xn−k, v1, . . . , vk) = 0, . . . , fm(x1, . . . , xn−k, v1, . . . , vk) = 0
using the zero-dim solving strategy.
S := S ∪ {(z′1, . . . , z′n−k, v1, . . . , vk) : (z′1, . . . , z′n−k) ∈ S ′}.

end for
return S.

As for the F5 algorithm, the complexity of Algorithm 1 can be determined if the system is
semi-regular. However, as the algorithm deals with sub-systems of m equations in n− k variables,
we will make the following assumption.

Hypothesis 1 Let K be a finite field and {f1, . . . , fm} ⊂ K[x1, . . . , xn] a generic semi-regular
system of equations of degree d. We will suppose that the systems

{
{f1(x1, . . . , xn−k, v1, . . . , vk), . . . , fm(x1, . . . , xn−k, v1, . . . , vk)} : (v1, . . . , vk) ∈ Kk

}

are semi-regular, for all 0 ≤ k ≤ n.
18



This hypothesis is consistent with the intuition that when some variables of a random system are
fixed, the system is still random. This hypothesis has been verified with a rather large amount of
random systems as well as systems coming from the applications of Section 3.2. In practice, the
constructed systems may even be easier to solve than a semi-regular system. We have observed
that its degree of regularity is always lower than a random system. Thus, our hypothesis can be
used as it provides an upper bound on the complexity of our approach.

Proposition 3. Let K be a finite field and {f1, . . . , fm} ⊂ K[x1, . . . , xn] be a semi-regular system
of equations of degree d1, . . . , dm and 0 6 k 6 n. The complexity of solving the system with a
hybrid approach, is bounded from above by:

O
(
(#K)k · CF5 (n− k,m,D)

)

where D = {d1, . . . , dm}.

There exists a value k such that the complexity from Proposition 3 is minimal. If this value
is non-trivial (k 6= 0 and k 6= n) then our method is an improvement on known techniques. In
the next subsection, we give theoretical evidences that our approach is relevant on some ranges of
parameters. In [5], we give for quadratic systems an asymptotic analysis of this complexity and
an approximation of the best trade-off with respect to the parameters. We also show that our
approach brings an improvement for quadratic systems if log2(q) is smaller than 0.6226 · ω · n
where q is the size of the field and ω the linear algebra constant. For instance, to solve a system of
20 quadratic equations in 20 variables, the hybrid approach will bring an improvement if the field
has a size below 224. Theses kind of parameters are generally found in multivariate cryptography.
We show in the next section how the hybrid approach permits to break the parameters of some
cryptosystems.

3.2 Applications

As proof of concept, we applied our hybrid approach to several multivariate cryptosystems. This
permits to show a weakness in the choice of the parameters the TRMS [4] and UOV [14]. Our results
have been given in [5]. In this paper, we don’t describe the cryptosystems and only give a summary.
As our approach does not depend on the structure of the systems, only the set of parameters
matters to compute upper bounds. We give in Figure 1 the complexity of our approach depending
on the parameter k. We see the best trade-off is to choose k = 1. The theoretical complexity
drops from 280 to 267. In practice, for TRMS we have even better results (reported in Table 1). In
practice, choosing the best theoretical trade-off k = 1 would have taken too much memory, only
k = 2 has been achieved.

Table 1. Experimental results on TRMS. The column m is the number of variables (and equations),
m − k is the number of variables left after fixing k variables. The columns TF5 , MemF5 , and NopF5 are
respectively the time, memory and number of operations needed to compute one Gröbner basis with the
F5 algorithm. The value TF5 has to be multiplied by qk to obtain Nop, the total number of operations of
the hybrid approach.

m m− k qk TF5 MemF5 NopF5 Nop

20 18 216 51h 41.940 GB 241 257

20 17 224 2h45min 4.402 GB 237 261

20 16 232 626 s. 912 MB 234 266

20 15 240 46 s. 368 MB 230 270

Finally, our work permits to analyze the security of several multivariate schemes only by
looking at their parameters. For example, in [6], the authors proposed implementations of some
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Fig. 1. TRMS: Complexity of hybrid approach depending on k

multivariate schemes. We were able to compute the minimum complexity of solving the public
systems and we show that for a suitable value of k, the complexity of breaking all the proposed
parameters are below 280. Our approach can be viewed as a tool to calibrate the parameters of
multivariate cryptosystems.

4 Extended Hybrid Approach

In this section, we present a generalization of the hybrid approach.

4.1 Algorithm

We recall that the basic approach to find the solutions lying in the coefficient field Fq of a system
of equations f1, . . . , fm is to solve the system with the field equations xq

1−x1 = 0, . . . , xq
n−xn = 0.

When q is too big, adding the field equations can be an issue.
The basis of the hybrid approach presented in Section 3 is to solve a set of easier systems of

equations by fixing k variables x1, . . . , xk to some values v1, . . . , vk. From another point of view, this
means solving the original system on which we add k linear equations x1−v1 = 0, . . . , xk−vk = 0.

An idea in between could be to add “split” field equations. For a field K with q elements,
it holds that

∏

e∈K
x − e = xq − x. For a given parameter d, one could add only parts of the field

equations
i6d∏

i=1
x−ei with e1, . . . , ed ∈ Kn. As in the hybrid approach, we could only add k equations

to avoid a too big exhaustive search. The extended hybrid approach thus has two parameters. The
number of split equations to be added 0 6 k 6 n and their maximum degree 1 6 d 6 q. We remark
that when k = 0, it becomes the classical zero-dim solving approach, when k = n and d = q, it
is the field equations approach and when d = 1, the approach is similar to the hybrid approach.
Algorithm 2 describes the extended hybrid approach.

The complexity of Algorithm 2 can be computed in a similar way as Proposition 3.
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Algorithm 2 ExtHybridSolving
Input: {f1, . . . , fm} ⊂ K[x1, . . . , xn] (zero-dim), k, d ∈ N.
Output: S = {(z1, . . . , zn) ∈ Kn : fi(z1, . . . , zn) = 0, 1 ≤ i ≤ m}.
S := ∅.
Let L = {h1, . . . , hl} a factorization of the field equation xq − x with deg(hi) 6 d
for all (hi1 , . . . , hik ) ∈ Lk do

Find the set of solutions S ′ ⊂ Kn of
f1 = 0, . . . , fm = 0, hi1 (x1) = 0, . . . , hik (xk) = 0
using the zero-dim solving strategy.
S := S ∪ S ′.

end for
return S.

Proposition 4. Let K be a finite field and {f1, . . . , fm} ⊂ K[x1, . . . , xn] be a semi-regular system
of equations of degree d1, . . . , dm. The complexity of solving the system with the extended hybrid
approach, is bounded from above by:

O




k∑

i=0

(
k

i

)
lk−i CF5


n,

{
d1, . . . , dm, d, . . . , d︸ ︷︷ ︸

k−i

, r, . . . , r︸ ︷︷ ︸
i

}






where q = d · l + r, 0 < r 6 d.

Proof. A field equation xq
i − xi is split into l equations of degree d and 1 equation of degree r.

For each subsystem, i (over k) split field equations of degree r are fixed, there are lk−i possible
systems. As there are

(
k
i

)
possible positions for the degree r split field equations, we obtain the

above result.

The above complexity can be bounded again by

O



⌈ q
d

⌉k

· CF5


n,

{
d1, . . . , dm, d, . . . , d︸ ︷︷ ︸

k

}





The two values match when d | q.
Here again, it is clear that the efficiency of this approach depends on the choice of parameters k

and d. In the next section we will analyze the behavior of this approach and find out how to choose
proper parameters that will bring the best trade-off between exhaustive search and Gröbner bases.

4.2 Analysis

To analyze the behavior of our approach, we have to be able to compute exactly the complexity of
solving a given system. For semi-regular systems, we can know in advance its degree of regularity,
and thus the complexity of the Gröbner basis computation. To perform our analysis, we use the
approximation of the degree of regularity of an over-defined system (n variables, n+ k equations)
given in [2]:

dreg =
n+k∑

i=1

di − 1
2 − αk

√√√√
n+k∑

i=1

d2
i − 1

6 +O (1)

when n → ∞. Here, αk is the largest root of the k-th Hermite’s polynomial. To simplify the
analysis, we will use the upper bound on the complexity of the extended hybrid approach.

CHyb =
⌈ q
d

⌉k

· CF5


n, {d1, . . . , dm, d, . . . , d︸ ︷︷ ︸

k

}


 .

21



Using the Stirling approximation n! =
√

2πn
(

n
e

)n, we can compute the logarithmic derivative
of CHyb and thus find the minimum of the function, in the same way as in [5] for the hybrid
approach.

The scope of the extended hybrid approach is not the same as the basic hybrid approach. While
the hybrid approach was suitable for quadratic systems, the extended hybrid approach will show
an improvement for system of equations of higher degree. For example, for a system of 5 equations
of degree 8 in 5 variables in F31, the best theoretical trade-off is to add one split equation of degree
5 (k = 1, d = 5). From our experiments, for quadratic systems, the basic hybrid approach will
always be better.

5 Conclusion

In this paper, we present a general tool to solve polynomial systems over finite fields, namely the
hybrid approach. We have computed explicitly the complexity of this approach. The relevancy
of our method is theoretically supported by the asymptotic analysis given in [5]. In practice, our
approach is also efficient, in particular, it permits to break the parameters of several multivari-
ate cryptosystems. We also present a generalization of this approach called the extended hybrid
approach. From our analysis, this extension does not overpass the hybrid approach for quadratic
systems. However, the extended hybrid approach is relevant on equations of higher degree. Finally,
this paper gives a toolbox to analyze the parameters of multivariate cryptosystems. The complex-
ity of our approaches can be used to better calibrate the parameters of multivariate cryptosystems.
An implementation of the hybrid approach as well as functions to easily compute the complexity
of our approach are available at http://www-salsa.lip6.fr/˜bettale/hybrid.html.
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Sieving for Shortest Vectors in Ideal Lattices
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Lattice based cryptography is gaining more and more importance in the cryptographic
community. It is a common approach to use a special class of lattices, so-called ideal lat-
tices, as the basis of these systems. This speeds up computations and saves storage space
for cryptographic keys. The most important underlying hard problem is the computa-
tional variant of the shortest vector problem. So far there is no algorithm known that
solves the shortest vector problem in ideal lattices faster than in regular lattices. There-
fore, cryptosystems using ideal lattices are considered to be as secure as their regular
counterparts.

In this workshop we will present Ideal Sieve, a variant of the Gauss Sieve algorithm
[MV10], that is a randomized sieving algorithm that solves the shortest vector problem
in lattices. Our variant makes use of the special structure of ideal lattices. We show
that it is indeed possible to find a shortest vector in ideal lattices faster than in regular
lattices without special structure. The speedup of our algorithm is linear in the lattice
dimension, i.e., the runtime grows linearly in the dimension as well as the maximum list
size decreases.

Figures 1 and 2 show experimental results of a software implementation of Ideal Sieve
compared to Gauss Sieve in lattice dimension m ≤ 80. Figure 2 shows that the number
of iterations performed by the algorithm indeed decreases with a factor linearly in the
lattice dimension, when exploiting the structure of ideal lattices. The number of list
vectors decreases with a factor ≈ 0.4 · m. This reduces the amount of storage needed,
which is one of the main bottlenecks of sieve algorithms for shortest vectors. Due to some
computational overhead, the actual runtime seems to profit best in higher dimensions.
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Abstract. In this paper, the time-memory trade-off proposed by Hell-
man and its generalization to the time-memory-data trade-off proposed
by Biryukov and Shamir are generalized to a noisy observation of the
ciphertext. This generalization exploits the inherent error correcting ca-
pability of the considered encryption scheme. Two basic approaches tak-
ing into account the effect of the sample corruption are considered and
the corresponding mixture of these two approaches is proposed and an-
alyzed. This unified approach provides a framework for comparison of
the effectiveness of the two basic approaches and allows to determine the
most efficient strategy when the sample is corrupted by additive noise.

Keywords: cryptography, cryptanalysis, time-memory trade-off,
time-memory-data trade-off, stream ciphers.

1 Introduction

In [9], the chosen plaintext attack is considered, that is the problem of recovering
a key of length K = log2N bits used to encrypt a particular plaintext into a
sequence of L bits, L ≥ K when observing this encrypted (noiseless) sequence.
It is shown that after proper preprocessing of complexity N , the processing time
complexity T and memory M can be traded according to M2T = N2, leading
to the optimum time-memory trade-off (TM-TO) M = T = N2/3. The method
of [9] is essentially an efficient implementation to invert a non linear function.
In [4], this trade-off was generalized to the case where D realizations of the
function are available (i.e D observations of the same plaintext encrypted by
D different keys for the chosen plaintext attack), leading to the time-memory-
data trade-off (TMD-TO) M2D2T = N2. No significantly better trade-offs can
be achieved for this problem [2]. Other related trade-offs such as the time data
trade-offs have also been investigated [7].
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The approaches of [9, 4] implicitly assume the available sample is error free.
As a result, if the sample data are corrupted by noise, the TM-TO does not re-
cover the correct argument of the non linear function it inverts. In this paper, we
generalize the TM and TMD trade-offs for a noisy observation of the ciphertext.
In this case, the inherent error correcting capability of the cryptosystem can be
exploited. The availability of a noisy sample appears in a number of realistic sce-
narios, although usually the assumption is that the error free data are available
for performing the cryptanalysis. A particular example for this situation is the
cryptanalysis of GSM mobile telephony (see [1] for example).

2 A Brief Review of the TM and TMD Trade-Offs

In this section, an overview of the basic TM and TMD trade-off concepts is
presented according to [9] and [4], respectively (related issues can be found in [6],
[13] and [2]).

2.1 TM Trade-Off

Let f(·) denote a one-way function, and k a secret key. Computing f(k) is simple,
but computing k from f(k) is equivalent to cryptanalysis. The TM-TO concept
is based on the following two phases: a precomputation phase which should be
performed only once, and a processing phase which should be performed for the
reconstruction of each particular secret key.

SP1 • → • → · · · → • EP1

SP2 • → • → · · · → • EP2

... · · · · · · · · ·
...

m · · · · · · · · · m
StartPoints · · · · · · · · · EndPoints

... · · · · · · · · ·
...

SPm • → • → · · · → • EPm

length t

Fig. 1. The underlying matrix for time-memory trade-off.
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As part of the precomputation, the cryptanalyst chooses m starting points,
SP1, SP2, ..., SPm, each an independent random variable drawn uniformly from
the key space {1, 2, ..., N}. For 1 ≤ i ≤ m, he lets

Xi0 = SPi (1)

and computes
Xij = f(Xi,j−1) , 1 ≤ j ≤ t , (2)

following the scheme depicted in Fig. 1. The parameters m and t are chosen by
the cryptanalyst to trade-off time against memory.

The last element or endpoint in the ith chain (or row) is denoted by EPi.
Clearly,

EPi = f t(SPi) , (3)

where f t(·) denotes the corresponding self-composition of f(·) t times.
The complexity to construct the table is mt. However, to reduce memory

requirements, the cryptanalyst discards all intermediate points as they are pro-
duced and sorts {SPi, EPi}mi=1 on the endpoints. The sorted table is stored as
the result of this precomputation.

Next we explain how this table can be used for the cryptanalysis of a known
encryption algorithm Ek(·). Suppose that the cryptanalyst has obtained the pair
(Y0, P0) where

Y0 = Ek(P0). (4)

and assume (4) was performed in the preprocessing stage of the table. Under this
assumption, we consider the problem of recovering the secret key k when the en-
cryption algorithm Ek(·) and its corresponding decryption algorithm Dk(·), the
ciphertext Y0, and the corresponding plaintext P0 are known to the cryptanalyst.

Suppose that the following is valid

Y1 = f(k). (5)

The cryptanalyst can check if Y1 is an endpoint in one “operation” because
the pairs {(SPi, EPi)} are sorted on the endpoints. Accordingly:

– If Y1 is not an endpoint, the key k is not in the second to last column in
Fig. 1 (if it was there, Y1, which is its image under f , would be an endpoint).

– If Y1 = EPi, then either k = Xi,t−1 (i.e. k is in the second to last column of
Fig. 1) or EPi has more than one inverse. We refer to this latter event as a
false alarm (FA). If Y1 = EPi, the cryptanalyst computes Xi,t−1 and checks
whether it is the key, for example by verifying whether it deciphers Y0 into P0.
Because all the intermediate columns in Fig. 1 have been discarded to save
memory, the cryptanalyst must start at SPi and recompute Xi,1, Xi,2, ...,
until he reaches Xi,t−1.

– If Y1 is not an endpoint or a FA occurred, the cryptanalyst computes

Y2 = f(Y1) (6)
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and checks whether it is an endpoint. If it is not, the key is not in the (t−2)-
th column of Fig. 1, while if Y2 = EPi the cryptanalyst checks whether
Xi,t−2 is the key.

– In a similar manner, the cryptanalyst computes

Y3 = f(Y2), · · · , Yt = f(Yt−1)

to check whether the key is in the (t−3)-th, · · ·, the 1-st column of the table
in Fig. 1.

In [9], it is shown that the number of FAs per table is about mt2/N . As a
result, mt2 ≈ αN for O(α) FAs per table. Since the probability of success for
this approach is about mt/N per table, it follows that N/(mt) ≈ t/α tables1

are required for a probability of success close to 1, with α ≤ t. If P denotes the
pre-processing complexity, T denotes the total processing time complexity and
M denotes the total memory, we have for t/α tables: T = (t/α)αt = t2 and
M = mt/α, so that the corresponding TM-TO for this attack satisfies P = N
and TM2 = N2. A typical point for this trade-off is T = N2/3 processing (attack)
time and M = N2/3 memory space2.

We finally notice that in this approach, it is implicitly assumed that in (4),
the length L of the plaintext P0 is the same as that of the key k, denoted K. The
approach remains valid for L ≥ K after replacing Yi = f(Yi−1) by Yi = f(Y ∗

i−1)
in the recursive process depicted in Fig. 1, where Y ∗

i−1 represents any truncation
of Yi−1 to a length-K vector.

2.2 TMD Trade-Off

Assume that for the same plaintext P0, we now have D encrypted values

Y0i = Eki(P0) (7)

for 1 ≤ i ≤ D. This is for example the case if the secret key k initializes the
internal state of a stream cipher, this state having the same dimension as k, and
we have D different ciphertexts obtained from the stream cipher (note that the
internal state content corresponding to the beginning of each of the D blocks can
be viewed as a new key drawn randomly from the previous one). In that case, the
attack is successful if any one of the D given outputs can be found in the tables
corresponding to Fig. 1. Accordingly the corresponding number of FAs per table
remains about mt2/N per processed data, so that for less than one FA per table
on average, the probability of success for one table becomes at least Dmt/N .
It follows that t/D tables are required, t ≤ D, and since the D data are now
processed at each step, we obtain T = t/D · t ·D = t2 andM = t/D ·m = mt/D.

1 Each table is constructed employing a function which is a slight modification of f()
as discussed in [9].

2 We observe that the value of α does not influence the TM-TO. Hence in the sequel
of this letter, we assume α = 1.
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This suggests the TMD-TO attack proposed in [4] for stream ciphers, which
satisfies P = N/D and TM2D2 = N2 for any D2 ≤ T ≤ N . A typical point for
this trade-off relation is P = N2/3 pre-processing time, T = N2/3 attack time,
M = N1/3 memory space, and D = N1/3 available data.

3 The Noisy Case

In Section 2, it is assumed that the observed ciphertext is error free. However
in several scenarios, this assumption may not hold and only a noisy version Ỹ0
of Y0 is available to the cryptanalyst. In this section, we generalize the TM and
TMD trade-offs to this noisy scenario for K ≤ L. In this case, the encryption
can be viewed as a non linear code C with inherent correcting capability e.3 As
a result, we assume

Ỹ0 = Y0 + e0 (8)

with wH(e0) ≤ e.

3.1 TM Trade-Off

Two basic approaches In the table introduced in Section 2, the N = 2K

possible encryptions of P0 can be viewed as the codewords of a non linear code
C of length L. Define Ỹ ∗

0 as the truncation of Ỹ0 to K positions randomly
selected.4

Two approaches can be selected to implement the TM-TO for a noisy sample:

1 The same table as in Section 2 is constructed for the noiseless case only, and
all possible error patterns are added to the truncation, the first K of L bits,
of the received sample for processing.

2 Tables that cover all possible noisy versions of the keys are constructed and
the truncation of the noisy received sample only is used for processing.

In approach-1, the vector Ỹ ∗
0 is expanded into the

∑e
l=0

(
K
l

)
≈ Ke vectors Ỹ ∗

l

obtained by adding to Ỹ ∗
0 all possible K-tuples el with wH(el) ≤ e, so that

Ỹ ∗
l = Ỹ ∗

0 + el. (9)

3 A random code of length n and rate R is likely to be able to correct all errors of
weight e ≤ b(h−1(1 − R) − 1)/2c for n large enough, where h−1() is the inverse of
the binary entropy function h(p) = −p log p− (1− p) log(1− p) [8].

4 Since for a non linear code over GF(2) with 2K codewords, an information set is
defined as a minimal subset of cardinality J ≥ K of the positions such that no
member of GF(2)J is repeated in these positions [8], the selected K positions not
necessarily form an information set. However this issue is implicitly considered by
FAs.
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The iterative process described in Section 2 is then applied to all
∑e

l=0

(
K
l

)

vectors Ỹ ∗
l in parallel. Assume that for some row-i in the table of Fig. 1, we

have

f j(Ỹ ∗
l ) = EPi. (10)

The corresponding SPi is encrypted t− j times and the candidate is selected if

dH(f t−j(SPi), Ỹ0) ≤ e. (11)

Since the code C is assumed to correct all errors of weight at most e, only one
f t−j−1(SPi) should satisfy (11).

In approach-2, Ke tables are constructed together by associating to each
table a particular error pattern el with wH(el) ≤ e. The table associated with
el is constructed based on the recursion

Yi = f(Y ∗
i−1 + el). (12)

Then only Ỹ ∗
0 needs to be processed.

It should be noted that in approach-1, only the key space is covered by
preprocessing while in approach-2, preprocessing covers the cross product of the
key space and noise space of interest. Approach-2 is equivalent to the attack
of [5] which addresses key recovery of stream ciphers using a publicly known
initial value. For this problem, approach-1 is unfeasible due to the non linear use
of the initial value, as opposed to the additivity of the noise. A similar approach
was employed in [11] for cryptanalysis in certain broadcast encryption scenarios.
Approach-1 can be viewed as an exhaustive coverage of all error patterns and
consequently, increases the complexity of the attack for the noiseless case by a
factor proportional to the number of errors to cover, as suggested in [3, p.58].
However it should be noted that this approach increases the time complexity of
the noiseless attack only, so that a better TM-TO should be achievable if this
complexity increase is considered in the initial TM-TO of the noiseless attack.

A mixed approach In this section, a unified approach which allows the joint
consideration of approach-1 and approach-2 is developed. This unified approach
provides a framework for comparison of the effectiveness of these two approaches
and allows to determine the most efficient strategy for the TM-TO and TMD-TO
when the sample is corrupted by additive noise. We define

Ke = Ke1Ke2 (13)

and constructKe1 tables as in approach-2. Then Ỹ ∗
0 is expanded intoKe2 vectors

Ỹ ∗
l .

5 As a result, approach-1 is obtained for e1 = 0 and e2 = e, while approach-
2 corresponds to e1 = 1 and e2 = 0. The TM-TO for this mixed approach is
specified by the following theorem.

5 We implicitply assume there exists a partition which allows to cover all Ke based
on (13). Since the final result does not depend on this partition, we do not explicitly
define it.
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Theorem 31 The TM-TO for cryptanalysis of a system with key length K,
plaintext length L, L ≥ K, and able to correct up to e errors in the ciphertext
with a preprocessing covering Ke1 error patterns, e1 ≤ e, is given by

TtotM
2
tot ≈ K2e1+e222K (14)

where Ttot and Mtot represent the total time complexity and total memory, re-
spectively. It can be achieved with

Mtot = Ttot ≈ K(2e1+e2)/322K/3 (15)

Proof: For each of the Ke1 error patterns to be covered by preprocessing, an
m × t table is constructed as in [5]. Assuming the error pattern is one of the
Ke1 error patterns covered by preprocessing, the expected number of FAs in the
corresponding table is given by approximatively 2−Kmt2, while this table covers
the key with probability 2−Kmt. Hence for O(1) FA per table, about Ke1t tables
are needed. The corresponding time complexity is T ≈ t2 and the total memory
required is M ≈ mtKe1 . It follows that

M2T ≈ K2e122K . (16)

To cover all possible Ke error patterns, Ke2 values Ỹ ∗
l are processed so that

the total processing time and total memory are given by

Ttot = Ke2T

Mtot =M, (17)

respectively. Combining (16) and (17) provides (14), from which Theorem 31
follows.

The following corollary indicates that approach-1, obtained from e1 = 0 and
e2 = e in Theorem 31, is the most efficient. Interesting, it also minimizes the
associated preprocessing P = Ke12K .

Corollary 31 The TM-TO for cryptanalysis of a system with key length K,
plaintext length L, L ≥ K, and able to correct up to e errors in the ciphertext is
given by

TtotM
2
tot ≈ Ke22K (18)

where Ttot and Mtot represent the total time complexity and total memory, re-
spectively. It can be achieved with

Mtot = Ttot ≈ Ke/322K/3 (19)
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It can be noted that the approach is valid for any K positions defining Ỹ ∗
0

from Ỹ0. Consequently, assuming α non intersecting sets of such K positions
have been identified, 1 ≤ α ≤ bL/Kc, there exists at least one such set with
at most de/αe errors in it. Applying the previous approach to all α sets with
wH(el) ≤ de/αe is then sufficient to succeed, providing the following corollary.

Corollary 32 The TM-TO for cryptanalysis of a system with key length K, and
plaintext length L, L ≥ K, and able to correct up to e errors in the ciphertext is
given by

Ttot =Mtot ≈ Kde/αe/322K/3 (20)

if α non intersecting sets of K positions are considered.

While an additive noisy ciphertext has been assumed in this study, a similar
approach holds for a ciphertext with erasures. In that case, the location of the
erasures is known and for ε erasures, all 2ε hypotheses can be covered based on
approach-1. We obtain the following corollary.

Corollary 33 The TM-TO for cryptanalysis of a system with key length K,
plaintext length L, L ≥ K, and able to correct up to ε erasures in the ciphertext
is given by

TtotM
2
tot ≈ 2ε22K (21)

where Ttot and Mtot represent the total time complexity and total memory, re-
spectively. It can be achieved with

Mtot = Ttot ≈ 2ε/322K/3 (22)

3.2 TMD Trade-Off

As in Section 2.2, Theorem 31 can be generalized as follows based on a prepro-
cessing of P = 2K/D.

Theorem 32 The TMD-TO for cryptanalysis of a system with key length K,
plaintext length L, L ≥ K, able to correct up to e errors and with D encryptions
of the same plaintext available is given by

TtotM
2
totD

2 ≈ Ke22K (23)

where Ttot and Mtot represent the total time complexity and total memory, re-
spectively.

Consequently the basic TMD-TO (over an error free sample) and the pro-
posed TMD-TO approach mounted over data with errors appear as powerful
ones when the target is to recover the internal state of a keystream generator of
a moderate size.

It can be noted that for stream ciphers for example, this scenario introduces
an interesting trade-off between D, L and e as for a fixed data length LD, the
larger L is, the more powerful the code is (i.e. the larger e can be) but the fewer
data blocks D are available.

34



4 Concluding Remarks

In this paper, a hybrid approach obtained from a mixture of two basic approaches
referred to as approaches 1 and 2 have been presented for mounting TM-TO and
TMD-TO over noisy data. In approach-1, the same table as for the noiseless case
is constructed, and all possible error patterns associated to the truncation of the
received sample to the key size are considered for processing. In approach-2, the
tables that cover all possible noisy versions of the keys are constructed and the
truncation of the noisy received sample is used only for processing. Particularly
note that approach-1 does not require an exhaustive search over all possible
error vectors which corrupt the segment employed for cryptanalysis, but only
the fraction of these error-patterns that corrupt the first K bits. This appears as
a consequence of the error-correction capability introduced by expanding the K-
bit input vector into the L-bit output one (its corrupted version is available for
cryptanalysis) which can be considered as a nonlinear error-correction code. The
error-capability of the underlying code determines the level of data corruption
which can be processed and this feature depends on the encryption algorithm
considered.

The proposed hybrid approach provides a unified framework to compare the
effectiveness of the basic two approaches. The analysis implies that approach-1
is the most efficient one for this cryptanalytic scenario. The main reason is due
to the fact that the TM-TO and TMD-TO corresponding to approach-1 include
(only) the additional time complexity to process error vectors with respect to
the noiseless case (which becomes the special case that processes the all-0 error
vector only).

The reported results can provide a background for a number of further (re-
search) directions including the following ones: (i) consideration of the error-
correction capability of particular encryption techniques, and (ii) employment
of the TM-TO and TMD-TO over noisy data for cryptanalysis of certain encryp-
tion schemes obtained by suitable approximation of the original ones where the
given sample for cryptanalysis appears as a noisy version of the sample which
generates the approximated scheme (see [12], for example).
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Abstract. Algebraic cryptanalysis is a general tool which permits one to assess the secu-
rity of a wide range of cryptographic schemes. Algebraic techniques have been successfully
applied against a number of multivariate schemes and stream ciphers. Yet, their feasibility
against block ciphers remains the source of much speculation. At FSE 2009 Albrecht and
Cid proposed to combine differential cryptanalysis with algebraic attacks against block ci-
phers. The proposed attacks required Gröbner basis computations during the online phase
of the attack. In this work we take a different approach and only perform Gröbner basis
computations in a pre-computation (or offline) phase. In other words, we study how we can
improve “classical” differential cryptanalysis using algebraic tools. We apply our techniques
against the block ciphers Present and Ktantan32.

1 Introduction

Algebraic cryptanalysis is a general tool which permits one to assess the security of a wide range
of cryptographic schemes [2, 19, 18, 17, 15, 16, 21, 23, 22, 20]. As pointed out in the report [11], “the
recent proposal and development of algebraic cryptanalysis is now widely considered an important
breakthrough in the analysis of cryptographic primitives”. It is a powerful technique that applies
potentially to a wide range of cryptosystems – amongst them block ciphers, which are the main
concern of this paper.

The basic principle of algebraic cryptanalysis is to model a cryptographic primitive by a set of
algebraic equations. The system of equations is constructed in such a way as to have a corre-
spondence between the solutions of this system, and a secret information of the cryptographic
primitive (for instance, the secret key of a block cipher). The secret can thus be derived by solving
the equation system.

Algebraic techniques have been successfully applied against a number of multivariate schemes and
in stream cipher cryptanalysis. On the other hand, their feasibility against block ciphers remains
the source of much speculation [13, 12, 2, 17]. The sizes of the resulting equation systems are usually
beyond the capabilities of current solving algorithms. Furthermore, the complexity estimates are
complicated as the algebraic systems are highly structured; a situation where known complexity
bounds are no longer valid.

While it is currently infeasible to cryptanalyse a block cipher by algebraic means alone, these
techniques nonetheless have practical implications for block cipher cryptanalysis. For instance,

? This author was supported by the Royal Holloway Valerie Myerscough Scholarship.
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Albrecht and Cid [1] proposed at FSE 2009 to combine differential cryptanalysis with algebraic
attacks against block ciphers and demonstrated the feasibility of their techniques against reduced-
round versions of the block cipher Present [5]. In this approach, the key recovery was approached
by solving (or showing lack of solutions in) equation systems that were much simpler than the full
cipher.

In this paper, we elaborate on this approach. That is, we further shift the focus away from at-
tempting to solve the full system of equations. It turns out that significant information can be
gained without solving the equation system in the classical sense. Additionally to Present, we
also apply these concepts to the block cipher Ktantan32 [9].

We recall that differential cryptanalysis was formally introduced by Eli Biham and Adi Shamir
at Crypto’90 [4], and has since been successfully used to attack a wide range of block ciphers.
In its basic form, the attack can be used to distinguish an n-bit block cipher from a random
permutation. By considering the distribution of output differences for the non-linear components
of the cipher (e.g. the S-Box), the attacker may be able to construct differential characteristics
P

′ ⊕ P ′′
= ∆P → ∆C = C

′ ⊕ C ′′
for a number of rounds N that are valid with probability p.

If p � 2−n, then by querying the cipher with a large number of plaintext pairs with prescribed
difference ∆P , the attacker may be able to distinguish the cipher from a random permutation by
counting the number of pairs with the output difference predicted by the characteristic. A pair for
which the characteristic holds is called a right pair.

By modifying the attack, one can use it to recover key information. Instead of characteristics for
the full N -round cipher, the attacker considers characteristics valid for r rounds only (r = N −R,
with R > 0). If such characteristics exist with non-negligible probability the attacker can guess
some key bits of the last rounds, partially decrypt the known ciphertexts, and verify if the result
matches the one predicted by the characteristic. Candidate (last round) keys are counted, and
as random noise is expected for wrong key guesses, eventually a peak may be observed in the
candidate key counters, pointing to the correct round key.

The number of right pairs that are needed to distinguish the right candidate key depends on
the probability p of the characteristic, the number k of simultaneous subkey bits that are used
for the practical decryptions and counted, the average count α of how many keys are suggested
per analysed pair (excluding the wrong pairs than can be discarded before the counting), and
the fraction β of the analysed pairs among all the pairs. If an attacker is looking for k subkey
bit, they can count the number of occurrences of the 2k possible key values in 2k counters. The
counters contain an average of (m · α · β)/2k counts, where m is the number of pairs, m · β is the
expected number of pairs to analyse, and α is the number of suggested keys on average. Since these
suggestions are spread across 2k counters, we divide by 2k. The right subkey value is counted m ·p
times by the right pairs, plus the random counts for all the possible subkeys. The signal to noise
ratio is therefore:

S/N =
m · p

m · α · β/2k =
2k · p
α · β .

Note that it would be sufficient to consider the probability p of the differential – i.e. the sum
of all pi for all characteristics with ∆P → ∆C – instead of the probability of the characteristic.
However, in practice authors often work with the probabilities of characteristics because it is easier
to estimate them.

Albrecht and Cid proposed in [1] three techniques (so-called Attack-A, Attack-B and Attack-C )
which require Gröbner basis computations during the online phase of the attack. This limitation
prevented them from applying their techniques to Present-80 with more than 16 rounds, since
computation time would exceed exhaustive key search. In this work we take a different approach
and only perform Gröbner basis computations in a pre-computation (or offline) phase. That is, we
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study how we can improve “classical” differential cryptanalysis using the algebraic tools available
to us. More specifically, we aim to increase the signal to noise ratio S/N using algebraic techniques.

The paper is organised as follows. In Section 2 we establish the notation used throughout the
paper. In Section 3 we provide a high level description of the main idea behind this work. In
Section 4 we briefly describe the ciphers which we use to demonstrate our ideas. These ideas are
applied to reduce the noise in Section 5 and to improve the signal in Section 6. Experimental
results are also presented in Sections 5 and 6.

2 Notation

We consider N -round block ciphers with a Bs-bit blocksize and Ks-bit key size. When we consider
substitution-permutation networks (SPN) we denote the inputs to the S-Box layer as X and the
outputs as Y . We always consider the parallel encryption of two plaintexts P ′ = (P ′0, . . . , P

′
Bs−1)

and P ′′ = (P ′′0 , . . . , P
′′
Bs−1) which are related by the input difference ∆P = (∆P0, . . . ,∆PBs−1).

Thus we have P ′i ⊕P ′′i = ∆Pi for 0 ≤ i < Bs. We consider r < N round differential characteristics
and have that N − r = R. If a differential characteristic predicts that the j-th inputs to the i-th
S-Box layer application are related by the difference ∆Xi,j , then given the plaintext difference ∆P ,
we have that X ′i,j ⊕X ′′i,j = ∆Xi,j is true with some non-negligible probability. The characteristic
also predicts that the j-th outputs of the i-th S-box layer application are related by the difference
∆Yi,j .

Finally, we denote the equation system encoding the encryption of P ′ to C ′ under the key K as F ′

and the ideal spanned by the f ∈ F ′ as I ′ (similarly for P ′′ and C ′′). If we write Xi,j we refer to
both X ′i,j and X ′′i,j (similarly for Yi,j). In general we start counting at zero, except for the rounds,
which we start counting at one.

3 Main Idea

The main idea involves shifting the emphasis of previous algebraic attacks away from attempting
to solve a equation system towards using ideal membership as implication. Instead of trying to
solve an equation system arising from the cipher, we use Gröbner basis methods to calculate what
a particular differential pattern implies.

To explain the main idea we start with a small example. Consider the 4-bit S-Box of Present [5].
The S-Box can be completely described by a set of polynomials that express each output bit in
terms of the input bits. One can consider a pair of input bits X ′1,0, . . . , X

′
1,3 and X ′′1,0, . . . , X

′′
1,3 and

their respective output bits Y ′1,0, . . . , Y
′
1,3 and Y ′′1,0, . . . , Y

′′
1,3. Since the output bits are described

as polynomials in the input bits, it is easy to build a set of polynomials describing the parallel
application of the S-Box to the pair of input bits. Assume the fixed input difference of (0, 0, 0, 1)
holds for this S-Box. This can be described algebraically by adding the polynomials X ′1,3+X ′′1,3 = 1,
X ′1,j +X ′′1,j = 0 for 0 ≤ j < 3 to the set. As usual, the field equations are also added.

The set of equations now forms a description of the parallel application of the S-Box to two inputs
with a fixed input difference. The ideal I spanned by these polynomials contains all polynomials
that are implied by the set. If all equations in the generating set of the ideal evaluate to zero, it
is clear that any element of I evaluates to zero. This means that any equation in the ideal will
always vanish if it is assigned values generated by applying the S-Box to a pair of inputs with the
above-mentioned input difference.
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From a cryptographic point of view, it is important to understand what relations between output
bits will hold for a particular input difference. As a consequence, we are looking for polynomials
in just the output bits which are contained in I. Algebraically, we are trying to find elements of
the ideal IY = I

⋂
F2[Y ′1,0, . . . , Y

′
1,3, Y

′′
1,0, . . . , Y

′′
1,3] where I is the ideal spanned by our original

equations. A deglex Gröbner basis GY of this ideal can be computed using standard elimination
techniques [3, p.168]. For this, we can set up a block or product ordering where all output vari-
ables are lexicographically smaller than any other variable in the system. In addition, we fix the
deglex ordering among the output variables. Computing the Gröbner basis with respect to such
an ordering gives us the Gröbner basis GY . We note that GY will contain the relations of lowest
degree of IY due to the choice of term ordering. In our example, we obtain:

GY = [Y ′1,3 + Y ′′1,3 + 1,

Y ′1,0 + Y ′1,2 + Y ′′1,0 + Y ′′1,2 + 1,

Y ′′1,0Y
′′
1,2 + Y ′1,2 + Y ′′1,0 + Y ′′1,1 + Y ′′1,3,

Y ′′1,0Y
′′
1,1 + Y ′′1,0Y

′′
1,3 + Y ′′1,1Y

′′
1,2 + Y ′′1,2Y

′′
1,3 + Y ′1,1 + Y ′′1,0 + Y ′′1,1,

Y ′1,2Y
′′
1,2 + Y ′′1,1Y

′′
1,2 + Y ′′1,2Y

′′
1,3,

Y ′1,2Y
′′
1,0 + Y ′′1,1Y

′′
1,2 + Y ′′1,2Y

′′
1,3 + Y ′1,1 + Y ′1,2 + Y ′′1,0 + Y ′′1,3,

Y ′1,1Y
′′
1,2 + Y ′1,2Y

′′
1,1 + Y ′1,2Y

′′
1,3 + Y ′′1,1Y

′′
1,2 + Y ′1,1 + Y ′1,2 + Y ′′1,1,

Y ′1,1Y
′′
1,1 + Y ′1,1Y

′′
1,3 + Y ′′1,1Y

′′
1,2 + Y ′′1,1Y

′′
1,3 + Y ′′1,2Y

′′
1,3 + Y ′′1,1,

Y ′1,1Y
′′
1,0 + Y ′1,2Y

′′
1,1 + Y ′1,2Y

′′
1,3 + Y ′′1,0Y

′′
1,3 + Y ′′1,1Y

′′
1,2 + Y ′′1,2Y

′′
1,3 + Y ′1,1 + Y ′′1,3,

Y ′1,1Y
′
1,2 + Y ′1,2Y

′′
1,3 + Y ′′1,1Y

′′
1,2 + Y ′′1,2Y

′′
1,3 + Y ′1,2].

There is no other linear or quadratic polynomial p ∈ IY which is not a simple algebraic combination
of the polynomials in GY .

Of course, we can ask different questions instead of looking for low degree equations. For instance,
we can query whether there are equations in the bits Y ′1,3, Y

′′
1,2, Y

′′
1,3 induced by the input difference

by setting up the appropriate term ordering.

In order to formalise this idea, consider a function E (for example a block cipher). Assume that
E can be expressed as a set of algebraic equations F over F. If one application of the function can
be described as a set of equations, d parallel applications to d different inputs (which we denote
P0, . . . , Pd−1) can also be described as a set of equations. We call the set of equations relating the
i-th input and output Ei and the matching polynomial system Fi. The outputs of these equations
are called C0, . . . , Cd−1. Furthermore, assume any property Λ which holds on P0, . . . , Pd−1 and
which can be expressed in a set of algebraic equations FΛ. A natural question to ask is: How do
properties on P0, . . . , Pd−1 affect properties on C0, . . . , Cd−1 ? We combine the sets of polynomials

F = FΛ ∪ (
⋃d−1
i=0 Fi) and consider the Ideal I = 〈F 〉 spanned by F . Next, we compute the unique

reduced Gröbner basis GC of the ideal IC = I ∩ F[C0, . . . , Cd−1]. Now GC contains all “relevant”
polynomials in C0, . . . , Cd−1, where “relevant” is determined by the term ordering.

As soon as we can compute the Gröbner basis GC for the function E then we only need to collect
the right polynomials from GC . However, for many functions E computing GC seems infeasible
using current Gröbner basis techniques, implementations and computing power. Thus we have to
relax some conditions hoping that we still can recover some equations using a similar technique. We
provide below a few heuristics and techniques which still allow recovering some relevant equations.

Early Abort. To recover some properties we might not need to compute the complete Gröbner
basis, instead we may opt to stop the computation at some degree D.

Replacing Symbols by Constants. It is possible to replace the symbols P0, . . . , Pd−1 by some
constants satisfying the constraint Λ which further simplifies the computation. Of course any
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polynomial recovered from such a computation would have to be checked against other values
to verify that it actually holds in general or with high probability.

Choosing a Different Term Ordering. Instead of computing with respect to an elimination
ordering, which is usually more expensive than a degree compatible ordering, we may choose to
perform our computations with respect to an easier ordering such as degrevlex. Used together
with Early Abort, we have no assurances about the uniqueness and completeness of the
recovered system. However, we might still be able to recover some information.

Computing Normal Forms Only. We can also compute equations by computing normal forms
only. For many ciphers it is possible to construct a Gröbner basis for the round transformation
[7, 8] with respect to some elimination ordering without any polynomial reductions. These
constructions exploit the fact that a system of polynomials is a Gröbner basis if each polynomial
has a leading term which is pairwise prime with every other leading term. Using this property,
we may construct a Gröbner basis for some elimination ordering for the inverse of the cipher,
i.e. the decryption process, such that the input variables are lexicographically bigger than the
output variables of some round. Furthermore, we construct the term ordering such that the
variables of round i−1 are lexicographically bigger than the variables for round i. Furthermore,
the symbols Ci are the lexicographically smallest.

If G′ is such a Gröbner basis for r rounds for the first encryption and G′′ such a Gröbner basis
for r rounds for the second encryption, we can combine these bases to G = G′ ∪G′′ which still
is a Gröbner basis. Now we can compute the normal form of X ′i+X ′′i +∆Xi with respect to G.
This will eliminate all variables > Ci as much as possible by construction. If this computation
does not give equations in the Ci only, we may opt to perform an interreduction on several
such equations hoping that this way the remaining key bits are eliminated. For example, such
a Gröbner basis for one application of the Present S-Box is

X1,0 + Y1,0Y1,1Y1,3 + Y1,1Y1,2Y1,3 + Y1,2Y1,3 + Y1,0 + Y1,1 + Y1,2 + Y1,3,

X1,1 + Y1,0Y1,1Y1,3 + Y1,0Y1,2Y1,3 + Y1,1Y1,2Y1,3 + Y1,0Y1,2 + Y1,0Y1,3

+ Y1,1Y1,2 + Y1,1Y1,3 + Y1,2Y1,3 + Y1,0 + 1,

X1,2 + Y1,0Y1,1Y1,3 + Y1,0Y1,2Y1,3 + Y1,1Y1,2Y1,3 + Y1,0Y1,1 + Y1,0Y1,2

+ Y1,1Y1,3 + Y1,0 + Y1,2 + Y1,3,

X1,3 + Y1,0Y1,2 + Y1,1 + Y1,3 + 1

The normal form of the equation X ′1,3 +X ′′1,3 + 1 with respect to G (i.e. two of such systems
for X ′, Y ′ and X ′′, Y ′′) is Y ′1,0Y

′
1,2 + Y ′′1,0Y

′′
1,2 + Y ′1,1 + Y ′1,3 + Y ′′1,1 + Y ′′1,3 + 1.

4 Case Studies

To demonstrate our techniques, we consider the block ciphers Present and Ktantan32.

Present [5] was proposed at CHES 2007 as an ultra-lightweight block cipher, enabling a very
compact implementation in hardware, and therefore particularly suitable for RFIDs and similar
devices. There are two variants of Present: one with 80-bit keys and one with a 128-bit keys,
denoted as Present-80 and Present-128 respectively.

Present is an SP-network with a blocksize of 64 bits and both versions have 31 rounds. Each round
of the cipher has three layers of operations: keyAddLayer, sBoxLayer and pLayer. The operation
keyAddLayer is a simple subkey addition to the current state, while the sBoxLayer operation
consists of 16 parallel applications of a 4-bit S-Box. The operation pLayer is a permutation of
wires.
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The Present authors give a security analysis of their cipher by showing resistance against well-
known attacks such as differential and linear cryptanalysis [5]. The best published differential
attacks are for 16 rounds of Present-80 [27] and 17 (and possibly up to 19) rounds [1] for
Present-128. Results on linear cryptanalysis for up to 26 rounds are available in [10, 24]. Bit-
pattern based integral attacks [28] are successful up to seven rounds of Present. A new type of
attack, called statistical saturation attack, was proposed in [14] and shown to be applicable up to
24 rounds of Present.

KTANTAN32 [9] was proposed at CHES 2009 and is the smallest cipher in a family of block
ciphers proposed in [9]. It allows a very compact implementation in hardware. It has a blocksize
of 32 bits and accepts an 80-bit key. The input is loaded into two registers L2 and L1 of 19 and
13 bit length respectively. A round transformation is then applied to these registers 254 times.
This round function updates two bits using a quadratic function and performs rotations on the
registers. After 254 rounds the content of L2 and L1 is outputed as the ciphertext.

The designers of KTANTAN consider a wide range of attacks in their security argument and show
the cipher secure against differential, linear, impossible differential, algebraic attacks and some
combined attacks. So far, there are no third-party security analyses of the cipher of which the
authors are aware.

5 Reducing the Noise

Recall that in order to discard wrong pairs, [1] proposed a technique referred to as Attack-C.
In this context, the attacker considers an equation system modelling only the rounds > r. The
attacker is left with R rounds for each plaintext–ciphertext pair to consider. These are related by
the output difference predicted by the differential. If we denote the equation system for the last
R rounds of the encryption of P ′ to C ′ or P ′′ to C ′′ as F ′R or F ′′R respectively. The algebraic part
of Attack-C is a Gröbner basis computation on the polynomial system

F = F ′R ∪ F ′′R ∪ {X ′r+1,i +X ′′r+1,i +∆Xr+1,i | 0 ≤ i < Bs}.

Whenever the Gröbner basis is equivalent to {1}, we know that the analysed pair could not have
been a right pair. Thus the pair can be discarded. However, no strong assurances are given in [1]
as to how many pairs are actually discarded by this technique4.

In the this work, we consider the same system of equations as in Attack-C but replace the tuples of
constants C ′ and C ′′ by tuples of symbols. By computing a Gröbner basis for the right elimination
ordering (cf. Section 3), we can recover equations in the variables C ′ and C ′′ which must evaluate
to zero on the actual ciphertext values as soon as the input difference for round r+ 1 holds. Once
we recovered such equations we can calculate the probability that all these polynomials evaluate
to zero for random values for C ′ and C ′′. This gives an estimate about the quality of the filter.
Furthermore, if the equations in C ′ and C ′′ are of sufficiently small degree, this filter is much faster
than Attack-C since no Gröbner basis has to be computed for each pair.

5.1 Case Study: PRESENT

We consider the differential from [27] and construct filters for Present reduced to 14 +R rounds.
The same filter applies also to 10 +R, 6 +R and 2 +R rounds since the characteristic is iterative
with a period of four rounds. The explicit polynomials in this section do not differ for Present-80
and Present-128.
4 Note that Attack-B in [1] is guaranteed to distinguish right pairs eventually.
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PRESENT 1R. We consider the polynomial ring P =

F2[ K0,0, . . . ,K0,79, K1,0, . . . ,K1,3,
Y ′1,0, . . . , Y

′
1,63, Y ′′1,0, . . . , Y

′′
1,63, X ′1,0, . . . , X

′
1,63, X ′′1,0, . . . , X

′′
1,63,

. . . , K15,0, . . . ,K15,3,
Y ′15,0, . . . , Y

′
15,63, Y

′′
15,0, . . . , Y

′′
15,63, X

′
15,0, . . . , X

′′
15,63, X

′′
15,0, . . . , X

′′
15,63,

C ′0, . . . , C
′
63, C ′′0 , . . . , C

′′
63]

and attach the following block ordering:

K0,0, . . . , X
′′
15,63︸ ︷︷ ︸

degrevlex

, C ′0, . . . , C
′′
63, C

′′
0 , . . . , C

′′
63︸ ︷︷ ︸

degrevlex

.

We set up an equation system as in Attack-C of [1], except that the ciphertext bits are symbols
(C ′i and C ′′i ). Then, we compute the Gröbner basis up to degree D = 3 using PolyBoRi 0.6.3 [6]
(as shipped with the Sage [26] mathematics software) with the option deg bound=3 and filter out
any polynomial that contains non-ciphertext variables.

This computation returns 60 polynomials of which 58 are linear. These 58 linear polynomials are
of the form C ′i + C ′′i for

i ∈ {0, . . . , 6, 8, . . . 14, 16, . . . 22, 24, . . . 30, 32, . . . 38, 40, . . . 46, 48, . . . , 63}.

The remaining two polynomials are (C ′23 + C ′′23 + 1)(C ′7 + C ′39 + C ′′7 + C ′′39 + 1) and (C ′31 + C ′′31 +
1)(C ′15 +C ′47 +C ′′15 +C ′′47 + 1). The probability that all polynomials evaluate to zero on a random
point is approximately 2−58.83.

PRESENT 2R. We extend the ring and the system from the 1R experiment in the obvious
way and perform the same computation as before. This computation returns 65 polynomials of
which 46 are linear. Forty linear polynomials are of the form C ′i +C ′′i and encode the information
that the last round output difference of 10 S-Boxes must be zero (cf. [27]). The remaining 24
polynomials split into two sets F0, F2 of 12 polynomials in 24 variables each and the Fj do not
share any variables with each other or the first 40 linear polynomials. The systems Fj are listed
in Figure 2 in the Appendix. The probability that all polynomials evaluate to zero for a random
point is ≈ 2−50.669.

For comparison, we construct random pairs C ′, C ′′ which pass this polynomial filter and notice
that for Attack-C from [1] roughly every second such pair for Present-80 and 317 out of 512
for Present-128 will pass. Thus we expect Attack-C to pass with probability ≈ 2−51.669 for
Present-80 and with probability ≈ 2−51.361 for Present-128. Finally, we recall that Wang’s
filter from [27] passes with probability 2−40 · (5/16)6 ≈ 2−50.07.

PRESENT 3R. We extend the ring and the block ordering in the obvious way and compute
a Gröbner basis with degree bound 3. The computation returns 28 polynomials of which 16 are
linear. The linear polynomials have the form C ′i + C ′′i for

i ∈ {3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63}.

The remaining 12 polynomials are quadratic and cubic (cf. Figure 3 in the Appendix). The prob-
ability that all polynomials evaluate to zero on a random point is ≈ 2−18.296. To compare with
Attack-C, we construct random pairs C ′, C ′′ which pass this polynomial filter. Attack-C will accept
roughly 6 in 1024 pairs for Present-80 and 9 out of 1024 pairs for Present-128. Thus, we expect
Attack-C to pass with probability ≈ 2−25.711 for Present-80 and 2−25.126 for Present-128.
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PRESENT 4R. We extend the ring and the block ordering in the obvious way. With a degree
bound D = 3 we recover

(C ′32+j + C ′′32+j + 1)(C ′j + C ′′j + 1)(C ′16+j + C ′48+j + C ′′16+j + C ′′48+j)

for 0 ≤ j < 16. The probability that all polynomials evaluate to zero on a random point is
≈ 2−3.082. We verified experimentally that this bound is optimal by using the SAT solver Cryp-
toMiniSat [25] on Attack-C systems in a 4R attack against Present-80-14. The solver returned
an assignment which satisfies the equation system with probability ≈ 2−3. Thus, we conclude that
Attack-C will roughly accept 1 in 8 pairs.

5.2 Case Study: KTANTAN

In Table 1 we give our results against Ktantan32. We used the best differential for 42 rounds
as provided by the KTANTAN designers and extended it to 71 rounds. The characteristic has a
probability of 2−31. Below we present results for the degree bounded at four and at five respectively.
For each degree bounds we give the number of degree 1-5 polynomials (denoted as d = ∗) we found.
In the last column of each experiment we give the approximate probability that all the equations
we found evaluate to zero for random values (denoted log2 p).

degree bound = 4 degree bound = 5

N d = 1 d = 2 d = 3 d = 4 d = 5 log2 p d = 1 d = 2 d = 3 d = 4 d = 5 log2 p

72 32 0 0 0 0 −32.0 32 0 0 0 0 −32.0
74 32 0 0 0 0 −32.0 32 0 0 0 0 −32.0
76 32 0 0 0 0 −32.0 32 0 0 0 0 −32.0
78 31 3 0 0 0 −32.0 31 3 0 0 0 −32.0
80 28 11 0 0 0 −31.4 28 11 0 0 0 −31.4
82 25 23 0 0 0 −31.0 25 23 0 0 0 −31.0
84 20 32 4 8 0 −29.0 20 32 4 32 0 −29.0
86 16 44 19 8 0 −25.7 16 46 23 75 106 < −24
88 12 39 54 96 0 −24.0 12 51 103 371 745 < −23
90 8 41 129 287 0 −23.0 8 42 133 612 1762 < −22
92 4 28 113 285 0 −20.0 4 33 133 743 2646 −20.4
94 1 20 94 244 0 −16.3 1 25 124 662 2345 −18.5
96 0 8 38 96 0 −12.8 0 8 52 287 1264 −14.3
98 0 3 8 29 0 −7.0 0 3 10 46 156 −9.1
100 0 1 3 13 0 −3.7 0 1 3 18 47 −4.6
102 0 0 0 2 0 −0.8 0 0 0 4 9 −0.9
103 0 0 0 1 0 −0.4 0 0 0 2 4 −0.4
104 0 0 0 0 0 0.0 N/A N/A N/A N/A N/A N/A

Table 1. Decreasing the noise for Ktantan32.

6 Increasing the Signal

In this section, we consider the problem of increasing the amount of correct data that has to
agree and is always suggested by a right pair. Increasing this value usually has considerable costs
attached to it. First, more data needs to be managed and thus usually the counter tables get bigger.
On average, we can expect each additional bit considered to double the size of these tables. Second,
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in order to generate more data, more partial decryptions must be performed which increases the
computation time. Additionally, the number of key bits that can be trial decrypted might be
limited by the number of rounds R we can consider because of the quality of the filter.

In this work we use (non-linear) data available from the first few rounds instead of the last R
rounds. Assume that we have an SP-network, a differential characteristic ∆ = (∆P,∆Y1, . . . ,∆Yr)
valid for r rounds with probability p, and (P ′, P ′′) a right pair for ∆ (so that ∆P = P ′ ⊕ P ′′ and
∆Yr holds for the output of round r). For simplicity, let us assume that only one S-Box is active
in round 1, with input X ′1,j and X ′′1,j (restricted to this S-Box) for the plaintext P ′ and P ′′

respectively, and that there is a key addition immediately before the S-Box operation, that is

S(P ′j ⊕K0,j) = S(X ′1,j) = Y ′1,j and S(P ′′j ⊕K0,j) = S(X ′′1,j) = Y ′′1,j .

The S-Box operation S can be described by a (vectorial) Boolean function, expressing each bit of
the output Y ′1,j as a polynomial function (over F2) on the input bits of X ′1,j and K0,j . If (P ′, P ′′)
is a right pair, then the polynomial equations arising from the relation ∆Y1,j = Y ′1,j ⊕ Y ′′1,j =
S(P ′j ⊕ K0,j) ⊕ S(P ′′j ⊕ K0,j) gives us a very simple equation system to solve, with only the
key variables K0,j as unknowns (and which do not vanish identically because we are considering
nonzero differences). Consequently, right pairs suggest additional information about the key from
the first round difference. In particular, if ∆Y1 holds with probability 2−b then we can recover b
bits of information about the key, if we found a right pair.

There is no a priori reason to restrict this argument from [1] to the first round. Let ∆, r, P ′, P ′′

be as before. We setup two equation systems F ′ and F ′′ involving P ′, C ′ and P ′′, C ′′ respectively
and discard any polynomials from the rounds > s where s is a small integer > 0. Previously we
had s = 1. Finally, we add linear equations as suggested by the characteristic and use this system
to recover information about the key from the first s rounds.

In order to avoid the potentially costly Gröbner basis computation for every candidate pair replace
the tuples of constants P ′ and P ′′ by tuples of symbols. According to Section 3, we can compute
polynomials involving only key variables and the newly introduced plaintext variables P ′ and P ′′.
Assume that we can indeed compute the Gröbner basis with P ′ and P ′′ symbols for the first s
rounds and the linear equations arising from the characteristic added. Assume further that the
probability that the characteristic restricted to s rounds holds is 2−b and that we computed ms

polynomials in the variables K0, P ′ and P ′′. This means that we recover b bits of information
when we evaluate all ms polynomials such that we replace P ′ and P ′′ by their actual values.

This means that we have b bits of extra information and thus can write S/N = 2k+b·p
α·β without

the overhead of performing any partial decryptions. However, we have to perform ms polynomial
evaluations (where we replace P ′ and P ′′ by their actual values) of relatively small low degree
polynomials.

Case Study: PRESENT. We consider the first two encryption rounds and the characteristic
from [27]. We set up a polynomial ring with two blocks such that the variables Pi and Ki are lexi-
cographically smaller than any other variables. Within the blocks we chose a degree lexicographical
term ordering. We set up an equation system covering the first two encryption rounds and added
the linear equations suggested by the characteristic. Then, we eliminated all linear leading terms
which are not in the variables Pi and Ki and computed a Gröbner basis up to degree five. This
computation returned 22 linear and quadratic polynomials (we give the Gröbner basis for these
polynomials in Figure 4). This system gives 8 bits of information about the key. Note that the
first two rounds of the characteristic pass with probability 2−8.
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Case Study: KTANTAN32. We consider the first 24 rounds of KTANTAN32 and compute
the full Gröbner basis. This computation recovers 39 polynomials. We list an excerpt in Figure 1
in the Appendix. As expected we observe that the characteristic also imposes restrictions on the
plaintext. These eight equations allow us to recover up to four bits (depending on the value of
P ′19) of information about the key.
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Conclusion

In this work, we have introduced a novel application for the algebraic cryptanalysis of block ci-
phers. We propose a method which can improve “classical” differential cryptanalysis, by applying
algebraic tools in a pre-computation phase. As such, we shift the focus from attempting to solve
large systems of polynomial equations to recovering symbolic information about the underlying
cipher. Although the use of algebraic techniques in general, and Gröbner basis methods in particu-
lar, in block cipher cryptanalysis has received some criticism within the cryptographic community,
as it has been often the case that “simpler” techniques can perform favourably in many situations,
we stress that the rich algebraic structure of Gröbner basis can offer many advantages and may
give one a more subtle insight of the cipher structure. This can in turn be used in the cryptanalysis
of the cipher. We note that in principle our techniques can recover an optimal amount of infor-
mation and that in almost all cases considered in this work we were (almost) able to accomplish
this. We expect that this approach is applicable to other cryptanalytical techniques such as linear
and higher-order differential cryptanalysis and consider applying it as an area of future work.
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A Explicit Polynomials

(P ′19 + 1)(P ′3P
′
8 + P ′10P

′
12 +K3 +K53 + P ′7 + P ′18 + P ′23),

P ′8P
′
10P

′
19 +K8P

′
19 + P ′3P

′
8 + P ′6P

′
19 + P ′10P

′
12

+P ′16P
′
19 +K3 +K53 + P ′7 + P ′18 + P ′19 + P ′23,

P ′19P
′
22 +K1 +K11 + P ′6 + P ′11 + P ′17 + P ′21 + P ′26,

P ′23P
′
26 +K65 + P ′21 + P ′25 + P ′30,

P ′1 + 1, P ′2, P
′
5 + 1, P ′9 + 1

Fig. 1. Polynomials for the first two rounds of Ktantan32.

(C′57+j + C′′57+j)(C
′
53+j + C′′53+j + 1)(C′17+j + C′′17+j),

(C′57+j + C′′57+j)(C
′
53+j + C′′53+j + 1)(C′33+j + C′′33+j),

(C′57+j + C′′57+j + 1)(C′25+j + C′′25+j),

(C′57+j + C′′57+j + 1)(C′41+j + C′′41+j),

(C′53+j + C′′53+j + 1)(C′21+j + C′′21+j),

(C′53+j + C′′53+j + 1)(C′37+j + C′′37+j),

(C′53+j + C′′53+j + 1)(C′49+j + C′57+j + C′′49+j + C′′57+j + 1),

(C′49+j + C′′49+j + 1)(C′17+j + C′′17+j),

(C′49+j + C′′49+j + 1)(C′33+j + C′′33+j),

C′1+j + C′33+j + C′49+j + C′′1+j + C′′33+j + C′′49+j ,

C′5+j + C′37+j + C′53+j + C′′5+j + C′′37+j + C′′53+j ,

C′9+j + C′41+j + C′57+j + C′′9+j + C′′41+j + C′′57+j ,

Fig. 2. 2R polynomials for Present with j ∈ {0, 2}.
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(C′36 + C′′36)((C′4 + C′′4 )(C′20 + C′52 + C′′20 + C′′52 + 1) + (C′20 + C′′20 + 1)(C′52 + C′′52 + 1)),

(C′37 + C′′37)((C′5 + C′′5 )(C′21 + C′53 + C′′21 + C′′53 + 1) + (C′21 + C′′21 + 1)(C′53 + C′′53 + 1)),

(C′40 + C′′40)((C′8 + C′′8 )(C′24 + C′56 + C′′24 + C′′56 + 1) + (C′24 + C′′24 + 1)(C′56 + C′′56 + 1)),

(C′41 + C′′41)((C′9 + C′′9 )(C′25 + C′57 + C′′25 + C′′57 + 1) + (C′25 + C′′25 + 1)(C′57 + C′′57 + 1)),

(C′45 + C′′45)((C′13 + C′′13)(C′29 + C′61 + C′′29 + C′′61 + 1) + (C′29 + C′′29 + 1)(C′61 + C′′61 + 1)),

(C′46 + C′′46)((C′14 + C′′14)(C′30 + C′62 + C′′30 + C′′62 + 1) + (C′30 + C′′30 + 1)(C′62 + C′′62 + 1)),

(C′06 + C′′06)((C′22 + C′′22)(C′38 + C′54 + C′′38 + C′′54 + 1) + (C′38 + C′′38 + 1)(C′54 + C′′54 + 1)),

(C′10 + C′′10)((C′26 + C′′26)(C′42 + C′58 + C′′42 + C′′58 + 1) + (C′42 + C′′42 + 1)(C′58 + C′′58 + 1)),

(C′12 + C′′12)((C′28 + C′′28)(C′44 + C′60 + C′′44 + C′′60 + 1) + (C′44 + C′′44 + 1)(C′60 + C′′60 + 1)),

(C′52 + C′′52 + 1)(C′20 + C′′20 + 1)(C′4 + C′36 + C′′4 + C′′36),

(C′60 + C′′60 + 1)(C′28 + C′′28 + 1)(C′12 + C′44 + C′′12 + C′′44),

(C′10 + C′42 + C′58 + C′′10 + C′′42 + C′′58)(C′2 + C′34 + C′50 + C′′2 + C′′34 + C′′50).

Fig. 3. 3R polynomials for Present.

(K1 + P ′1 + 1)(K0 +K3 +K29 + P ′0 + P ′3),

(K2 + P ′2)(K0 +K3 +K29 + P ′0 + P ′3),

K1K2 +K1P
′
2 +K2P

′
1 + P ′1P

′
2 +K0 +K1 +K3 +K29 + P ′0 + P ′1 + P ′3,

(K9 + P ′9 + 1)(K8 +K11 +K31 + P ′8 + P ′11),

(K10 + P ′10)(K8 +K11 +K31 + P ′8 + P ′11),

K9K10 +K9P
′
10 +K10P

′
9 + P ′9P

′
10 +K8 +K9 +K11 +K31 + P ′8 + P ′9 + P ′11,

(K49 + P ′49 + 1)(K41 +K48 +K51 + P ′48 + P ′51),

(K50 + P ′50)(K41 +K48 +K51 + P ′48 + P ′51),

K49K50 +K49P
′
50 +K50P

′
49 + P ′49P

′
50 +K41 +K48 +K49 +K51 + P ′48 + P ′49 + P ′51,

(K57 + P ′57 + 1)(K43 +K56 +K59 + P ′56 + P ′59),

(K58 + P ′58)(K43 +K56 +K59 + P ′56 + P ′59),

K57K58 +K57P
′
58 +K58P

′
57 + P ′57P

′
58 +K43 +K56 +K57 +K59 + P ′56 + P ′57 + P ′59,

K5 +K7 + P ′5 + P ′7,

K6 +K7 + P ′6 + P ′7,

K53 +K55 + P ′53 + P ′55,

K54 +K55 + P ′54 + P ′55

Fig. 4. Polynomials for the first two rounds of Present.
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SYMAES: A Fully Symbolic Polynomial System
Generator for AES-128⋆

Vesselin Velichkov1,2,⋆⋆, Vincent Rijmen1,2,3, and Bart Preneel1,2

1 Department of Electrical Engineering ESAT/SCD-COSIC,
Katholieke Universiteit Leuven. Kasteelpark Arenberg 10, B-3001 Heverlee, Belgium.

vesselin.velichkov@esat.kuleuven.be
2 Interdisciplinary Institute for BroadBand Technology (IBBT), Belgium.
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SYMAES is a software tool that generates a system of polynomials in GF(2),
corresponding to the round transformation and key schedule of the block cipher
AES-128 [1].

Most of the existing polynomial system generators for AES are typically used
under the assumption that the plaintext and ciphertext bits are known, and there-
fore are treated as constants. Although some of the generators, such as the AES
(SR) Polynomial System Generator [2,3], can also be used when this assumption
is not made, the instructions to do this are not always very natural. SYMAES
is specifically designed to address the case in which (some of) the plaintext and
ciphertext bits are unknown and are therefore treated as symbolic variables. Such
a scenario is realistic and arises during the algebraic cryptanalysis of AES-based
constructions, where only parts of the plaintext and/or ciphertext are known. An
example of such a construction is the stream cipher LEX [4], a small-scale version
of which has been analysed using SYMAES [5].

The inputs to SYMAES are the bits of the plaintext and the bits of the orig-
inal key, represented as symbolic variables in GF(2). The output is a system of
equations describing the output bits of one round of AES as a function of the
input bits and the key. SYMAES also generates symbolic equations for the AES
key schedule. Then, the bits of the round keys are expressed as polynomials in the
bits of the original key.

As a final note we would like to stress that SYMAES should not be seen as
a competitor to existing AES polynomial system generators, but rather as an
addition to them. SYMAES achieves in a more natural way what can also be
achieved using SR [3]. Similarly to SR, SYMAES is also written in Python and
is used within the open source computer algebra Sage [6]. This makes possible a
future integration of the SYMAES code into SR.

This submission is accompanied by an appendix containing the SYMAES
source code and usage instructions.
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Abstract. In this work we describe an efficient implementation of a hierarchy of
algorithms for the decomposition of dense matrices over the field with two elements
(F2). Matrix decomposition is an essential building block for solving dense systems
of linear and non-linear equations and thus much research has been devoted to
improve the asymptotic complexity of such algorithms. In this work we discuss an
implementation of both well-known and improved algorithms in the M4RI library.
The focus of our discussion is on a new variant of the M4RI algorithm – denoted
MMPF in this work – which allows for considerable performance gains in practice
when compared to the previously fastest implementation. We provide performance
figures on x86 64 CPUs to demonstrate the viability of our approach.

1 Introduction

We describe an efficient implementation of a hierarchy of algorithms for PLS decompo-
sition of dense matrices over the field with two elements (F2). The PLS decomposition
is closely related to the well-known PLUQ and LQUP decompositions. However, it of-
fers some advantages in the particular case of F2. Matrix decomposition is an essential
building block for solving dense systems of linear and non-linear equations (cf. [11, 10])
and thus much research has been devoted to improve the asymptotic complexity of such
algorithms. In particular, it has been shown that various matrix decompositions such as
PLUQ, LQUP and LPS are essentially equivalent and can be reduced to matrix-matrix
multiplication (cf. [13]). Thus, we know that these decompositions can be achieved in
O(nω) where ω is the exponent of linear algebra3. In this work we focus on matrix de-
composition in the special case of F2 and discuss an implementation of both well-known
and improved algorithms in the M4RI library [2]. The M4RI library implements dense
linear algebra over F2 and is used by the Sage [16] mathematics software and the Poly-
BoRi [9] package for computing Gröbner bases. It is also the linear algebra library used
in [15, 14].

Our implementation focuses on 64-bit x86 architectures (x86 64), specifically the Intel
Core 2 and the AMD Opteron. Thus, we assume in this chapter that each native CPU
word has 64 bits. However it should be noted that our code also runs on 32-bit CPUs and
on non-x86 CPUs such as the PowerPC.

? This author was supported by the Royal Holloway Valerie Myerscough Scholarship.
3 For practical purposes we set ω = 2.807.
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Element-wise operations over F2 are relatively cheap compared to loads from and
writes to memory. In fact, in this work we demonstrate that the two fastest implemen-
tations for dense matrix decomposition over F2 (the one presented in this work and the
one found in Magma [8] due to Allan Steel) perform worse for sparse matrices despite
the fact that fewer field operations are performed. This indicates that counting raw field
operations is not an adequate model for estimating the running time in the case of F2.

This work is organised as follows. We will start by giving the definitions of reduced row
echelon forms (RREF), PLUQ and PLS decomposition in Section 2 and establish their
relations. We will then discuss Gaussian elimination and the M4RI algorithm in Section 3
followed by a discussion of cubic PLS decomposition and the MMPF algorithm in 4. We
will then discuss asymptotically fast PLS decomposition in Section 5 and implementation
issues in Section 6. We conclude by giving empirical evidence of the viability of our
approach in Section 7.

2 RREF and PLS

Proposition 1 (PLUQ decomposition). Any m×n matrix A with rank r, can be writ-
ten A = PLUQ where P and Q are two permutation matrices, of dimension respectively
m×m and n× n, L is m× r unit lower triangular and U is r × n upper triangular.

Proof. See [13].

Proposition 2 (PLS decomposition). Any m×n matrix A with rank r, can be written
A = PLS where P is a permutation matrix of dimension m×m, L is m× r unit lower
triangular and S is an r× n matrix which is upper triangular except that its columns are
permuted, that is S = UQ for U r × n upper triangular and Q is a n × n permutation
matrix.

Proof. Write A = PLUQ and set S = UQ.

Another way of looking at PLS decomposition is to consider the A = LQUP de-
composition [12]. We have A = LQUP = LSP where S = QU . We can also write
A = LQUP = SUP where S = LQ. Applied to AT we then get A = PTUTST = P ′L′S′.
Finally, a proof for Proposition 2 can also be obtained by studying any one of the Algo-
rithms 9, 3 or 4.

Definition 1 (Row Echelon Form). An m × n matrix A is in echelon form if all
zero rows are grouped together at the last row positions of the matrix, and if the leading
coefficient of each non zero row is one and is located to the right of the leading coefficient
of the above row.

Proposition 3. Any m×n matrix can be transformed into echelon form by matrix mul-
tiplication.

Proof. See [13]

Note that while there are many PLUQ decompositions of any matrix A there is always
also a decomposition for which we have that S = UQT is a row echelon form of A. In

54



this work we compute A = PLS such that S is in row echelon form. Thus, a proof for
Proposition 3 can also be obtained by studying any one of the Algorithms 9, 3 or 4.

Definition 2 (Reduced Row Echelon Form). An m × n matrix A is in reduced
echelon form if it is in echelon form and each leading coefficient of a non zero row is the
only non zero element in its column.

3 Gaussian Elimination and M4RI

Gaussian elimination is the classical, cubic algorithm for transforming a matrix into (re-
duced) row echelon form using elementary row operations only. The “Method of the
Four Russians” Inversion (M4RI) [7] reduces the number of additions required by Gaus-
sian elimination by a factor of log n by using a caching technique inspired by Kronrod’s
method for matrix-matrix multiplication.

3.1 The “Method of the Four Russians” Inversion (M4RI)

The “Method of the Four Russians” inversion was introduced in [5] and later described
in [6] and [7]. It inherits its name and main idea from the misnamed “Method of the Four
Russians” multiplication [4, 1].

To give the main idea consider for example the matrix A of dimension m × n in
Figure 3.1. The k × n (k = 3) submatrix on the top has full rank and we performed
Gaussian elimination on it. Now, we need to clear the first k columns of A for the rows
below k (and above the submatrix in general if we want the reduced row echelon form).
There are 2k possible linear combinations of the first k rows, which we store in a table T .
We index T by the first k bits (e.g., 011→ 3). Now to clear k columns of row i we use the
first k bits of that row as an index in T and add the matching row of T to row i, causing
a cancellation of k entries. Instead of up to k additions this only costs one addition due to
the pre-computation. Using Gray codes (or similar techniques) this pre-computation can
be performed in 2k vector additions and the overall cost is 2k+m−k+k2 vector additions
in the worst case (where k2 accounts for the Gauss elimination of the k × n submatrix).
The naive approach would cost k ·m row additions in the worst case to clear k columns.
If we set k = logm then the complexity of clearing k columns is O

(
m+ log2m

)
vector

additions in contrast to O(m · logm) vector additions using the naive approach.
This idea leads to Algorithm 1. In this algorithm the subroutine GaussSubmatrix

(cf. Algorithm 8) performs Gauss elimination on a k × n submatrix of A starting at
position (r, c) and searches for pivot rows up to m. If it cannot find a submatrix of rank
k it will terminate and return the rank k found so far. Note the technicality that the
routine GaussSubmatrix and its interaction with Algorithm 1 make use of the fact that
all the entries in a column below a pivot are zero if they were considered already.

The subroutine MakeTable (cf. Algorithm 7) constructs the table T of all 2k linear
combinations of the k rows starting a row r and a column c, i.e. it enumerates all elements
of the vector space span(r, ..., r+ k+ 1) spanned by the rows r, . . . , r+ k− 1. Finally, the
subroutine AddRowsFromTable (cf. Algorithm 6) adds the appropriate row from T –
indexed by k bits starting at column c – to each row of A with index i 6∈ {r, . . . , r+k−1}.
That is, it adds the appropriate linear combination of the rows {r, . . . , r + k − 1} onto a
row i in order to clear k columns.
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A =




1 0 0 1 0 1 1 1 . . .
0 1 0 1 1 1 1 0 . . .
0 0 1 0 0 1 1 1 . . .

. . .
0 0 0 1 1 0 1 0 . . .
1 1 0 0 1 0 1 1 . . .
0 1 0 0 1 0 0 1 . . .

. . .
1 1 0 1 1 1 0 1 . . .




T =




0 0 0 0 0 0 0 0 . . .
0 0 1 0 0 1 1 1 . . .
0 1 0 1 1 1 1 0 . . .
0 1 1 1 1 0 0 1 . . .
1 0 0 1 0 1 1 1 . . .
1 0 1 1 0 0 0 0 . . .
1 1 0 0 1 0 0 1 . . .
1 1 1 0 1 1 1 0 . . .




Fig. 1. M4RI Idea

Note that the relation between the index id and the row j in T is static and known
a priori because GaussSubmatrix puts the submatrix in reduced row echelon form. In
particular this means that the k × k submatrix starting at (r, c) is the identity matrix.

Input: A – a m× n matrix
Input: k – an integer k > 0
Result: A is in reduced row echelon form.
begin

r, c←− 0, 0;
while c < n do

if c+ k > n then k ← n− c;
k ←− GaussSubmatrix(A, r, c, k,m);
if k > 0 then

T,L←− MakeTable(A, r, c, k);
AddRowsFromTable(A, 0, r, c, k, T, L);
AddRowsFromTable(A, r + k,m, c, k, T, L);

end

r, c←− r + k, c+ k;
if k 6= k then c← c+ 1;

end
end

Algorithm 1: M4RI

When studying the performance of Algorithm 1, we expect the function MakeTable

to contribute most. Instead of performing k/2·2k−1 additions MakeTable only performs

2k − 1 vector additions. However, in practice the fact that k columns are processed in
each loop iteration of AddRowsFromTable contributes signficiantly due to the better
cache locality. Assume the input matrix A does not fit into L2 cache. Gaussian elimination
would load a row from memory, clear one column and likely evict that row from cache in
order to make room for the next few rows before considering it again for the next column.
In the M4RI algorithm more columns are cleared per load.

We note that our presentation of M4RI differs somewhat from that in [6]. The key
difference is that our variant does not throw an error if it cannot find a pivot within
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the first 3k rows in GaussSubmatrix. Instead, our variant searches all rows and conse-
quently the worst-case complexity is cubic. However, on average for random matrices we
expect to find a pivot within 3k rows and thus expect the average-case complexity to be
O
(
n3/ log n

)
.

4 M4RI and PLS Decomposition

In order to recover the PLS decomposition of some matrix A, we can adapt Gaussian
elimination to preserve the transformation matrix in the lower triangular part of the
input matrix A and to record all permutations performed. This leads to Algorithm 9 in
the Appendix which modifies A such that it contains L in below the main diagonal, S
above the main diagonal and returns P and Q such that PLS = A and SQT = U .

The main differences between Gaussian elimination and Algorithm 9 are:

– No elimination is performed above the currently considered row, i.e. the rows 0, . . . , r−
1 are left unchanged. Instead elimination starts below the pivot, from row r + 1.

– Column swaps are performed at the end of Algorithm 9 but not in Gaussian elimina-
tion. This step compresses L such that it is lower triangular.

– Row additions are performed starting at column r + 1 instead of r to preserve the
transformation matrix L. Over any other field we would have to rescale A[r, r] for the
transformation matrix L but over F2 this is not necessary.

4.1 The Method of Many People Factorisation (MMPF)

In order to use the M4RI improvement over Gaussian elimination for PLS decomposition,
we have to adapt the M4RI algorithm.

Column Swaps Since column swaps only happen at the very end of the algorithm we can
modify the M4RI algorithm in the obvious way to introduce them.

U vs. I Recall, that the function GaussSubmatrix generates small k×k identity matri-
ces. Thus, even if we remove the call to the function AddRowsFromTable(A, 0, r, c, k, T )
from Algorithm 1 we would still eliminate up to k− 1 rows above a given pivot and thus
would fail to produce U . The reason the original specification [5] of the M4RI requires
k×k identity matrices is to have a a priori knowledge of the relationship between id and
j in the function AddRowsFromTable. On the other hand the rows of any k×n upper
triangular matrix also form a basis for the k-dimensional vector space span(r, . . . , r+k−1).
Thus, we can adapt GaussSubmatrix to compute the upper triangular matrix instead
of the identity. Then, in MakeTable1 we can encode the actual relationship between a
row j of T and id in the lookup table L.

Preserving L In Algorithm 9 preserving the transformation matrix L is straight forward:
addition starts in column c+ 1 instead of c. On the other hand, for M4RI we need to fix
the table T to update the transformation matrix correctly; For example, assume k = 3
and that the first row of the k × n submatrix generated by GaussSubmatrix has the
first k bits equal to [1 0 1]. Assume further that we want to clear k bits of a a row
which also starts with [1 0 1]. Then – in order to generate L – we need to encode that
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this row is cleared by adding the first row only, i.e. we want the first k = 3 bits to be [1

0 0]. Recall that in the M4RI algorithm the id for the row j starting with [1 0 0] is [1
0 0] if expressed as a sequence of bits. Thus, to correct the table, we add the k bits of
the a priori id onto the first k entries in T (starting at c) as in MakeTable1.

Other Bookkeeping Recall that GaussSubmatrix’s interaction with Algorithm 1 uses the
fact that processed columns of a row are zeroed out to encode whether a row is “done” or
not. This is not true anymore if we compute the PLS decomposition instead of the upper
triangular matrix in GaussSubmatrix since we store L below the main diagonal. Thus,
we explicitly encode up to which row a given column is “done” in PlsSubmatrix (cf.
Algorithm 10). Finally, we have to take care not to include the transformation matrix L
when constructing T .

Input: A – a m× n matrix
Input: rstart – an integer 0 ≤ rstart < m
Input: cstart – an integer 0 ≤ cstart < n
Input: k – an integer k > 0
Result: Retuns an 2k × n matrix T and the translation table L
begin

T ←− the 2k × n zero matrix;
for 1 ≤ i < 2k do

j ←− the row index of A to add according to the Gray code;
add row j of A to the row i of T starting at cstart;

end

L←− an integer array with 2k entries;
for 1 ≤ i < 2k do

id =
∑k

j=0 T [i, cstart + j] · 2k−j−1;
L[id]←− i;

end

for 1 ≤ i < 2k do
b0, . . . , bk−1 ←− bits of a priori id of the row i;

for 0 ≤ j < k do
T [i, cstart + j]←− T [i, cstart + j] + bj ;

end

end
return T,L;

end
Algorithm 2: MakeTable1

These modifications lead to Algorithm 3 which computes the PLS decomposition of
A in-place, that is L is stored below the main diagonal and S is stored above the main
diagonal of the input matrix. Since none of the changes to the M4RI algorithm affect
the asymptotical complexity, Algorithm 3 is cubic in the worst case and has complexity
O
(
n3/ log n

)
in the average case.
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Input: A – a m× n matrix
Input: P – a permutation vector of length m
Input: Q – a permutation vector of length n
Input: k – an integer k > 0
Result: PLS decomposition of A
begin

r, c←− 0, 0;
for 0 ≤ i < n do Q[i]←− i;
for 0 ≤ i < m do P [i]←− i;
while r < m and c < n do

if c+ k > n then k ←− n− c;
k, dr ←− PlsSubmatrix(A, r, c, k, P,Q);
U ←− the k × n submatrix starting at (r, 0) where every entry prior to the upper
triangular matrix starting at (r, c) is zeroed out;
if k > 0 then

T,L←− MakeTable1(U, 0, c, k);
AddRowsFromTable(A, dr + 1,m, c, k, T, L);
r, c← r + k, c+ k;

else
// skip zero column

c← c+ 1;
end

end
// Now compress L

for 0 ≤ j < r do swap the columns j and Q[j] starting at row j;
return r;

end
Algorithm 3: MMPF

5 Asymptotically Fast PLS Decomposition

It is well-known that PLUQ decomposition can be accomplished in-place and in time
complexity O(nω) by reducing it to matrix-matrix multiplication (cf. [13]). We give a
slight variation of the recursive algorithm from [13] in Algorithm 4. We compute the PLS
instead of the PLUQ decomposition.

In Algorithm 4 the routine SubMatrix(rs, cs, re, ce) returns a “view” (cf. [3]) into
the matrix A starting at row and column rs and cs resp. and ending at row and column
re and ce resp. We note that that the step ANE ←− L−1NW × ANE can be reduced
to matrix-matrix multiplication (cf. [13]). Thus Algorithm 4 can be reduced to matrix-
matrix multiplication and has complexity O(nω). Since no temporary matrices are needed
to perform the algorithm, except maybe in the matrix-matrix multiplication step, the
algorithm is in-place.

6 Implementation

Similarly to matrix multiplication (cf. [3]) it is beneficial to call Algorithm 4 until some
“cutoff” bound and to switch to a base-case implementation (in our case Algorithm 3)
once this bound is reached. We perform the switch over if the matrix fits into 4MB or
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Input: A – a m× n matrix
Input: P – a permutation vector of length m
Input: Q – a permutation vector of length n
Result: PLS decomposition of A
begin

n0 ←− pick some integer 0 ≤ n0 < n; // n0 ≈ n/2
A0 ←− SubMatrix(A, 0, 0,m, n0);
A1 ←− SubMatrix(A, 0, n0,m, n);
Q0 ←− Q[0, . . . , n0];
r0 ←− PLS(A0, P,Q0); // first recursive call

for 0 ≤ i ≤ n0 do Q[i]← Q0[i];
ANW ←− SubMatrix(A, 0, 0, r0, r0);
ASW ←− SubMatrix(A, r0, 0,m, r0);
ANE ←− SubMatrix(A, 0, n0, r0, n);
ASE ←− SubMatrix(A, r0, n0,m, n);
if r1 then

// Compute of the Schur complement

A1 ←− P ×A1;
LNW ←− the lower left triangular matrix in ANW ;
ANE ←− L−1

NW ×ANE ;
ASE ←− ASE +ASW ×ANE ;

end
P1 ←− P [r0, . . . ,m];
Q1 ←− Q[n0, . . . , n];
r1 ←− PLS(ASE , P1, Q1); // second recursive call

ASW ←− P ×ASW ;
// Update P & Q

for 0 ≤ i < m− r0 do P [r0 + 1] = P1[i] + r0;
for 0 ≤ i < n− n0 do Q[n0 + i]← Q1[i] + n0;
j ← r0;
for n0 ≤ i < n0 + r1 do Q[j]← Q[i]; j ← j + 1;
// Now compress L

j ← n0;
for r0 ≤ i < r0 + r1 do swap the columns i and j starting at row i;
return r0 + r1;

end
Algorithm 4: PLS Decomposition
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in L2 cache, whichever is smaller. These values seem to provide the best performance on
our target platforms.

The reason we are considering the PLS decomposition instead of either the LQUP or
the PLUQ decomposition is that the PLS decomposition has several advantages over F2,
in particular when the flat row-major representation is used to store entries.

– We may choose where to cut with respect to columns in Algorithm 4. In particular, we
may choose to cut along word boundaries. For LQUP decomposition, where roughly
all steps are transposed, column cuts are determined by the rank r0.

– In Algorithm 3 rows are added instead of columns. Row operations are much cheaper
than column operations in row-major representation.

– Column swaps do not occur in the main loop of either Algorithm 4 or 3, but only row
swaps are performed. Column swaps are only performed at the end. Column swaps
are much more expensive than row swaps (see below).

– Fewer column swaps are performed for PLS decomposition than for PLUQ decompo-
sition since U is not compressed.

One of the major bottleneck are column swaps. In Algorithm 5 a simple algorithm for
swapping two columns a and b is given with bit-level detail. In Algorithm 5 we assume
that the bit position of a is greater than the bit position of b for simplicity of presentation.
The advantage of the strategy in Algorithm 5 is that it uses no conditional jumps in the
inner loop, However, it still requires 9 instructions per row. On the other hand, we can
add two rows with 9 · 128 = 1152 entries in 9 instructions if the SSE2 instruction set
is available. Thus, for matrices of size 1152 × 1152 it takes roughly the same number of
instructions to add two matrices as it does to swap two columns. If we were to swap
every column with some other column once during some algorithm it thus would be as
expensive as a matrix multiplication for matrices of these dimensions.

Input: A – a m× n matrix
Input: a – an integer 0 ≤ a < b < n
Input: b – an integer 0 ≤ a < b < n
Result: Swaps the columns a and b in A
begin

M ←− the memory where A is stored;
aw, bw ←− the word index of a and b in M ;
ab, bb ←− the bit index of a and b in aw and bw;
∆←− ab − bb;
am ←− the bit-mask where only the abth bit is set to 1;
bm ←− the bit-mask where only the bbth bit is set to 1;
for 0 ≤ i < m do

R←− the memory where the row i is stored;
R[aw]←− R[aw]⊕ ((R[bw]� bm) >> ∆);
R[bw]←− R[bw]⊕ ((R[aw]� am) << ∆);
R[aw]←− R[aw]⊕ ((R[bw]� bm) >> ∆);

end
end

Algorithm 5: Column Swap
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Another bottleneck for relatively sparse matrices in dense row-major representation is
the search for pivots. Searching for a non-zero element in a row can be relatively expensive
due to the need to identify the bit position. However, the main performance penalty is
due to the fact that searching for a non-zero entry in one column is in a row-major
representation is very cache unfriendly.

Indeed, both our implementation and the implementation available in Magma suffer
from performance regression on relatively sparse matrices as shown in Figure 2. We stress
that this is despite the fact that the theoretical complexity of matrix decomposition is rank
sensitive, that is, strictly less field operations have to be performed for low rank matrices.
While the penalty for relatively sparse matrices is much smaller for our implementation
than for Magma, it clearly does not achieve the theoretical possible performance. Thus,
we also consider a hybrid algorithm which starts with M4RI and switches to PLS-based
elimination as soon as the (approximated) density reaches 15%, denoted as ‘M+P 0.15’.
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Fig. 2. Sensitivity to density for n = 104 on 2.6Ghz Opteron

7 Results

In Table 1 we give average running time over ten trials for computing reduced row echelon
forms of dense random n × n matrices over F2. We compare the asymptotically fast im-
plementation due to Allan Steel in Magma, the cubic Gaussian elimination implemented
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by Victor Shoup in NTL, and both our implementations. Both the implementation in
Magma and our PLS decomposition reduce matrix decomposition to matrix multiplica-
tion. A discussion and comparison of matrix multiplication in the M4RI library and in
Magma can be found in [3]. In Table 1 the column ‘PLS’ denotes the complete running
time for first computing the PLS decomposition and the computation of the reduced row
echelon form from PLS.

64-bit Linux, 2.6Ghz Opteron 64-bit Linux, 2.33Ghz Xeon (E5345)

n Magma NTL M4RI PLS Magma NTL M4RI PLS
2.15-10 5.4.2 20090105 20100324 2.16-7 5.4.2 20100324 20100324

10, 000 3.351s 18.45s 2.430s 1.452s 2.660s 12.05s 1.360s 0.864s
16, 384 11.289s 72.89s 10.822s 6.920s 8.617s 54.79s 5.734s 3.388s
20, 000 16.734s 130.46s 19.978s 10.809s 12.527s 100.01s 10.610s 5.661s
32, 000 57.567s 479.07s 83.575s 49.487s 41.770s 382.52s 43.042s 20.967s
64, 000 373.906s 2747.41s 537.900s 273.120s 250.193s – 382.263s 151.314s

Table 1. RREF for random matrices

In Table 2 we give running times for matrices as they appear when solving non-linear
systems of equations. The matrices HFE 25, 30 and 35 were contributed by Michael
Brickenstein and appear during a Gröbner basis computation of HFE systems using
PolyBoRi. The Matrix MXL was contributed by Wael Said and appears during an
execution of the MXL2 algorithm [15] for a random quadratic system of equations. We
consider these matrices within the scope of this work since during matrix elimination the
density quickly increases and because even the input matrices are dense enough such that
we expect one non-zero element per 128-bit wide SSE2 XOR on average. The columns
‘M+P 0.xx’ denote the hybrid algorithms which start with M4RI and switch over to PLS
based echelon form computation once the density of the remaining part of the matrix
reaches 15% or 20% respectively. We note that the relative performance of the M4RI and
the PLS algorithm for these instances depends on particular machine configuration. To
demonstrate this we give a set of timings for the Intel Xeon X7460 machine sage.math4

in Table 2. Here, PLS always is faster than M4RI, while on a Xeon E5345 M4RI wins for
all HFE examples. We note that Magma is not available on the machine sage.math. The
HFE examples show that the observed performance regression for sparse matrices does
have an impact in practice and that the hybrid approach does look promising for these
instances.
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64-bit Fedora Linux, 2.33Ghz Xeon (E5345)

Problem Matrix Density Magma M4RI PLS M+P 0.15 M+P 0.20
Dimension 2.16-7 20100324 20100324 20100429 20100429

HFE 25 12, 307× 13, 508 0.076 3.68s 1.94s 2.09s 2.33s 2.24s
HFE 30 19, 907× 29, 323 0.067 23.39s 11.46s 13.34s 12.60s 13.00s
HFE 35 29, 969× 55, 800 0.059 – 49.19s 68.85s 66.66s 54.42s

MXL 26, 075× 26, 407 0.185 55.15 12.25s 9.22s 9.22s 10.22s

64-bit Ubuntu Linux, 2.66Ghz Xeon (X7460)

Problem Matrix Density M4RI PLS M+P 0.15 M+P 0.20
Dimension 20100324 20100324 20100429 20100429

HFE 25 12, 307× 13, 508 0.076 2.24s 2.00s 2.39s 2.35s
HFE 30 19, 907× 29, 323 0.067 27.52s 13.29s 13.78s 22.9s
HFE 35 29, 969× 55, 800 0.059 115.35s 72.70s 84.04s 122.65s

MXL 26, 075× 26, 407 0.185 26.61s 8.73s 8.75s 13.23s

64-bit Debian/GNU Linux, 2.6Ghz Opteron)

Problem Matrix Density Magma M4RI PLS M+P 0.15 M+P 0.20
Dimension 2.15-10 20100324 20100324 20100429 20100429

HFE 25 12, 307× 13, 508 0.076 4.57s 3.28s 3.45s 3.03s 3.21s
HFE 30 19, 907× 29, 323 0.067 33.21s 23.72s 25.42s 23.84s 25.09s
HFE 35 29, 969× 55, 800 0.059 278.58s 126.08s 159.72s 154.62s 119.44s

MXL 26, 075× 26, 407 0.185 76.81s 23.03s 19.04s 17.91s 18.00s
Table 2. RREF for matrices from practice.
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A Support Algorithms

Input: A – a m× n matrix
Input: rstart – an integer 0 ≤ rstart < m
Input: rend – an integer 0 ≤ rstart ≤ rend < m
Input: cstart – an integer 0 ≤ cstart < n
Input: k – an integer k > 0
Input: T – a 2k × n matrix
Input: L – an integer array of length 2k

begin
for rstart ≤ i < rend do

id =
∑k

j=0A[i, cstart + j] · 2k−j−1;
j ←− L[id];
add row j from T to the row i of A starting at column cstart;

end
end

Algorithm 6: AddRowsFromTable

Input: A – a m× n matrix
Input: rstart – an integer 0 ≤ rstart < m
Input: cstart – an integer 0 ≤ cstart < n
Input: k – an integer k > 0
Result: Retuns an 2k × n matrix T
begin

T ←− the 2k × n zero matrix;
for 1 ≤ i < 2k do

j ←− the row index of A to add according to the Gray code;
add row j of A to the row i of T starting at column cstart;

end
L←− integer array allowing to index T by k bits starting at column cstart;
return T,L;

end
Algorithm 7: MakeTable
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Input: A – a m× n matrix
Input: r – an integer 0 ≤ r < m
Input: c – an integer 0 ≤ c < n
Input: k – an integer k > 0
Input: rend – an integer 0 ≤ r ≤ rend < m
Result: Returns the rank k ≤ k and puts the k × (n− c) submatrix starting at A[r, c] in

reduced row echelon form.
begin

rs ←− r;
for c ≤ j < c+ k do

found←− False;
for rs ≤ i < rend do

for 0 ≤ l < j − c do // clear the first columns
if A[i, c+ l] 6= 0 then add row r+ l to row i of A starting at column c+ l;

end
if A[i, j] 6= 0 then // pivot?

Swap the rows i and rs in A;
for r ≤ l < rs do // clear above

if A[l, j] 6= 0 then add row rs to row l in A starting at column j;
end
rs ←− rs + 1;
found←− True;
break;

end

end
if found = False then

return j - c;
end

end
return j - c;

end
Algorithm 8: GaussSubmatrix
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Input: A – a m× n matrix
Input: P – a permutation vector of length m
Input: Q – a permutation vector of length n
Result: PLS decomposition of A. Returns the rank of A.
begin

r, c← 0, 0;
while r < m and c < n do

found←− False;
for c ≤ j < n do // search for some pivot

for r ≤ i < m do
if A[i, j] then found← True and break;

end
if found then break;

end
if found then

P [r], Q[r]←− i, j;
swap the rows r and i in A;
// clear below but preserve transformation matrix

if j + 1 < n then
for r + 1 ≤ l < m do

if A[l, j] then
add the row r to the row l starting at column j + 1;

end

end

end
r, c←− r + 1, j + 1;

else
break;

end

end
for r ≤ i < m do P [i]←− i ;
for r ≤ i < n do Q[i]←− i ;
// Now compress L

for 0 ≤ j < r do swap the columns j and Q[j] starting at row j;
return r;

end
Algorithm 9: Gaussian PLS Decomposition
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Input: A – a m× n matrix
Input: sr – an integer 0 ≤ sr < m
Input: sc – an integer 0 ≤ sc < n
Input: k – an integer k > 0
Input: P – a permutation vector of length m
Input: Q – a permutation vector of length n
Result: Returns the rank k ≤ k and dr – the last row considered.
Also puts the k × (n− c) submatrix starting at (r, c) in PLS decomposition form.
begin

done←− all zero integer array of length k;
for 0 ≤ r < k do

found←− False;
for sr + r ≤ i < m do // search for some pivot

for 0 ≤ l < r do // clear before

if done[l] < i then
if A[i, sc + l] 6= 0 then

add row sr + l to row i in A starting at column sc + l + 1;
end
done[l]←− i;

end

end
if A[i, sc + r] 6= 0 then

found←− True;
break;

end

end
if found = False then break;
P [sr + r], Q[sr + r]←− i, sc + r;
swap the rows sr + r and i in A;
done[r]←− i;

end

dr ←− max({done[i] | i ∈ {0, . . . , k − 1}});
for 0 ≤ c2 < k and r + c2 < n− 1 do // finish submatrix

for done[c2] < r2 ≤ dr do
if A[r2, r + c2] 6= 0 then

add row r + c2 to row r2 in A starting at column r + c2 + 1;
end

end

end
return r, dr;

end
Algorithm 10: PlsSubmatrix
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Abstract. This paper reports a new speed record for FPGAs in cracking
Elliptic Curve Cryptosystems. We conduct a detailed analysis of different
F2m multiplication approaches in this application. A novel architecture
using optimized normal basis multipliers is proposed to solve the Certi-
com challenge ECC2K-130. We compare the FPGA performance against
CPUs, GPUs, and even the Sony PlayStation 3. Our implementations
show low-cost FPGAs outperform even multicore desktop processors and
graphics cards by a factor of 2.

1 Motivation: Attacking ECC2K-130

Cryptosystems ensure the security, authenticity and privacy of data and users in
most products nowadays. Elliptic-Curve Cryptosystems (ECC), independently
invented by Miller [18] and Koblitz [15], are now commonplace in both the
academic literature and practical deployments. These systems allow shorter key-
lengths, ciphertexts, and signatures than other conventional cryptosystems, e.g.,
RSA. In addition, thanks to these smaller operands, ECC offer higher perfor-
mance and lower power when compared with other systems. Especially in per-
vasive computing applications, ECC admit valuable optimizations in computing
and communication complexity.

The security of ECC relies on the difficulty of Elliptic Curve Discrete Log-
arithm Problem (ECDLP) [3]. Briefly speaking, ECDLP is to find an integer n
for two points P and Q on an elliptic curve E such that Q ≡ [n]P . To use ECC
in the real world, practitioners need to know: how big should the parameters (or,
colloquially, the ”key size”) be to avoid practical attacks? Choosing parameters
too small allows computational attackers to solve the ECDLP instance, while
choosing parameters too large wastes time, communication, and storage. To en-
courage investigation of these issues, researchers at Certicom Corp. published a
list of ECDLP challenges in 1997 [7].
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Smaller members of the list of Certicom ECDLP challenge problems have
been solved. Escott et al. report on their successful attack on ECCp-97, an
ECDLP in a group of roughly 297 elements [8]. A larger instance, ECC2-109 was
solved by Monico et al. [6]. Bos et al. analyze and solve the ECDLP in a group
of roughly 2112 elements using PS3 [4].

This paper reports on our effort to solve one of the Certicom ECDLP chal-
lenge problems using FPGAs. We focus on the ECC2K-130 challenge. ECC2K-
130 is a Koblitz curve challenge over F2131 . Compared to previous attacks, which
are mostly implemented in software on general-purpose workstations, our work
obtains a much higher performance-cost ratio by using FPGA platforms.

The rest of the paper is organized as follows. Section 2 summarizes related
work. In Section 3 we give a short description of the function that we imple-
ment on FPGA. Section 4 and 5 explore different algorithms and architectures.
Section 6 reports on the results, and finally we conclude the paper in Section 7.

2 Related Work

The strongest known attacks against the ECDLP are generic attacks based on
Pollard’ rho method [20, 5]. Further improvements including parallelization and
the use of group automorphisms were made by Wiener and Zuccherato [26], van
Oorschot et al. [25], and Gallant et al. [9]. The parallelized Pollard rho method
consists of parallel loops that search for distinguished points. Each loop starts
from a random point on E and ends when a distinguished point is hit. The core
function is thus the update function, also known as iteration function. Our work
implements this function along with its improvements.

FPGAs have been applied to the Pollard rho method in several previous
works. Güneysu et al. analyze ECDLPs over fields of odd-prime characteris-
tic [11, 10], targeting a machine with 128 low-cost FPGAs. They extrapolate
that to break an ECDLP in a group of roughly 2131 elements using this machine
as taking over a thousand years.

Similarly, Meurice de Dormale et al. apply FPGAs to the ECDLP [17]. Here,
they use characteristic-two finite fields, but restrict their inquiry to polynomial
basis. Although conventional wisdom has held that low-weight polynomial basis
is a better choice, in our application we can take advantage of the free repeated
squarings (2n-th powers) offered in normal basis. In addition, recent progress on
normal-basis multiplication by Shokrollahi et al. [24] and Bernstein and Lange
[2] further improve the prospects for normal basis. Our work is the first FPGA
implementation of parallelized Pollard rho method using normal basis multipli-
cation.

This work is part of a global distributed effort to break the largest ECDLP
ever solved [1]. While that paper summarizes the overall effort, here we focus on
the FPGA implementation.

The Contribution of This Paper. As part of this effort, this paper ex-
plores FPGA implementation options for the core finite-field arithmetic opera-
tions as well as architectures. An in-depth comparison between polynomial basis
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Fig. 1: Dataflow of the iteration function: Pi+1 = σj(Pi)⊕Pi. (Note here σj(x) = x2
j

)

multiplier, Type-II normal basis multiplier and Shokrollahi’s multiplier is given.
Especially, this is the first FPGA implementation of Shokrollahi’s multiplication
algorithm. Our work proves the superiority of an FPGA platform over other spe-
cialized architectures and its suitability for the tasks that are computationally
demanding. Results in this paper are relevant both to the cryptanalytic commu-
nity as well as those interested in fast cryptographic implementations in normal
basis.

3 Iteration function

We briefly describe the iteration function in this section. The general attack
strategy and the design rationale behind of the iteration function can be found
in [1]. The iteration function is implemented on FPGA.

Our condition for a point Pi(x, y) to be a distinguished point is that HW(x) ≤
34, where x is represented using type-II normal-basis and HW(x) returns the
Hamming weight of x. Our iteration function is defined as

Pi+1 = σj(Pi)⊕ Pi, (1)

where σj(Pi) = (x2
j

, y2
j

) and j = ((HW(xPi
)/2) mod 8) + 3. To solve ECC2K-

130, about 260.9 iterations are expected in total [1].
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An efficient implementation of the iteration function is thus the key step
towards a fast attack. Given Pi(x, y), the iteration function computes Pi+1(x′, y′)
using Eq.(1). Fig. 1 shows the data flow of the iteration function.

4 Optimizing Finite-Field Operations

The iteration function consists of two multiplications, one inversion and several
squarings in F2m . Thus, fast finite-field arithmetic is essential to optimize the
attack.

A vast body of literature exists on finite field arithmetic, and we are free to
choose from a variety of representations and algorithms. For example, we can
use either polynomial basis or normal basis for element representation, and an
iteration can be performed using eithr Extended Euclidean Algorithm (EEA) or
Fermat’s little theorem. This leads to an important question: which configuration
(basis, multiplication algoirthm, inversion algorithm) ensures the most efficient
implementation of the aforementioned iteration function? We try to answer this
question with complexity analysis and design-space exploration.

4.1 Multiplication

An element of F2131 can be represented in both polynomial basis P and Type-II
normal basis N, where

P = { 1, w, w2, · · · , w130},
N = { γ + γ−1, γ2 + γ−2, γ2

2

+ γ−2
2

, · · · , γ2130 + γ−2
130}.

Here w is a root of an irreducible polynomial of degree 131, while γ is a primitive
263rd root of unity. Multiplication in polynomial basis has long been considered
more efficient than normal basis. On the other hand, squaring in normal basis is
simply a circular shift. Moreover, computing any power α2n can be performed by
circularly-shifting by n positions. We implemented both options for comparison.

Besides conventional multiplication algorithms in polynomial and normal ba-
sis, we also implemented a recently reported hybrid algorithm, due to Shokrol-
lahi [24]. This algorithm uses only O(m logm) operations for the basis conversion.
When multiplication is needed, two field elements are converted to polynomial
basis, a polynomial-basis multiplication is carried out, then the results are con-
verted back to normal basis and reduced. This paper includes the first FPGA
implementation of this method.

Polynomial-Basis Multiplier Algorithms for multiplication in polynomial
basis consist of two steps, polynomial multiplication and modular reduction.
They can be carried out separately or interleaved. Given two elements A(w) =
m−1∑

i=0

aiw
i and B(w) =

m−1∑

i=0

biw
i, a bit-serial modular multiplication algorithm is

shown in Alg. 1.
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Algorithm 1 Bit-serial modular multiplication in F2m

Input: A(w) =

m−1X
i=0

aiw
i, B(w) =

m−1X
i=0

biw
i and P (w).

Output: A(w)B(w) mod P (w).

1: C(w)(=
mX
i=0

ciw
i)← 0;

2: for i = m− 1 to 0 do
3: C(w)← w(C(w) + cmP (w) + biA(w));
4: end for

Return: C(w)/w.

It is well known that one way to reduce area complexity is to use a polynomial
P (w) with special form, such as low weight. For F2131 there exists an irreducible
pentanomial P (w) = w131 + w13 + w2 + w + 1. Thus, the complexity of step 3
in Alg. 1 is (m+ 4) XOR and (m+ 4) AND operations.

One can also compute C(w) = A(w)B(w) =
∑2m−2

i=0 ciw
i first, and then re-

duce it with P (w). In this case, the Karatsuba method [14] can be used to reduce
the complexity of polynomial multiplication. The reduction phase requires O(m)
AND and XOR operations when low-weight P (w) exists. For example, when
P (w) is a pentanomial, reducing C(w) requires around 4m AND and 4m XOR
operations. The overall complexity of a modular multiplication is M(m)+O(m),
where M(m) is the complexity of an m-bit polynomial multiplication.

Normal-Basis Multiplier The normal-basis multiplier by Sunar and Koç [23]

employs the fact that an element (γ2
i

+ γ2
−i

) for i ∈ [1,m] can be written as
(γj + γ−j) for some j ∈ [1,m]. As a result, the following basis pN is equivalent
to N:

pN = {γ + γ−1, γ2 + γ−2, γ3 + γ−3, · · · , γ131 + γ−131}.

pN is also known as permuted normal basis. Let βi = (γi + γ−i), then an
element T in GF (2m) is represented as T =

∑m
i=1 tiβi. One multiplication of

A and B represented with pN requires m2 AND and 3m(m − 1)/2 two-input
XORs.

This algorithm is then adapted by Kwon [16] to deduce a systolic multiplier.
Compared to the Sunar-Koç multiplier, Kwon’s architecture shown in Fig. 2,
is highly regular and thus can be implemented in a digit-serial manner. On the
other hand, it has higher complexity: 2m AND and 2m XOR gates for a bit-serial
multiplier.

Shokrollahi’s multiplier Shokrollahi discovered an efficient algorithm for ba-
sis conversion between permuted normal basis and polynomial basis. Later, Bern-
stein and Lange proposed further optimizations to this approach including a
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Fig. 2: Modular multiplier in GF (2m) using Kwon’s algorithm

more straight-forward conversion function. More details on this multiplication
method can be found in their recent work [2]. The new polynomial basis (nP)
is defined in [2] as Type-II polynomial basis.

nP = {(γ + γ−1), (γ + γ−1)2, · · · , (γ + γ−1)m}

which leads to a hybrid normal-basis multiplication algorithm. We denote AnP

and ApN the representation of A using nP and pN, respectively. A multiplication
then proceeds as follows.

1. converting to polynomial basis: AnP ← ApN , BnP ← BpN ,
2. polynomial multiplication: CnP ← AnPBnP ,
3. converting back to normal basis (2m-bit conversion): CpN ← CnP ,
4. reduction (folding).

Let SpN2nP be a transformation function that converts ApN to AnP . The
essential observation by Shokrollahi is that basis conversion can be recursively
broken down to half-length transformations. Let fpN and fnP be corresponding
representations of f in pN and nP, respectively,

fpN = [f1 f2 · · · f8]� [(γ + γ−1) (γ2 + γ−2) · · · (γ8 + γ−8)]T ,

fnP = [g1 g2 · · · g8]� [(γ + γ−1) (γ + γ−1)2 · · · (γ + γ−1)8]T ,

Converting fpN to fnP can be then performed with two 4-bit transformations:

{g1, g2, g3, g4}nP
SpN2nP←−−−−− {f1 + f7, f2 + f6, f3 + f5, f4}pN

{g5, g2, g7, g8}nP
SpN2nP←−−−−− {f5, f6, f7, f8}pN

The pN → nP and nP → pN conversion in F2m takes (m/2) log2(m/4)
operations each. In total, one field multiplication takes about M(m)+m log2m+
m log2(m/4) operations. A more detailed discussion on the complexity can be
found in [2].

Based on the analysis above, we can draw the following conclusions:

– A bit-serial multiplier using polynomial basis has a lower area complexity
than one using normal basis.
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Fig. 3: Shokrollahi multiplier

– When low-weight polynomials exist, Shokrollahi’s multiplication algorithm
is likely to have a higher complexity than convential polynomial basis multi-
plication since the base conversion step is more complex than the polynomial
reduction.

Though it seems that polynomial basis should be used, normal basis offers
several advantages in this specific application. First, the Pollard rho iteration
function requires the Hamming weight of x-coordinate represented in normal
basis. In fact, thanks to the Frobenius endomorphism, checking HW of x in
normal basis checks 131 points simultaneously. This brings a speedup of

√
131 to

the attack [1]. Second, the iteration function includes two σ(x, j) = x2
j

routines
(known as m-squaring). In normal basis, σ is essentially a circular shift of j bits,
and thus can be performed in one cycle. Gains in m-squaring compensate the
loss in multiplications.

4.2 Inversion

Inversion is the most costly of the four basic field operations. Two broad ap-
proaches are found in the literature: the Extended Euclidean Algorithm (EEA)
and Fermat’s Little Theorem (FLT). In polynomial basis, the binary variant of
EEA is generally faster, while the variant of FLT attributed to Itoh and Tsu-
jii [13] is the better choice in normal basis because squaring is free. Itoh-Tsujii
reduces the problem of extension-field inversion to exponentiation and inversion
in the subfield. In polynomial basis, exponentiation is generally quite expensive
owing to the need to explicitly compute squares, making EEA a better choice.
Itoh-Tsujii raises an element to the exponent r− 1 = 2 + 22 + · · ·+ 2m−1, using
the fact that in normal basis, squaring is free. In addition, this algorithm uses
an addition chain to reduce the number of multiplications: in F2131 , our addi-
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Algorithm 2 Simultaneous inversion (Batch size = 3)

Input: α1, α2, α3.
Output: α−1

1 , α−1
2 and α−1

3 .

1: d1 ← α1

2: d2 ← d1α2

3: d3 ← d2α3

4: u← d−1
3

5: t3 ← ud2, u← uα3

6: t2 ← ud1, u← uα2

7: t1 ← u

Return: t1, t2, t3.

tion chain has length nine (1, 2, 4, 8, 16, 32, 64, 128, 130). The net result is a
complexity of eight field multiplications to compute an inverse.

To further reduce the computation costs for inverses, we employ Mont-
gomery’s trick that batches multiple inversions by trading inversions for mul-
tiplications [19]. Alg.2 shows this method to invert three inputs. Indeed, we can
trade one inversion for three extra multiplications. As a result, one iteration
function uses 5M + (1/n)I where n is the batch size.

5 Architecture Exploration

The architecture of the engine has a fundamental impact on the overall through-
put. Among all the design options the following three are of great importance.

1. Multiplier architecture
2. Memory architecture
3. Inverter architecture

As an architecture exploration, we implemented three different architectures
using different types of multipliers.

5.1 Architecture I: Load-Store

As a starting point, we take a programmable elliptic-curve coprocessor as the
platform. A digit-serial polynomial multiplier (see [21] for details) is used. A
dedicated squarer is included for squaring. In each loop, the x-coordinate is con-
verted into its normal basis representation, and its Hamming weight is counted.
This adds a base conversion block and a Hamming weight computation block.

On this platform, squaring or addition takes two clock cycles, while multi-
plication takes bn/dc + 1 cycles given a digit-size d. The design is synthesized
using ISE 11.2 and the target FPGA is Xilinx Spartan-3 XC3S5000 (4FG676).
Implementation results show that d = 22 gives the best trade-off in terms of
area-delay product.
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Fig. 4: Archi-I : ECC processor using polynomial basis multiplier

The design consumes 3,656 slices, including 1,468 slices for the multiplier, 75
slices for the squarer, 1,206 slices for the base conversion, 117 slices for Hamming
weight calculation.

One Pollard rho iteration takes 71 cycles, among them 35 cycles are used
for multiplication. The design achieves a maximum clock frequency of 101 MHz,
and one iteration takes 704 ns. The m-squaring is performed with m successive
squarings. Obviously, this architecture is not efficient. Them-squaring operations
can be largely sped up when normal basis is used.

5.2 Architecture II: Type-II Normal Basis Multiplier

Archi-II uses a digit-serial normal basis multiplier. The structure of the multi-
plier is shown in Fig. 2. When m is small, a full systolic architecture can be used,
performing one multiplication per cycle. However, a systolic array for F2131 is
too large (more than 20,000 slices on Spartan-3). Thus, a digit-serial architec-
ture is used. Implementation results show that d = 13 gives the lowest area-delay
product. The multiplier alone uses 2,093 slices.

The basis-conversion component in Archi-I is no longer needed in Archi-II,
saving 1,468 slices. In total, the design uses 2,578 slices. On this platform, one
Pollard rho iteration takes 81 cycles, including 55 cycles used for multiplication.
Compared to Archi-I, the m-squaring operation is largely improved. However,
the multiplier becomes much slower than that in Archi-I. The design achieves a
maximum clock frequency of 125 MHz, and one iteration takes 648 ns.

5.3 Architecture III: Fully Pipelined Iteration Function

Archi-III unrolls the Pollard rho iteration such that a throughput of one iter-
ation per cycle is achieved. Remember that 5 multiplications are required for
each iteration, as a result, five normal basis multipliers are used. The design is
fully pipelined. Since additions and squarings are embedded in the pipeline, it
increases the delay of one iteration but does not affect the throughput.
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Fig. 5: Archi-II : ECC processor using normal basis

Fig. 6: Archi-III : pipelined processor using Shokrollahi multipliers

At the first glance, fully expanding the iteration function seams impossible
due to the inversion in each iteration. Indeed, after dx is generated in Fig.1,
inverting dx will take too much area to fit one FPGA. The solution is to start
the pipeline after the real inversion (u← d−1n ) is performed.

Fig 6 shows the architecture that supports the expanded iteration function.
In total, five multipliers are used. Before the starting of the pipeline, x,y,dx and
dy of Pi are stored in RAM (x), (y), (dx) and (dy), respectively. RAM (dn)
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keeps the intermediate data di of Alg. 2, and u is ready in register Ru. After the
starting of the pipeline, the five multipliers perform the following operations.

– Mul 1: ti ← udi−1
– Mul 2: u← uαi

– Mul 3: λ← dy(1/dx)
– Mul 4: λ(x′ + x)
– Mul 5: d′i ← d′idx

′

Mul 1, Mul 2 and Mul 5 are used by batch inversion (Alg. 2), while Mul 3 and
Mul 4 are used for point addition (Fig. 1).

The inversion (u ← d−1n ) is performed by another multiplier together with
a squarer. In order to keep full use of the engine, we interleave two groups
of iteration function. When the engine is executing one group, the inverter is
performing inversion for the other group.

The implementation of Archi-III consumes 22,195 slices and 20 block RAMs
(RAMB16s) on Xilinx Spartan-3 XC3S5000 FPGA. One fully pipelined Shokrol-
lahi’s multiplier uses 4,391 slices. The inverter itself uses 4,761 slices. In total,
the design uses 26,731 slices. The post placing-and-routing results show that this
design can achieve a maximum clock frequency of 111 MHz.

6 Results and Analysis

The ECC2K-130 attack using FPGAs is conducted using an improved version of
the COPACOBANA cluster described in [10, 12], also known as RIVYERA [22].
It is populated with 128 Spartan-3 XC3S5000 FPGAs and an optional 32MB
memory per FPGA combined in one 19” housing. All FPGAs are connected with
two opposite directed, systolic ring networks that directly interface with the PC
(which is integrated in the same housing) via two individual PCI Express com-
munication controllers. Although this setup can obviously provide a significant
amount of bandwidth due to its local communication paths, the ECC2K-130
attack design actually requires only moderate communication performance.

Table 1 summarizes the implementation results on a Spartan-3 XC3S5000
FPGA. Based on the available resources (33,280 slices and 104 BRAMs) of each
XC3S5000 FPGA, we also estimated that at most 9 clones of Archi-I or 12 clones
of Archi-II can be implemented on a single FPGA. For Archi-III, one clone uses
80% of the available resources of one FPGA.

Table 1: Cost for one Pollard’s rho iteration for various architectures

Digit Area Freq. Delay per Step Throughput
size #slice #BRAM [MHz] Cycles [ns] per FPGA

Archi-I : Polynomial basis 22 3,656 4 101 71 703 12.8 ×106

Archi-II : Type-II ONB 13 2,578 4 125 81 648 18.5 ×106

Archi-III : Shokrollahi’s - 26,731 20 111 23 (stages) 206 111 ×106
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The throughput per engine, Te is computed as Te = Freq.
Cycles per step , and the

throughput per FPGA Tc is computed as Tc = Te ∗ l. Here, l is the number of
engines on a single FPGA. Compared with Archi-I, Archi-II has smaller area
and shorter delay. In other words, Type-II optimal normal basis has significant
advantages for this application. On the other hand, Archi-III achieves a 8.6
times speedup over Archi-II. The improvement mainly comes from the efficient
field arithmetic and the special architecture. The use of Shokrollahi’s algorithm
significantly improved the throughput of a multiplier, while the expansion of the
iteration function hides delays caused by addition and squaring in the pipeline.

Table 2: Performance comparison

Source Platform Challenge Frq. Throughput
[MHz] [×106]

[17] Xilinx FPGA ECC2-131 100 10.0
S3E1200-4

[1] Cell CPU ECC2K-130 3,200 27.7
6 SPEs, 1 PPE

[1] Graphics Card ECC2K-130 1,242 54.0
GTX 295

[1] Core 2 Extreme ECC2K-130 3,000 22.5
Q6850, 4 cores

This work Xilinx FPGA ECC2K-130 111 111
(Archi-III ) XC3S5000

In Table 2 we compare our results with similar implementations on different
platforms.

To our knowledge, this is the first FPGA implementation using fast normal-
basis multiplication to attack ECDLP. As a point of comparison, we look into
the work of Meurice de Dormale, et al. [17]. They do not specifically target
Koblitz curves and they are using different FPGAs, which makes a fair compar-
ison difficult.

On the other hand, there is an interesting comparison between implemen-
tations of the same attack (and thus iteration function) on different platforms
other than FPGAs. Within the whole project [1] efforts have been made to
speed-up the iteration function on CPUs, GPUs and PlayStation 3. These plat-
forms are state-of-the-art processors supporting massive parallelism. Compared
to these platforms, our FPGA implementation is at least 2 times faster in terms
of throughput.

The whole complexity of this attack is around 260.9 iterations. We estimate
that given five RIVYERA FPGA clusters, the ECC2K-130 challenge can be
solved in one year.
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7 Conclusion

A new efficiency record for FPGAs in cracking public-key cryptosystems based
on elliptic curves is reported. We conduct a detailed comparison of different ar-
chitectures for normal-basis multipliers suited this application. The comparison
includes the first FPGA implementation report for one of these architectures.
Our results show that even low-cost FPGAs outperform CPUs, the PlayStation
3 platform and even GPUs.
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Abstract. We analyze how fast we can solve general systems of multivariate equations of various
low degrees over F2; this is a well known hard problem which is important both in itself and as part
of many types of algebraic cryptanalysis. Compared to the standard exhaustive search technique, our
improved approach is more efficient both asymptotically and practically. We implemented several
optimized versions of our techniques on CPUs and GPUs. Our technique runs more than 10 times
faster on modern graphic cards than on the most powerful CPU available. Today, we can solve 48+
quadratic equations in 48 binary variables on a 500-dollar NVIDIA GTX 295 graphics card in 21
minutes. With this level of performance, solving systems of equations supposed to ensure a security
level of 64 bits turns out to be feasible in practice with a modest budget. This is a clear demonstra-
tion of the computational power of GPUs in solving many types of combinatorial and cryptanalytic
problems.
Keywords: multivariate polynomials, solving systems of equations, exhaustive search, paralleliza-
tion, Graphic Processing Units (GPUs)

1 Introduction

Solving a system of m nonlinear polynomial equations in n variables over Fq is a natural mathematical
problem that has been investigated by various research communities. The cryptographers are among the
interested parties since an NP-complete problem whose random instances seem hard could be used to
design cryptographic primitives, as witness the development of multivariate cryptography in the last few
decades, using one-way trapdoor functions such as HFE, SFLASH, and QUARTZ [13, 22, 23], as well as
stream ciphers such as QUAD [5].

Conversely, in “algebraic cryptanalysis” one distills from a cryptographic primitive a system of mul-
tivariate polynomial equations with the secret among the variables. This does not break AES as first
advertised, but does break KeeLoq [12], for a recent example, and find a faster collision on 58-round
SHA-1 [26].

Since the pioneering work by Buchberger [10], Gröbner-basis techniques have been the most promi-
nent tool for this problem, especially after the emergence of faster algorithms such as F4 or F5 [16, 17],
which broke the first HFE challenge [18]. The cryptographic community independently rediscovered
some of the ideas underlying efficient Gröbner-basis algorithms as of the XL algorithm [14] and its vari-
ants. They also introduced techniques to deal with special cases, particularly that of sparse systems [1,25].

In this paper we take a different path, namely improving the standard and seemingly well-understood
exhaustive search algorithm. When the system consists of n randomly chosen quadratic equations in n
variables, all the known solution techniques have exponential complexity. In particular, Gröbner-basis
methods have an advantage on very overdetermined systems (with many more equations than unknowns)
and systems with certain algebraic “weaknesses”, but were shown to be exponential on “generic” enough
systems in [2,3]. In addition, the computation of a Gröbner basis is often a memory-bound process; since
memory is more expensive than time at the scale of interest, such sophisticated techniques can be inferior
in practice when compared to simple testing of all the possible solutions, which uses almost no memory.

1
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For “generic” quadratic systems, experts believe [2, 27] that Gröbner basis methods will go up to
degree D0, which is the minimum possible D where the coefficient of tD in (1 + t)n(1 + t2)−m goes
negative, and then require the solution of a system of linear equations with T &

(
n

D0−1
)

variables.
This will take at least poly(n) · T 2 bit-operations, assuming we can afford a sufficiently large amount
of memory and that we can solve such a linear system of equations with non-negligible probability in
O(N2+o(1)) time for N variables. For example, if we assume we can operate a Wiedemann solver on
a T × T submatrix of the extended Macaulay matrix of the original system, then the polynomial is
3n(n − 1)/2. When m = n = 200, D0 = 25, making the value of T exceeds 2102; even taking into
consideration guessing before solving [7, 28], we can still easily conclude that Gröbner-basis methods
would not outperform exhaustive search in the practically interesting range of m = n ≤ 200.

The questions we address are therefore: how far can we go, on both theoretical and practical sides, by
pushing exhaustive search further? Is it possible to design more efficient exhaustive search algorithms?
Can we get better performance using different hardware such as GPUs? Is it possible to solve in practice,
with a modest budget, a system of 64 equations in 64 unknowns over F2? Less than 15 years ago, this was
considered so difficult that it even underlied the security of a particular signature scheme [21]. Intuitively,
some people may consider an algebraic attack that reduces a cryptosystem to 64 equations of degree 4 in
64 F2-variables to be a successful practical attack. However, the matter is not that easily settled because
the complexity of a naïve exhaustive search algorithm would actually be much higher than 264: simply
testing all the solutions in a naïve way results in 2 ·

(
64
4

)
·264 ≈ 284 logical operations, which would make

the attack hardly feasible even on today’s best available hardware.

Our Contribution. Our contribution is twofold. On the theoretical side, we present a new type of ex-
haustive search algorithm which is both asymptotically and practically faster than existing techniques. In
particular, we show that finding all zeroes of a single degree-d polynomial in n variables requires just
d · 2n bit operations. We then extend this technique and show how to find all the common zeroes of m
random quadratic polynomials in log2 n · 2n+2 bit operations, which is only slightly higher. Surprisingly,
this complexity is independent of the number of equations m.

On the practical side, we have implemented our new algorithms on x86 CPUs and on NVIDIA GPUs.
While our CPU implementation is fairly optimized using vector instructions, our GPU implementation
running on one single NVIDIA GTX 295 graphics card runs up to 13 times faster than the CPU imple-
mentation using all four cores of an Intel quad-code Core i7 at 3 GHz, one of the fastest CPUs currently
available. Today, we can solve 48+ quadratic equations in 48 binary variables using just an NVIDIA GTX
295 graphics card in 21 minutes. This device is available for about $500. It would be 36 minutes for cubic
equations and two hours for quartics. The 64-bit signature challenge [21] can thus be broken with 10 such
cards in 3 months, using a budget of $5000. Even taking into account Moore’s law, this is still quite an
achievement.

In contrast, the implementation of F4 in MAGMA-2.16, often cited as the best Gröbner-basis solver
commercially available today, will completely use up 64 GB of RAM in solving just 25 cubic equations
in as many F2-variables. We have also tested it with overdefined systems, for which Gröbner-basis al-
gorithms are known to work better. While it does not run out of memory, the results are not satisfying:
2.5 hours to solve 20 cubic equations in 20 variables, half an hour for 45 quadratic equations in 30 vari-
ables, and 7 minutes for 60 quadratic equations in 30 variables on one 2.2-GHz Opteron core. Some very
recent improvements on Gröbner-basis solvers have reported speed-up over MAGMA F4 of two- to five-
fold [11]. However, even with such significant improvements, Gröbner-basis solvers do not seem to be
able to compete with exhaustive search algorithms in this range, as each of the above is solved in a split
second using negligible amount of memory on the same CPU by the latter.
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Table 1. Performance results for n = 48 and projected budgets for solving n = 64 in one month

Time (minutes) Testing platform #cores est. cost
d = 2 d = 3 d = 4 GHz Arch. Name USD (#used) (USD)
1217 2686 3191 2.2 K10 Phenom 9550 120 4(1) 54,000
1157 1992 2685 2.3 K10+ Opteron 2376 184 4(1)

113,316
142 240 336 2.3 K10+ Opteron 2376×2 368 8(8)
780 1364 1819 2.4 C2 Xeon X3220 210 4(1) 60,720
671 1176 1560 2.83 C2+ Core2 Q9550 225 4(1)

55,575
179 294 390 2.83 C2+ Core2 Q9550 225 4(4)
761 1279 1856 2.26 Ci7 Xeon E5520 385 4(1)

78,720
95 154 225 2.26 Ci7 Xeon E5520×2 770 8(8)
41 73 271 1.3 G200 GTX 280 n/a 240 n/a
21 36 126 1.25 G200 GTX 295 500 480 15,500

Implications. The new exhaustive search algorithm can be used as a black box in cryptanalysis that
needs to solve quadratic equations. This includes, for instance, several algorithms for the Isomorphism of
Polynomials problem [8, 24], as well as attacks that rely on such algorithms, e.g., [9].

We also show with a concrete example that (relatively simple) computations requiring 264 operations
can be easily carried out in practice with readily available hardware and a modest budget. Lastly, we
highlight the fact that GPUs have been used successfully by the cryptographic community to obtain very
efficient implementations of combinatorial algorithms or cryptanalytic attacks, in addition to the more
numeric-flavored cryptanalysis algorithm demonstrated by the implementation of the ECM factorization
algorithm on GPUs [6].

Organization of the Paper. Section 2 establishes a formal framework of exhaustive search algorithms
including useful results on Gray Codes and derivatives of multivariate polynomials. Known exhaustive
search algorithms are reviewed in Section 3. Our algorithm to find the zeroes of a single polynomial of any
degree is given in Section 4, and it is extended to find the common zeroes of a collection of polynomials in
Section 5. Section 6 describes the two platforms on which we implemented the algorithm, and Section 8
describes the implementation and performance evaluation results.

2 Generalities

In this paper, we will mostly be working over the finite vector space (F2)
n. The canonical basis is denoted

by (e0, . . . , en−1). We use⊕ to denote addition in (F2)
n, and + to denote integer addition. We use i� k

(resp. i� k) to denote binary left-shift (resp. right shift) of the integer i by k bits.

Gray Code. Gray Codes play a crucial role in this paper. Let us denote by bk(i) the index of the k-th
lowest-significant bit set to 1, or −1 if the hamming weight of i is less than k. For example, bk(0) = −1,
b1(1) = 0, b1(2) = 1 and b2(3) = 1.

Definition 1. GRAYCODE(i) = i⊕ (i� 1).

Lemma 1. For i ∈ N: GRAYCODE(i+ 1) = GRAYCODE(i)⊕ eb1(i+1).

Lemma 2. For j ∈ N:

GRAYCODE
(
2k + j · 2k+1

)
=

{
GRAYCODE

(
2k
)
⊕ (GRAYCODE(j)� (k + 1)) if j is even

GRAYCODE
(
2k
)
⊕ (GRAYCODE(j)� (k + 1))⊕ ek if j is odd.
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Proof. It should be clear that 2k + j · 2k+1 and 2k ⊕ j · 2k+1 in fact denote the same number. Also,
GRAYCODE is a linear function on (F2)

n. Thus it remains to establish that GRAYCODE(j · 2k+1) =
GRAYCODE(j) � k + 1 (resp. ek ⊕ (GRAYCODE(j)� k + 1)) when j is even (resp. odd). Again,
j · 2k+1 = j � (k + 1), and by definition we have:

GRAYCODE(j · 2k+1) = GRAYCODE(j � (k + 1)) = (j � (k + 1))⊕ ((j � (k + 1))� 1)

Now, we have :

(j � k + 1)� 1 =

{
(j � 1)� k + 1 when j is even
((j � 1)� k + 1)⊕ ek when j is odd

and the result follows. ut

Derivatives. Define the F2 derivative ∂f
∂i of a polynomial with respect to its i-th variable as ∂f

∂i : x 7→
f(x+ ei) + f(x). Then for any vector x, we have:

f(x⊕ ei) = f(x)⊕ ∂f

∂i
(x) (1)

If f is of total degree d, then ∂f
∂i is a polynomial of degree d− 1. In particular, if f is quadratic, then

∂f
∂i is an affine function. In this case, it is easy to isolate the constant part (which is a constant in F2) :
ci =

∂f
∂i (0) = f(ei)⊕ f(0). Then, the function x 7→ ∂f

∂i (x)⊕ ci is by definition a linear form and can be
represented by a vectorDi ∈ (F2)

n. More precisely, we haveDi[j] = f (ei ⊕ ej)⊕f (ei)⊕f (ej)⊕f (0).
Then equation (1) becomes:

f(x⊕ ei) = f(x)⊕Di · x⊕ ci (2)

Enumeration Algorithms. We are interested in enumeration algorithms, i.e., algorithms that evaluate
a polynomial f over all the points of (F2)

n to find its zeroes. Such an enumeration algorithm is com-
posed of two functions: INIT and NEXT. INIT(f, x0, k0) returns a State containing all the information
the enumeration algorithm needs for the remaining operations. The resulting State is configured for the
evaluation of f over x0 ⊕ (GRAYCODE(i)� k0), for increasing values of i. NEXT(State) advance to
the next value and updates State. Three values can be directly read from the state: State.x, State.y and
State.i. These are linked at all times by the following three invariants:

i) State.y = f(State.x)

ii) State.x = x0 ⊕ (GRAYCODE(State.i)� k0).
iii) NEXT(State).i = State.i+ 1.

Finding all the zeroes of f is then achieved with the loop shown in fig. 1.

3 Known Techniques for Quadratic Polynomials

We briefly discuss the enumeration techniques known to the authors.
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1: procedure ZEROES(f )
2: State← INIT(f, 0, 0)
3: for i from 0 to 2n − 1
4: if State.y = 0 then State.x is a zero of f
5: NEXT(State)
6: end for
7: end procedure

Fig. 1: Main loop common to all enumeration algorithms.

Naive Evaluation. The simplest way to implement an enumeration algorithm is to evaluate the polyno-
mial f from scratch at each point of (F2)

n. If f is of degree d, this requires (d− 1) AND per monomial,
and nearly one XOR per monomial. Since the evaluation takes place many times for the same f with
different values of the variables, we will usually assume that the polynomial can be hard-coded, and that
multiplication of a monomial by its coefficient come for free. Each call to NEXT would then require at
most d ·

(
n
d

)
bit operations, 1/d of which being XORs and the rest being ANDs (not counting the cost of

enumerating (F2)
n, i.e., incrementing a counter). This can be improved a bit, using what is essentially a

multivariate Hörner evaluation technique. If f is quadratic, it can be written:

f(x) = c⊕
n−1∑

i=0

xi ·


cj ⊕

n−1∑

j=i+1

aij · xj


 (3)

If f is cubic, it can be written:

f(x) = c⊕
n−1∑

i=0

xi ·


cj ⊕

n−1∑

j=i+1

xj ·


cij ⊕

n−1∑

k=j+1

aijk · xk






And so on and so forth. The required numbers of operations in this representation is given by:

NAND =
d−1∑

k=1

(
n

k

)
NXOR =

d∑

k=1

(
n

k

)

This method is not without its advantages, chiefly (a) insensitivity to the order in which the points of
(F2)

n are enumerated, and (b) we can bit-slice and get a speed up of nearly ω, where ω is the maximum
width of the CPU logical instructions.

The Folklore Differential Technique. It was pointed out in Section. 2 that once f(x) is known, comput-
ing f(x⊕ ei) amounts to compute ∂f

∂i (x). If f is quadratic, and in this case only, this derivative happens
to be a linear function which can be efficiently evaluated by computing a vector-vector product and a few
scalar additions. This strongly suggests to evaluate f on (F2)

n using a Gray Code, i.e., an ordering of the
elements of (F2)

n such that two consecutive elements differ in only one bit (see lemma 1). This leads to
the algorithm shown in fig. 2.

We believe this technique to be folklore, and in any case it appears more or less explicitly in the
existing literature. Each call to NEXT requires n ANDs, as well as n+ 2 XORs, which makes a total bit
operation count of 2(n+ 1). This is about n/4 times less than the naive method applied to a quadratic f .
Note that when we describe an enumeration algorithm, the variables that appear inside NEXT are in fact
implicit functions of State. The dependency has been removed to lighten the notational burden.
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1: function INIT(f, k0,x0)
2: i← 0
3: x← x0

4: y← f (x0)
5: For all 0 ≤ k ≤ n− 1,

initialize ck and Dk

6: end function

1: function NEXT(State)
2: i← i+ 1
3: k = b1(i)
4: z← VECTORVECTORPRODUCT (Dk,x)⊕ ck
5: y← y ⊕ z
6: x← x⊕ ek+k0

7: end function

Fig. 2: The Folklore differential algorithm.

4 A Faster Recursive Algorithm for any Degree

We now describe one of the main contributions of this paper, a new algorithm which is both asymptotically
and practically faster than other known exhaustive search techniques in evaluating a polynomial of any
degree on all the points of (F2)

n.

4.1 Intuition

In the folklore differential algorithm of fig. 2, the dominating part is the scalar product computed in line 4
of NEXT. It would be great if it were possible to exploit the fact that x is only slightly changed between
to calls to NEXT. The problem is that k (defined on line 3) is never the same in two consecutive iterations.
Now assume we modify the function this way:

1: function NEXT(State)
2: i← i+ 1
3: k = b1(i)
4: z[k]← VECTORVECTORPRODUCT (Dk,x)⊕ ck
5: x[k]← x
6: y← y ⊕ z[k]
8: x← x⊕ ek
9: end function

Then, on line 4, the previous value of z[k], when it exists, is still available, and this value is the scalar
product ofDk with x[k] (which is the previous value of x for the same value of k). Thus, the new value of
z[k] is going to be z[k]⊕Dk · (x⊕ x[k]). The key observation is proposition 1 below, as its consequence
is that the computation of the scalar product can be done in constant time, with two ANDs and one XOR.

Proposition 1. At the beginning of the function, x> ⊕ x[k]> has a hamming weight upper-bounded by
two.

Proof. Indeed, x[k0]> is only accessed and modified when b1
(
i> + 1

)
= k0, for any given k0. The

integers u such that b1(u) = k0 are precisely the integers written u = 2k0 + j · 2k0+1, for j ≥ 0. Then,
if we consider the values of the variables at the beginning of the function, by invariant ii, we have for
some j:

x> = GRAYCODE
(
2k + (j + 1) · 2k+1

)

x[k]> = GRAYCODE
(
2k + j · 2k+1

)

Thus, it follows from lemma 2 that just before line 1 is executed, we have:

x> ⊕ x[k]> = ek ⊕ (GRAYCODE(j)� (k + 1))⊕ (GRAYCODE(j + 1)� (k + 1))

= ek ⊕ ((GRAYCODE (j)⊕ GRAYCODE (j + 1))� (k + 1))
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and by lemma 1,
x> ⊕ x[k]> = ek ⊕ ek+1+b1(j+1) (4)

ut

By looking closely at the proof of proposition 1, we can write an optimized differential algorithm.
However, before that, a few details still need to be addressed.

– The first time that b1(i) = k, then z[k] is not defined. In this case, we in fact know that i = 2k.
Therefore, special care must be taken to initialize z[k] when b2(i) = −1, which is equivalent to
saying that the hamming weight of i is less than two. In that case, by invariant ii, we have:

x =

{
e0 if i = 1

ek ⊕ ek−1 if i = 2k and k > 0

– Also note that with the notation k1 = b1(i) and k2 = b2(i), then if b2(i) 6= −1, equation (4) becomes:

x⊕ x[k] = ek1 ⊕ ek2
And thus,

VECTORVECTORPRODUCT(Dk1 ,x⊕ x[k1]) = Dk1 [k1]⊕Dk1 [k2]

This last formula can be further simplified by observing that Dk1 [k1] = 0.

All these considerations lead to the algorithm shown in fig. 3. Note that the conditional statement
could be removed by unrolling the loop carefully. The critical part of the algorithm is therefore an ex-
tremely reduced section of the code, that performs two XORs, increment a counter, and evaluate b1 as
well as b2. The cost of maintaining i, k1 and k2 can again be reduced greatly by unrolling the loop.

1: function INIT(f, k0,x0)
2: i← 0
3: x← x0

4: y← f(x0)
5: For all 0 ≤ k ≤ n− 1,
6: initialize ck and Dk

7: End for
8: z[0]← c0
9: For all 1 ≤ k ≤ n− 1,
10: z[k]← Dk[k − 1]
11: End for
12: end function

1: function NEXT(State)
2: i← i+ 1
3: k1 = b1(i)
4: k2 = b2(i)
5: if k2 6= −1 then
6: z[k1]← z[k1]⊕Dk1 [k2]
7: end if
8: y← y ⊕ z[k1]
9: x← x⊕ ek0+k1

10: end function

Fig. 3: An optimized differential enumeration algorithm for quadratic forms.

4.2 Recursive Generalization to Any Degree.

It is in fact possible to generalize the improvement of the folklore differential algorithm that lead to the
optimized differential algorithm in the quadratic case. The core idea is that in this algorithm, a given
derivative is evaluated on the consecutive points of something that looks very much like a Gray code.
This suggest using the technique recursively.
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To make this thing explicit, we introduce a new State for each of the derivatives of f used in the
enumeration of f . Instead of storing x[k] and z[k], we will accessDerivative[k].y andDerivative[k].y.
Also,Derivative[k].iwill count the number of times b1(k) happened. We now reformulate our optimized
algorithm in this framework. However, know, the x0 and k0 parameters appearing in invariant ii will play
a more important role.

Terminal case when f is of degree 0
1: function INIT(f, k0, x0)
2: i← 0
3: x← x0
4: y← f(x0)
5: end function

1: function NEXT(State)
2: i← i+ 1
3: k = b1(i)
4: x← x⊕ ek+k0

5: end function

Recursive case when deg f > 0.
1: function INIT(f, k0, x0)
2: i← 0
3: x← x0
4: y← f(x0)

7: Derivative[0]← INIT

(
∂f

∂k0
, k0 + 1, x0

)

6: for k from 1 to n− k0 − 1

7: Derivative[k]← INIT

(
∂f

∂k + k0
, k + k0 + 1, x0 ⊕ ek0+k−1

)

8: end for
9: end function

1: function NEXT(State)
2: i← i+ 1
3: k = b1(i)
4: x← x⊕ ek+k0

5: y← y ⊕Derivative[k].y
6: NEXT(Derivative [k])
7: end function

Fig. 4: The recursive differential for all degrees.

A correctness proof is given in the full version.

4.3 Time and Space Complexity Considerations

It should be clear from the description of NEXT that it has complexity O (d). Therefore, the complexity
of enumerating all the values of f on (F2)

n can be done with complexity O (d · 2n). What is the space
requirement of the algorithm? The answer to this question is twofold: there is an internal state that gets
modified by the algorithm, and that correspond to the y field of all the non-constant derivatives. There
is also an array of constants, which is only read from the memory, and that correspond to the y field of
degree-d derivatives.

INIT stores one bit per degree-d derivative ∂f/∂i1∂i2 . . . ∂id, with 1 ≤ i1 < i2 < · · · < id ≤ n. The
number of such tuples (i1, i2, . . . , id) is known to be

(
n
d−1
)
. This yields the following result:

Proposition 2. The algorithm allocates
d−1∑

i=0

(
n

i

)
bits of internal state and

(
n

d

)
bits of constants

4.4 An iterative Version

In section 4.2, we gave a recursive algorithm that works for all degree, which is a generalized version
of the iterative algorithm described only in the quadratic case in section 4.1. Indeed, one could check
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that unrolling the algorithm of fig. 4 with a quadratic f gives back the algorithm of fig. 3. We now move
on to write an iterative version of the general recursive algorithm. This iterative version allows more
optimization, such as the removal of extra useless work, and a more careful parallel scheduling.

But first, the function NEXT2 shown in fig. 5 does exactly the same thing as NEXT, but in a slightly
different way. Instead of calling NEXT at the end, it calls it at the beginning, except the first time a given
value of k is reached, to avoid calling it an extra time at the begining.

1: function NEXT2(State)
2: i← i+ 1
3: k = b1(i)
4: if i 6= 2k then
5: NEXT2 (Derivative [k])
6: end if
7: x← x⊕ ek+k0

8: y← y ⊕Derivative[k].y
9: end function

Fig. 5: An equivalent version of NEXT.

We can therefore work on NEXT2. A first remark is that maintaining x is required by the invariants, but
is otherwise useless for the actual computation. A first step is to completely remove x from the algorithm.
Less obviously, we can also avoid maintaining i. To see that, we first need to state an equivalent of
lemma ?? adapted to NEXT2, the proof of which is left to the reader.

Lemma 3. After k is updated on line 3 of NEXT2, we have:

i> + 1 = 2k + (Derivative[k].i+ 1)× 2k+1.

It is an easy consequence of lemma 3 that in NEXT2, after k is updated on line 3, we have for any j:

bj(Derivative[k].i+ 1) = bj+1(i
> + 1).

Thus, it is possible to avoid storing the i values, except in the main loop, and to re-generate online
by evaluating bj on the index of the main loop. These computations, although taking amortized constant
time, can be made negligible by unrolling. To ease notation, we introduce the following shorthand:

D[k1, k2, . . . , k`]
∆
= State.Derivative[k1].Derivative[k2] . . . .Derivative[k`].y

With this notation, the algorithm of fig. 6 is just an unrolled version of the recursive algorithm of fig. 4
in which all the useless operations have been removed.

5 Enumeration of Several Multivariate Polynomials Simultaneously

In the previous section, we discussed how to enumerate one single polynomial. We now move on to the
enumeration of several polynomial simultaneously.

We will use several time the following simple idea: all the techniques we discussed above perform a
sequence of operations that is independent of the coefficients of the polynomials. Therefore, m instances
of (say) the algorithm of fig. 6 could be run in parallel on f1, . . . , fm. All the parallel runs would execute

93



1: procedure ZEROES(f )
2: State← INIT(f, 0, 0)
3: for i from 0 to 2n − 1
4: if State.y = 0 then GRAYCODE(i) is a zero of f
5: k1 = b1(i+ 1)
6: k2 = b2(i+ 1)
7: . . .
8: kd = bd(i+ 1)
9: if kd > −1 then D [k1, . . . , kd−1]← D [k1, . . . , kd−1]⊕D [k1, . . . , kd−1, kd]
10: . . .
11: if k3 > −1 then D [k1, k2]← D [k1, k2]⊕D [k1, k2, k3]
12: if k2 > −1 then D [k1]← D [k1]⊕D [k1, k2]
13: y← y ⊕D [k1]
14: end for
15: end procedure

Fig. 6: Iterative algorithm for all degrees.

the same instruction on different data, making it efficient to implement on vector or SIMD architectures.
In each iteration of the main loop, it is easy to check if all the polynomials vanished on the current point
of (F2)

n. Evaluating all the m polynomials in parallel using the algorithm of fig. 6 would require roughly
m · d · 2n bit operations. The point of this section is that it is possible to do much better than this.

Let us first introduce a useful notation. Given an ordered set U , we denote the common zeroes of
f1, . . . , fm belonging toU byZ([f1, . . . , fm], U). Let us also denoteZ0 = (F2)

n, andZi = Z ([fi], Zi−1).
It should be clear that Z = Zm is the set of common zeroes of the polynomials, and therefore the object
we wish to obtain.

5.1 General Technique: Splitting the Problem

A possible strategy is to compute the Zi recursively: first Z1, then Z2, etc. However, while the algorithms
of section 4 can be used to compute Z1, they cannot be used to compute Z2 from Z1, because they
intrinsically enumerate all (F2)

n. In practice, the best results are in fact obtained by computing Zk, for
some well-chosen value of k, using k parallel runs of the algorithm of fig. 6, and then computing Zm
using a secondary algorithm. Computing Zk requires d · k · 2n bit operations. It then remains to compute
Zm from Zk, and to find the best possible value of k.

Note that if m > n, we can focus on the first n equations, since a system of n randomly chosen
multivariate polynomial equations in n variables of constant degree d is expected to have a constant
number of solutions, which can in turn be checked against the remaining equations efficiently. If m < n,
then we can specialize m−n variables, and solve the m equations in m variables for any possible values
of the specialized variables. All-in-all, the interesting case is when m = n.

Also note that it makes sense to choose k according to the targeted hardware platform (e.g., k = 32 if
only 32-bit registers are available), it is an interesting theoretical problem choose k in order to minimize
the global number of bit operations.

We now move on to discuss several secondary algorithms to compute Zm from Zk, and discuss their
relative merits.

5.2 Naive Secondary Evaluation

We compute Zi+1 from Zi using naive evaluation, for k ≤ i ≤ n − 1. It is clear that the expected
cardinality of Zi for random polynomial equations is 2n−i. We will assume for the sake of simplicity that
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evaluating a degree-d polynomial requires
(
n
d

)
, following the reasoning in section 3. Computing Zi+1

then takes about
(
n
d

)
· 2n−i bit ops. The expected cost of computing Z is then approximately:

n∑

i=k

(
n

d

)
· 2n−i ≈

(
n

d

)
· 2n−k+1 bit operations.

Minimizing the global cost means solving the equation:

k · d · 2n =

(
n

d

)
· 2n−k+1.

which is easily seen to be equivalent to:

(k · ln 2) · exp(k · ln 2) = 2 ·
(
n

d

)
· ln 2
d

Now, the Lambert W function is such that W (x) · exp(W (x)) = x. Thus, the solution of our equation is:

k =W

((
n

d

)
· 2 · ln 2

d

)
/ ln 2

Using the known fact [15] that when x goes to infinity:

W (x) = lnx− ln lnx+ o(ln lnx)

we find that when n→∞:

k = 1 + log2

((
n

d

)
· 1
d

)
+O (ln lnn)

The full cost of the algorithm is then approximately d2 · log2 n · 2n+1 bit operations..

5.3 Differential Secondary Evaluation

We only describe the quadratic case, but this could be extended to higher degrees. We can efficiently
evaluate Zi+1 from Zi using an easy consequence of equation (1): given f(x), computing f(x + ∆)
takes 2|∆| · n bit operations, where |∆| denote the hamming weight of ∆, by computing |∆| vector-
vector products with the derivatives. Let us order the elements of Zi by writing: Zi =

{
xi1, . . .x

i
qi

}
(the

elements are ordered using the usual lexicographic order), and ∆i
j = xij+1 ⊕ xij .

Computing Zi+1 therefore requires approximately:

2n ·
qi−1∑

j=1

|∆i
j | bit operations.

Now, let us consider the ∆i
j as integer number between 0 and 2n− 1. The xij+1 are the zeroes of a set

of i random polynomials, and under the assumption that each point of (F2)
n has one chance over 2i to be

such a zero, then the difference ∆i
j between two such consecutive zeros follows a geometric distribution

of parameter 2−i, and thus has expectation 2i. The hamming weight |∆i
j | is upper-bounded by

⌈
log2∆

i
j

⌉

(considered as an integer), and therefore |∆i
j | has expectation less than i.

Computing Zi+1 therefore requires in average 2n · i · 2n−i bit op. Finally, computing Z from Zk
requires on average:

2n ·
n−1∑

i=k

i · 2n−i ≤ 4n · (k + 1) · 2n−k bit operations
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An approximately optimal value of k would then satisfy

2k · 2n = 4n · (k + 1) · 2n−k

which is approximately k = 1 + log2 n. The complexity of the whole procedure is then 4 log2 n · 2n.
However, implementing this technique efficiently looks like a lot of work for at best a 2× gain.

6 A Brief Description of the Hardware Platforms

6.1 Vector Units on x86-64

The most prevalent SIMD (single instruction, multiple data) instruction set today is SSE2, available on
all current Intel-compatible CPUs. SSE2 instructions operate on 16 architectural xmm registers, each of
which is 128-bit wide. We use integer operations, which treat xmm registers as vectors of 8-, 16-, 32- or
64-bit operands.

The highly non-orthogonal SSE instruction set includes Loads and Stores (to/from xmm registers,
memory — both aligned and unaligned, and traditional registers), Packing/Unpacking/Shuffling, Logical
Operations (AND, OR, NOT, XOR, Shifts Left, Right Logical and Arithmetic — bit-wise on units and
byte-wise on the entire xmm register), and Arithmetic (add, substract, multiply, max-min) with some or
all of the arithmetic widths. The interested reader is referred to Intel and AMD’s manuals for details on
these instructions, and to references such as [19] for throughput and latencies.

6.2 G2xx-series Graphics Processing Units from NVIDIA

We choose NVIDIA’s G2xx GPUs as they have the least hostile GPU parallel programming environment
called CUDA (Compute Unified Device Architecture). In CUDA, we program in the familiar C/C++
programming language plus a small set of GPU extensions.

An NVIDIA GPU contains anywhere from 2–30 streaming multiprocessors (MPs). There are 8 ALUs
(streaming processors or SPs in market-speak) and two super function units (SFUs) on each MP. A top-
end “GTX 295” card has two GPUs, each with 30 MPs, hence the claimed “480 cores”. The theoretical
throughput of each SP per cycle is one 32-bit integer or floating-point instruction (including add/subtract,
multiply, bitwise AND/OR/XOR, and fused multiply-add), and that of an SFU 2 floating-point multipli-
cations or 1 special operation. The arithmetic units have 20+-stage pipelines.

Main memory is slow and forms a major bottleneck in many applications. The read bandwidth from
memory on the card to the GPU is only one 32-bit read per cycle per MP and has a latency of > 200
cycles. To ease this problem, the MP has a register file of 64 KB (16,384 registers, max. of 128 per
thread), a 16-bank shared memory of 16 KB, and an 8-KB cache for read-only access to a declared
“constant region” of at most 64 KB. Every cycle, each MP can achieve one read from the constant cache,
which can broadcast to many thread at once.

Each MP contains a scheduling and dispatching unit that can handle a large number of lightweight
threads. However, the decoding unit can only decode once every 4 cycles. This is typically 1 instruction,
but certain common instructions are “half-sized”, so two such instructions can be issued together if
independent. Since there are 8 SPs in an MP, CUDA programming is always on a Single Program Multiple
Data basis, where a “warp” of threads (32) should be executing the same instruction. If there is a branch
which is taken by some thread in a warp but not others, we are said to have a “divergent” warp; from then
on only part of the threads will execute until all threads in that warp are executing the same instruction
again. Further, as the latency of a typical instruction is about 24 cycles, NVIDIA recommends a minimum
of 6 warps on each MP, although it is sometimes possible to get acceptable performance with 4 warps.
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7 Parallelization and Memory Bandwith Issues

The critical loop of the algorithm is very short, since it performs only d logical operations. However, it
accesses the memory d+1 times, which suggests that the memory bandwith will be the actual performance
bottleneck. We address this issue in two complementary ways. First we argue that the algorithm is cache-
oblivious [20], i.e., that is uses the cache efficiently regardless of its size. Then we argue that on massively
concurrent architectures such as GPUs, then any word read from the memory can be broadcast to all the
concurrently running threads almost systematically.

7.1 Spatial and Temporal Proximity on Iterative Architectures

We will study the behavior of the algorithm in the Ideal Cache Model. This model consists of a computer
with a two-level memory hierarchy consisting of an ideal (data) cache of Z words and an arbitrarily large
main memory. The cache is partitioned into cache lines, each consisting of L consecutive words that are
always moved together between cache and main memory. The processor can only reference words that
reside in the cache. If the referenced word belongs to a line already in cache, a cache hit occurs, and
the word is delivered to the processor. Otherwise, a cache miss occurs, and the line is fetched into the
cache. The ideal cache is fully associative: cache lines can be stored anywhere in the cache. If the cache
is full, a cache line must be evicted. The ideal cache uses the optimal off-line strategy of replacing the
cache line whose next access is farthest in the future, and thus it exploits temporal locality perfectly. An
algorithm with an input of size n is measured in the ideal-cache model in terms of the usual number of
operation performed by the processor, but also in terms of its Cache Complexity Q(n,Z, L) – the number
of cache misses it incurs as a function of Z and L. We now move on to evaluate the cache complexity
of the enumeration algorithm, as show in fig. 6. We will assume that the “memory cells” accessed by the
algorithm have the same size as the a word in the cache (if this were not the case, it would only incur a
constant multiplicative loss, and we are mostly interested in an asymptotic result).

The memory words accessed in the algorithm belong to arrays of various dimension, and are accessed
with indices of variable length. It should be clear from the description of the algorithm that for all k ≤ d,
the memory location of index [i1, . . . , ik] is accessed at step s if bj(s) = ij , for all j ≤ k. This memory
access pattern is in fact very regular. We say that a memory word is accessed with period T if, when it is
accessed at iteration i, it is also accessed at iteration i+ T , but not in-between.

Lemma 4. For all k ≤ d, the memory location of index [i1, . . . , ik] is accessed with period 2ik+1.

Proof. We associate with an index [i1, . . . , ik] the setΩi1,...,ik of integers n such that b1(n) = i1, . . . , bk(n) =
ik. The problem amounts to show that the difference between two consecutive elements of this set is
2ik+1. But it is easily seen that if n ∈ Ωi1,...,ik , then n+ j · 2ik+1 ∈ Ωi1,...,ik for any positive integer j.
This follows from the fact that bj(n) = bj(n+ 2`) if ` > j, and establishes the result. ut

It should be clear that all the memory location accessed with period exactly T are accessed in the
first T iteration of the main loop. Moreover, they are accessed in a certain order. For instance, memory
words with period 8 are accessed in this order in the first 8 iterations: [2], [0, 2], [1, 2]. By definition of
the period, this access pattern is reproduced without modifications in the next T iterations. Thus, memory
words with period T are accessed in a cyclic fashion.

The algorithm easily defines a total order relation on the memory locations it accesses: x ≤ y if and
only if the first access to x takes places before the first access to y. Let us assume that the actual memory
addresses are compatible with this order relation. Then, more frequently accessed words are stored with
the lowest addresses, and words with the same access frequency are stored contiguously in memory. There
are
∑min(d−1,k)
i=0

(
k
i

)
memory locations that are accessed with period 2k+1.

97



This being said, we will focus on the case where all the
∑d
i=0

(
n
i

)
memory words accessed by the

algorithm do not fit into the cache, to avoid studying the trivial case. Let us define the critical period
2Tc+1 to be the biggest integer such that all the memory words accessed with period 2Tc+1 fit in the
cache:

Tc∑

k=0

min(d−1,k)∑

i=0

(
k

i

)
≤ Z − 1

Under the (mild) assumption that the cache contains Z ≥ 2d words, and thus that Tc is greater than d,
this condition becomes:

2d − 1 +

Tc∑

k=d

d−1∑

i=0

(
k

i

)
≤ Z − 1

This this is the summation in a rectangle inside Pascal’s triangle, then by applying Pascal’s rule recur-
sively, we may simplify this expression, and find that it is equivalent to:

d∑

i=0

(
Tc + 1

i

)
≤ Z

The important point is that all memory words with period 2Tc+1 fit in the cache and do not leave it.
This fact is almost true by definition of Tc: the optimal off-line cache strategy will not evict a cache line
that will be accessed in T steps if it can evict a cache line that will only be accessed in 2T steps. And
there will always be a cache line not containing a word accessed with period 2Tc+1 or less. This being
said, we can state our result:

Proposition 3. Under the assumption that Tc ≥ 2d, the following two inequalities hold:

i) Q(n, d, Z, L) ≤ 2n−2−Tc · (d+ 1) ·
(
Tc + 1

d− 1

)

ii) Q(n, d, Z, L) ≤ 2n−2−Tc · d · (d+ 1)

Tc + 2− d · Z

The proof is in the full version of the paper.
Let us consider a polynomial in 64 variables. If we assume an incredibly small cache of Z = 210 bits

and that our polynomial is of degree 2, then Tc = 44 and the enumeration will make about 225 cache
misses, for a running time of at least 265. If we assume that our polynomial is of degree 4, and that the
cache is 214-bit large, then Tc = 24, and there will be 252 cache misses, for more than 266 memory
accesses.

7.2 Constrained Small Memory Chips on Concurrent Architectures

The problem is formulated in very different terms on some parallel architectures, such as GPUs, or the
Cell, in which the available “fast” memory is fairly restricted, and main memory is relatively slow.

Parallelizing the process is very easy, as it simply comes down to partition the search space into the
number of available cores. An interesting side effect is that when done properly, this partition reduces
the amount of data that needs to be transfered from the main memory. We will now assume that we have
32-bit registers, and we will use 32 parallel copies of the algorithm of fig. 6, to enumerate 32 polynomials
simultaneously.

For instance, the loop of fig. 4 can be split in independent chunks, as illustrated by fig. 7. An additional
benefit is that processing one such chunk only require access to a fraction of the memory used by the full
enumeration. In fact, b1(i + 1) is greater or equal than L if the L rightmost bits of (i + 1) are zero, or,
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in other terms, if (i + 1) is a multiple of 2L. This suggests to split the iteration in chunks of size 2L.
Enumerating a chunk of size 2L amounts to enumerate a polynomial in L variables (it requires the same
amount of internal state, and it makes the same number of calls to NEXT). Let us now consider the k-th
chunk:

Ck =
{
i ∈ N | k · 2L < i ≤ (k + 1) · 2L

}

1: procedure PARALLELZEROES(f, L, T )
2: for b from 0 to 2n−L−T − 1 do
2: parallel-for t from 0 to 2T − 1 do
3: State[t]← INIT

(
f, 0,GRAYCODE

((
t+ b · 2T

)
· 2L

))

2: for i from 0 to 2L − 1 do
4: if State[t].y = 0 then State[t].x is a zero of f
5: NEXT(State[t])
6: end for
7: end-parallel for
6: end for
8: end procedure

Fig. 7: Parallel enumeration, assuming one processing unit capable of running 2T threads. It should be
possible to improve it using the enumeration algorithm itself for initialization.

Let ψL(i) denote the integer (i mod 2L). We will call ψL(i) the local part of i when i ∈ Ck, and we
will denote it by ψ(i), when not ambiguous. So, what can we say about bj(i), when i ∈ Ck? We define
the subset Ωk,j of Ck to be such that if i ∈ Ωk,j , then bj(i) only depends on the local part ψ(i) of i. Very
clearly, we in fact have:

Ωk,j =
{
i ∈ Ck | HAMMINGWEIGHT(ψ(i)) ≥ j

}

And the three following points are immediate to estalbish.

Lemma 5. For any k and j, we have the following properties:

i) If j1 < j2 then Ωk,j2 ⊆ Ωk,j1

ii) |Ωk,j | = 2L −
j−1∑

`=0

(
L

`

)

iii) If i ∈ Ωk,j , then bj(i) < L.

Intuitively, lemma 5 tells us that on a chunk of size 2L, the bj that we will compute will be smaller
than L except on O

(
Ld−1

)
points, and will only depend on the local part of the index. This has two

interesting consequences:

1. Instead of having to store and maintain an internal state of
∑d−1
i=0

(
n
i

)
= O

(
nd−1

)
words, it is

sufficient to deal with an internal state of
∑d−1
i=0

(
L
i

)
= O

(
Ld−1

)
words.

2. If we were capable of processing all the chunks synchronously, the constant fetched from memory
in line 9 of fig. 6 could be used by all the chunks at the same time, except on O

(
Ld−1

)
points. This

means that most of the time, we can broadcast a single value to as many threads as possible, and we
can amortize the lattency of the memory over the huge number of chunks processed in parallel.
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Now that we controlled what happened inside Ωk,d, we may take a look at what happens outside. Gener-
ally speaking, if ψ(i) has hamming weight h, and j > h, then bj(i) = L+bj−h(k). Thus, if only a subset
of all the chunks can be processed concurrently, it would make sense to treat simultaneously chunks for
which k has similar least-significant bits. If a processing unit can handle at most 2T threads simultane-
ously, then the maximum sharing of values fetched from main memory is achieved by scheduling the 2T

Chunks sharing the T most significant bit of k on it.
What level of broadcast should we expect in this situation, namely when 2t threads process chunks of

size 2L synchronously? To fully understand what is going on, let us define Hk,h = Ωk,h − Ωk,h+1. It is
easily seen that Hk,h describes the subset of Ck formed of words of hamming weight exactly h, and thus
|Hh,k| =

(
L
h

)
. Now, in all the chunks processed in parallel, the c = n − L − t least significant bits of

k remain fixed to ψc(k), therefore we will call this value the “fixed part of k”. We already argued that if
i ∈ Hh,k, then bj(i) = L+ bj−h(k), and the 2T threads will fetch the same memory location if and only
if bj−h(k) only depends on the fixed part of k, or, in other terms, if ψc(k) has hamming weight at least
j − h.

An easy consequence of the previous considerations is that if ψc(k) has hamming weight at least d,
then all the memory fetches issued on the 2L steps can be broadcast to all the 2T threads. If ψc(k) has
hamming weight d− 1, then all but one memory fetches can be broadcast.

This raises the following question: assume we enumerate the 2n points on a processing unit han-
dling 2T concurrent threads, each thread processing a chunk of size 2L (we of course assume n ≥
L+T ). How many times we will witness non-broadcast memory accesses? Let us denote this number by
NNB(d, n, T, L).

Proposition 4.

NNB(d, n, T, L) =
d−1∑

i=0

(
n− T
i

)
.

The proof is in the full version.
Fig. 8 shows how the algorithm can be run with 4 threads and obtain the number of non-broadcasts

advertised by the proposition.

8 Implementations

We describe the structure of our code, the approximate cost structure, our design choices and justify what
we did. Our implementation code always consists of three stages:

Partial Evaluation: We substitute all possible values for s variables (xn−s, . . . , xn−1) out of n, thus
splitting the original system into 2s smaller systems, of w equations each in the remaining (n − s)
variables (x0, . . . , xn−s−1), and output them in a form that is suitable for ...

Enumeration Kernel: Run the algorithm of Sec. 4 to find all candidate vectors x satisfying w equations
out of m (≈ 2n−w of them), which are handed over to ...

Candidate Checking: Checking possible solutions x in remaining m− w equations.

8.1 CPU Enumeration Kernel

Typical code fragments from the unrolled inner loops can be seen below:
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thread 0 thread 1 thread 2 thread 3
k ψL(i) b1(i) b2(i) k ψL(i) b1(i) b2(i) k ψL(i) b1(i) b2(i) k ψL(i) b1(i) b2(i) non-broadcast ?
0 1 0 -1 100 1 0 5 1000 1 0 6 1100 1 0 5 D

0 10 1 -1 100 10 1 5 1000 10 1 6 1100 10 1 5 D

0 11 0 1 100 11 0 1 1000 11 0 1 1100 11 0 1
0 100 2 -1 100 100 2 5 1000 100 2 6 1100 100 2 5 D

0 101 0 2 100 101 0 2 1000 101 0 2 1100 101 0 2
0 110 1 2 100 110 1 2 1000 110 1 2 1100 110 1 2
0 111 0 1 100 111 0 1 1000 111 0 1 1100 111 0 1
0 0 3 -1 100 0 3 5 1000 0 3 6 1100 0 3 5 D

1 1 0 3 101 1 0 3 1001 1 0 3 1101 1 0 3
1 10 1 3 101 10 1 3 1001 10 1 3 1101 10 1 3
1 11 0 1 101 11 0 1 1001 11 0 1 1101 11 0 1
1 100 2 3 101 100 2 3 1001 100 2 3 1101 100 2 3
1 101 0 2 101 101 0 2 1001 101 0 2 1101 101 0 2
1 110 1 2 101 110 1 2 1001 110 1 2 1101 110 1 2
1 111 0 1 101 111 0 1 1001 111 0 1 1101 111 0 1
1 0 4 -1 101 0 4 5 1001 0 4 6 1101 0 4 5 D

10 1 0 4 110 1 0 4 1010 1 0 4 1110 1 0 4
10 10 1 4 110 10 1 4 1010 10 1 4 1110 10 1 4
10 11 0 1 110 11 0 1 1010 11 0 1 1110 11 0 1
10 100 2 4 110 100 2 4 1010 100 2 4 1110 100 2 4
10 101 0 2 110 101 0 2 1010 101 0 2 1110 101 0 2
10 110 1 2 110 110 1 2 1010 110 1 2 1110 110 1 2
10 111 0 1 110 111 0 1 1010 111 0 1 1110 111 0 1
10 0 3 4 110 0 3 4 1010 0 3 4 1110 0 3 4
11 1 0 3 111 1 0 3 1011 1 0 3 1111 1 0 3
11 10 1 3 111 10 1 3 1011 10 1 3 1111 10 1 3
11 11 0 1 111 11 0 1 1011 11 0 1 1111 11 0 1
11 100 2 3 111 100 2 3 1011 100 2 3 1111 100 2 3
11 101 0 2 111 101 0 2 1011 101 0 2 1111 101 0 2
11 110 1 2 111 110 1 2 1011 110 1 2 1111 110 1 2
11 111 0 1 111 111 0 1 1011 111 0 1 1111 111 0 1
11 0 5 -1 111 0 6 -1 1011 0 5 6 1111 0 7 -1 D

Fig. 8: Enumeration with n = 7, in chunks of 23 elements with 4 batches of 4 concurrent threads. “Non-
local” means that a constant of index greater than 3 is accessed, while “Non-broadcast” means that the 4
threads do not access the same memory location. In conformance with lemma 4, there are 1 + 7− 2 = 6
non-broadcast memory accesses.
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(a) quadratics, C++ x86 instrinsics (b) quadratics, x86 assembly
...
diff0 ^= deg2_block[ 1 ];
res ^= diff0;
Mask = _mm_cmpeq_epi16(res, zero);
mask = _mm_movemask_epi8(Mask);
if(mask) check(mask, idx, x^155);
...

.L746:
movq 976(%rsp), %rax //
pxor (%rax), %xmm2 // d_y ^= C_yz
pxor %xmm2, %xmm1 // res ^= d_y
pxor %xmm0, %xmm0 //
pcmpeqw %xmm1, %xmm0 // cmp words for eq
pmovmskb %xmm0, %eax // movemask
testw %ax, %ax // set flag for branch
jne .L1266 // if needed, check and

.L747: // comes back here

.L1624:
movq 2616(%rsp), %rax // load C_yza
movdqa 2976(%rsp), %xmm0 // load d_yz
pxor (%rax), %xmm0 // d_yz ^= C_yza
movdqa %xmm0, 2976(%rsp) // save d_yz
pxor 8176(%rsp), %xmm0 // d_y ^= d_yz
pxor %xmm0, %xmm1 // res ^= d_y
movdqa %xmm0, 8176(%rsp) // save d_y
pxor %xmm0, %xmm0 //
pcmpeqw %xmm1, %xmm0 // cmp words for eq
pmovmskb %xmm0, %eax
testw %ax, %ax // ...
jne .L2246 // branch to check

.L1625: // and comes back

...
diff[0] ^= deg3_ptr1[0];
diff[325] ^= diff[0];
res ^= diff[325];
Mask = _mm_cmpeq_epi16(res, zero);
mask = _mm_movemask_epi8(Mask);
if(mask) check(mask, idx, x^2);
...

(c) cubics, x86 assembly (d) cubics, C++ x86 instrinsics

testing All zeroes in one byte, word, or dword in a XMM register can be tested cheaply on x86-64. We
hence wrote code to test 16 or 32 equations at a time. Strangely enough, even though the code above is
for 16 bits, the code for checking 32/8 bits at the same time is nearly identical, the only difference being
that we would subtitute the intrinsics _mm_cmpeq_epi32/8 for _mm_cmpeq_epi16 (leading to the
SSE2 instruction pcmpeqd/b instead of pcmpeqw). Whenever one of the words (or double words or
bytes, if using another testing width) is non-zero, the program branches away and queues the candidate
solution for checking.

unrolling One common aspect of our CPU and GPU code is deep unrolling by upwards of 1024× to
avoid the expensive bit-position indexing. To illustrate with quartics as an example, instead of having to
compute the positions of the four rightmost non-zero bits in every integer, we only need to compute the
first four rightmost non-zero bits in bit 10 or above, then fill in a few blanks. This avoids most of the
indexing calculations and all the calculations involving the most commonly used differentials.

We wrote similar Python scripts to generate unrolled loops in C and CUDA code. Unrolling is even
more critical with GPU, since divergent branching and memory accesses are prohibitively expensive.

8.2 GPU Enumeration Kernel

register usage Fast memory is precious on GPU and register usage critical for CUDA programmers. Our
algorithms’ memory complexity grows exponentially with the degree d, which is a serious problem when
implementing the algorithm for cubic and quartic systems, compounded by the immaturity of NVIDIA’s
nvcc compiler which tends to allocate more registers than we expected.

Take quartic systems as an example. Recall that each thread needs to maintain third derivatives, which
we may call dijk for 0 ≤ i < j < k < K, where K is the number of variables in each small system. For
K = 10, there are 120 dijk’s and we cannot waste all our registers on them, especially as all differentials
are not equal — dijk is accessed with probability 2−(k+1).

Our strategy for register use is simple: Pick a suitable bound u, and among third differentials dijk
(and first and second differentials di and dij), put the most frequently used — i.e., all indices less than u
— in registers, and the rest in device memory (which can be read every 8 instructions without choking).
We can then control the number of registers used and find the best u empirically.
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fast conditional move We discovered during implementation an undocumented feature of CUDA for
G2xx series GPUs, namely that nvcc reliably generates conditional (predicated) move instructions, dis-
patched with exceptional adeptness.
...
xor.b32 $r19, $r19, c0[0x000c] // d_y^=d_yz
xor.b32 $p1|$r20, $r17, $r20
mov.b32 $r3, $r1
mov.b32 $r1, s[$ofs1+0x0038]
xor.b32 $r4, $r4, c0[0x0010]
xor.b32 $p0|$r20, $r19, $r20 // res^=d_y
@$p1.eq mov.b32 $r3, $r1
@$p1.eq mov.b32 $r1, s[$ofs1+0x003c]
xor.b32 $r19, $r19, c0[0x0000]
xor.b32 $p1|$r20, $r4, $r20
@$p0.eq mov.b32 $r3, $r1 // cmov
@$p0.eq mov.b32 $r1, s[$ofs1+0x0040] // cmov
...

...
diff0 ^= deg2_block[ 3 ]; // d_y^=d_yz
res ^= diff0; // res^=d_y
if( res == 0 ) y = z; // cmov
if( res == 0 ) z = code233; // cmov
diff1 ^= deg2_block[ 4 ];
res ^= diff1;
if( res == 0 ) y = z;
if( res == 0 ) z = code234;
diff0 ^= deg2_block[ 0 ];
res ^= diff0;
if( res == 0 ) y = z;
if( res == 0 ) z = code235;
...

(a) decuda result from cubin (b) CUDA code for a inner loop fragment
Consider, for example, the code displayed above right. According to our experimental results, the

repetitive 4-line code segments average less than three SP (stream-processor) cycles. However, decuda
output of our program shows that each such code segment corresponds to at least 4 instructions including
2 XORs and 2 conditional moves [as marked in above left]. The only explanation is that conditional
moves can be dispatched by the SFUs (Special Function Units) so that the total throughput can exceed
1 instruction per SP cycle. Further note that the annotated segment on the right corresponds to actual
instructions far apart because an NVIDIA GPU does opportunistic dispatching but is nevertheless a purely
in-order architecture, so proper scheduling must interleave instructions from different parts of the code.

testing The inner loop for GPUs differs from CPUs due to the fast conditional moves.
Here we evaluate 32 equations at a time using Gray code. The result is used to set a flag if it happens

to be all zeroes. We can now conditional move of the index based on the flag to a register variable z, and
at the end of the loop write z out to global memory.

However, how can we tell if there are too many (here, two) candidate solutions in one small subsys-
tem? Our answer to that is to use a buffer register variable y and a second conditional move using the
same flag. At the end of the thread, (y, z) is written out to a specific location in device memory and sent
back to the CPU.

Now subsystems which have all zero constant terms are automatically satisfied by the vector of zeroes.
Hence we note them down during the partial evaluation phase include the zeros with the list of candidate
solutions to be checked, and never have to worry about for all-zero candidate solution. The CPU reads
the two doublewords corresponding to y and z for each thread, and:

1. z==0 means no candidate solutions,
2. z!=0 but y==0 means exactly one candidate solution, and
3. y!=0 means 2+ candidate solutions (necessitating a re-check).

8.3 Checking Candidates

Checking candidate solutions is always done on CPU because the programming involves branching and
hence is difficult on a GPU even with that available. However, the checking code for CPU enumeration
and GPU enumeration is different.

CPU With the CPU, the check code receives a list of candidate solutions. Today the maximum machine
operation is 128-bit wide. Therefore we should collect solutions into groups of 128 possible solutions.
We would rearrange 128 inputs of n bits such that they appear as n __int128’s, then evaluate one
polynomial for 128 results in parallel using 128-bit wide ANDs and XORs. After we finish all candidates
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for one equation, go through the results and discard candidates that are no longer possible. Repeat the
result for the second and any further equations (cf. Sec. 3).

We need to transpose a bit-matrix to achieve the effect of a block of w inputs n-bit long each, to
n machine-words of w-bit long. This looks costly, however, there is an SSE2 instruction PMOVMSKB
(packed-move-mask-bytes) that packs the top bit of each byte in an XMM register into a 16-bit general-
purpose register with 1 cycle throughput. We combine this with simultaneous shifts of bytes in an XMM
and can, for example, on a K10+ transpose a 128-batch of 32-bit vectors (0.5kB total) into 32 __int128’s
in about 800 cycles, or an overhead of 6.25 cycles per 32-bit vector. In general the transposition cost is at
most a few cycles per byte of data, negligible for large systems.

GPU As explained above, for the GPU we receive a list with 3 kinds of entries:

1. The knowledge that there are two or more candidate solutions within that same small system, with
only the position of the last one in the Gray code order recorded.

2. A candidate solution (and no other within the same small system).
3. Marks to subsystems that have all zero constant terms.

For Case 1, we take the same small system that was passed into the GPU and run the Enumerative Kernel
subroutine in the CPU code and find all possible small systems. Since most of the time, there are exactly
two candidate solutions, we expected the Gray code enumeration to go two-thirds of the way through
the subsystem. Merge remaining candidate solutions with those of Case 2+3, collate for checking in a
larger subsystem if needed, and pass off to the same routine as used in the CPU above. Not unexpectedly,
the runtime is dominated by the thread-check case, since those does millions of cycles for two candidate
solutions (most of the time).

8.4 Partial Evaluation

The algorithm for Partial Evaluation is for the most part the same Gray Code algorithm as used in the
Enumeration Kernel. Also the highest degree coefficients remain constant, need no evaluation and and
can be shared across the entire Enumeration Kernel stage. As has been mentioned in the GPU description,
these will be stored in the constant memory, which is reasonably cached on NVIDIA CUDA cards. The
other coefficients can be computed by Gray code enumeration, so for example for quadratics we have
(n− s) + 2 XOR per w bit-operations and per substitution. In all, the cost of the Partial Evaluation stage
for w′ equations is ∼ 2s w

′

8

((
n−s
d−1
)
+ (smaller terms)

)
byte memory writes. The only difference in the

code to the Enumerative Kernel is we write out the result (smaller systems) to a buffer, and check for a
zero constant term only (to find all-zero candidate solutions).

Peculiarities of GPUS Many warps of threads are required for GPUs to run at full speed, hence we must
split a kernel into many threads, the initial state of each small system being provided by Partial Evaluation.
In fact, for larger systems on GPUs, we do two stages of partial evaluation because

1. there is a limit to how many threads can be spawned, and how many small systems the device memory
can hold, which bounds how small we can split; but

2. increasing s decreases the fast memory pressure; and
3. a small systems reporting two or more candidate solutions is costly, yet we can’t run a batch check

on a small system with only one candidate solution — hence, an intermediate partial evaluation so
we can batch check with fewer variables.

8.5 More Test Data and Discussion

Some minor points which the reader might find useful in understanding the test data, a full set of which
will appear in the extended version.
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Candidate Checking. The check code is now 6–10% of the runtime. In theory (cf. Sec. 3) evaluation
should start with a script which hard-wires a system of equations into C and compiling to an excutable,
eliminating half of the terms, and leading to

(
n−s
d

)
SSE2 (half XORs and half ANDs) operations to check

one equation forw = 128 inputs. The check code can potentially become more than an order of magnitude
faster. We do not (yet) do so presently, because compiling may take more time than the checking code.
However, we may want to go this route for even larger systems, as the overhead from testing for zero bits,
re-collating the results, and wasting due to the number of candidate solutions is not divisible by w would
all go down proportionally.

Without hard-wiring, the running time of the candidate check is dominated by loading coefficients.
E.g., for quartics with 44 variables, 14 pre-evaluated, K10+ and Ci7 averages 4300 and 3300 cycles
respectively per candidate. With each candidate averaging 2 equations of

(
44−14

4

)
terms each, the 128-

wide inner loop averages about 10 and 7.7 cycles respectively per term to accomplish 1 PXOR and 1
PAND.

Partial Evaluation. We point out that Partial Evaluation also reduces the complexity of the Checking
phase. The simplified description in Sec. 5 implies the cost of checking each candidate solution to be
≈ 1

w

(
n
d

)
instructions. But we can get down to ≈ 1

w

(
n−s
d

)
instructions by partially evaluating w′ > w

equations and storing the result for checking. For example, when solving a quartic system with n =
48, m = 64, the best CPU results are s = 18, and we cut the complexity of the checking phase by factor
of at least 4× even if it was not the theoretical 7× (i.e.,

(
n
d

)
/
(
n−s
d

)
) due to overheads.

The Probability of Thread-Checking for GPUs. If we have n variables, pre-evaluate s, and check w
equations via Gray Code, then the probability of a subsystem with 2n−s vectors including at least two
candidates ≈

(
2n−s

2

)
(1− 2−w)2

n−s

(2−w)2 ≈ 1/22(s+w−n)+1, provided that n < s+w. As an example,
for n = 48, s = 22, w = 32, the thread-recheck probability is about 1 in 213, and we must re-check
about 29 threads using Gray Code. This pushes up the optimal s for GPUs.

Architecture and Differences. All our tests with a huge variety of machines and video cards show that the
kernel time in cycles per attempt is almost a constant of the architecture, and the speed-up in multi-cores is
almost completely linear for almost all modern hardware. So we can compute the time complexity given
the architecture, the frequency, the number of cores, and n. The marked cycle count difference between
Intel and AMD cores is explained by Intel dispatching three XMM (SSE2) logical instructions to AMD’s
two per cycle and handling branch prediction and caching better.

As the Degree d increases. We plot how many cycles is taken by the inner loop (which is 8 vectors per
core for CPUs and 1 vector per SP for GPUs) on different architectures in Fig. 9. As we can see, all
except two architectures have inner loop cycle counts that are increasing roughly linearly with the degree.
The exceptions are the AMD K10 and NVIDIA G200 architectures, which is in line with fast memory
pressure on the NVIDIA GPUs and fact that K10 has the least cache among the CPU architectures.

More Tuning. We can conduct a Gaussian elimination among them equations and such thatm/2 selected
terms in m/2 of the equations are all zero. We can of course make this the most commonly used coeffi-
cients (i.e., c01, c02, c12, . . . for the quadratic case). The corresponding XOR instructions can be removed
from the code by our code generator. This is not yet automated and we have to test everything by hand.
However, this clearly leads to significant savings. On GPUs, we have a speed up of 21% on quadratic
cases, 18% for cubics, and 4% for quadratics. [The last is again due to the memory problems.]
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Fig. 9: Cycles per candidate tested for degree 2,3 and 4 polynomials.

Table 2. Efficiency comparison: cycles per candidate tested on one core

n = 32 n = 40 n = 48 Testing platform
d = 2 d = 3 d = 4 d = 2 d = 3 d = 4 d = 2 d = 3 d = 4 GHz Arch. Name USD

0.58 1.21 1.41 0.57 1.27 1.43 0.57 1.26 1.50 2.2 K10 Phenom9550 120
0.57 0.91 1.32 0.57 0.98 1.31 0.57 0.98 1.32 2.3 K10+ Opteron2376 184
0.40 0.65 0.95 0.40 0.70 0.94 0.40 0.70 0.93 2.4 C2 Xeon X3220 210
0.40 0.66 0.96 0.41 0.71 0.94 0.41 0.71 0.94 2.83 C2+ Core2 Q9550 225
0.50 0.66 1.00 0.38 0.65 0.91 0.37 0.62 0.89 2.26 Ci7 Xeon E5520 385
2.87 4.66 15.01 2.69 4.62 17.94 2.72 4.82 17.95 1.296 G200 GTX280 n/a
2.93 4.90 14.76 2.70 4.62 15.54 2.69 4.57 15.97 1.242 G200 GTX295 500
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Links Between Theoretical and Effective

Differential Probabilities: Experiments on
PRESENT

C. Blondeau and B. Gérard

INRIA project-team SECRET, France
{celine.blondeau, benoit.gerard}@inria.fr

Abstract. Recent iterated ciphers have been designed to be resistant
to differential cryptanalysis. This implies that cryptanalysts have to deal
with differentials having so small probabilities that, for a fixed key, the
whole codebook may not be sufficient to detect it. The question is then,
do these theoretically computed small probabilities have any sense? We
propose here a deep study of differential and differential trail probabili-
ties supported by experimental results obtained on a reduced version of
PRESENT.
Keywords : differential cryptanalysis, differential probability, iterated
block cipher, PRESENT.

1 Introduction

Differential cryptanalysis has first been applied to the Data Encryption
Standard (DES) in the early 90’s by E. Biham and A. Shamir [BS91,BS92].
Since then, many ciphers have been cryptanalyzed using differential crypt-
analysis or one of the large family of variants (truncated differential
[Knu94], higher order differential [Knu94], impossible differential [BBS99],
. . . ).

The basic differential cryptanalysis is based on a differential over r
rounds of the cipher.

Definition 1. A r-rounds differential
A r-rounds differential is a couple (δ0, δr) ∈ Fm

2 × Fm
2 . The probability

of a differential (δ0, δr) is

p∗
def
= PrX,K [F r

K(X) ⊕ F r
K(X ⊕ δ0) = δr] ,

where m is the input/output size of the cipher and F the round function.
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Then, r rounds of the cipher can be distinguished from a random permu-
tation using this differential. To break r + 1 rounds of the block cipher,
we look for differentials on r rounds. Then, for all the possible subkeys
for the last round, the attacker does a partial decryption of the ciphertext
pairs and count the number of time δr appears. For a wrong candidate,
the probability that δr appears is around 2−m and for the correct subkey,
this probability is around p∗+2−m. It is widely accepted that the number
of pairs needed to distinguish those two probabilities is of order p−1

∗ if the

so called signal-to-noise ratio is large enough
(
SN =

p∗
2−m

)
.

Recent ciphers, the Advanded Encryption Standard (AES) for instance,
have been designed to be resistant to the basic differential cryptanaly-
sis. Nevertheless, when a new cipher is proposed, cryptanalysts try to
mount the best possible linear and differential attacks. In the case of
PRESENT[BKL+07], the cipher we used for the experiments, the actual
best published attack is the one of Wang [Wan08]. But actually, there is
still lacks in the data complexity estimates of those differential attacks.

The first one is the use of Gaussian or Poisson distributions to esti-
mate what actually is a binomial distribution. Since we are interested in
differential cryptanalysis, Gaussian distribution is known to be worse than
Poisson [Sel08] but such an approximation is used to estimate the success
probability of most of the recent differential cryptanalyses. Nevertheless,
Poisson distribution might not be tight if the differential probability is
close to the uniform probability 2−m. Work has been done to give good
estimates of the data complexity and the success probability of a statis-
tical cryptanalysis for any setting [BGT10]. That is the reason why we
chose to directly deal with binomial distributions without making any
approximation.

The second point is the estimation of a differential probability. It
is well known that a differential is composed of many trails and that
the probability of one trail may not be a good estimate of the whole
differential probability [NK92]. Again, in most of the recent differential
cryptanalysis papers, the differential probability is estimated computing
the probability of the main trail. We recall in Subsection 3.4 how to
efficiently find many trails.

Last but not least, a widely used assumption is made in statistical
cryptanalysis that is the assumption of fixed key equivalence or stochastic
equivalence that is assuming that the probability of a differential that is
computed over all the possible keys is roughly the same that the proba-
bility of a differential for some fixed key [LMM91].

2
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Contributions of this work.
A deep study of this hypothesis has been done in [DR05] and this paper

aims at providing evidences to confirm this theory by the way of practical
experiments on a toy version of PRESENT.

We first present the cipher we used for experiments Section 2. Then,
in Section 3, we focus on differential trails that is sets of intermediate dif-
ferences taken by a pair that matches a differential. The classical way of
estimating a trail probability relies on some hypotheses that are not true.
Nevertheless, experiments show that this theoretical probability makes
sense as an average of the probability over the keys. In Section 4 we recall
that a differential probability is the sum of the corresponding trail prob-
abilities. Then, we present some experiments about the key dependency
of this differential probability that corroborate the results in [DR05]. Fi-
nally, we conclude in Section 5 and sum-up the results as well as the
problematics left as open questions.

2 PRESENT

Experiments are made on a lightweight cipher presented in 2007 at CHES
conference: PRESENT [BKL+07]. This cipher is a Substitution Permuta-
tion Network and thus is easy to describe.

2.1 Reduced version of PRESENT: SMALLPRESENT-[s]

For the experiments to be meaningful, we need to be able to exhaustively
compute the ciphertexts corresponding to all possible plaintexts for all
possible keys. That is the reason why we chose to work on a reduced
version of PRESENT named SMALLPRESENT-[s] [Lea10]. The family of
SMALLPRESENT-[s] has been designed for such experiments. The value
of s indicate the number of Sboxes of the cipher. These Sboxes are all the
same which is defined on F4

2. This substitution is described in Table 1.
The size of the message is then 4 s. In this paper, we make experiments on
SMALLPRESENT-[4] that is the version with 4 Sboxes (the full version
of PRESENT has 16 Sboxes). One round of SMALLPRESENT-[4] and
PRESENT are respectively depicted in Figure 8, Figure 9 (Appendix B).

2.2 Different key schedules for SMALLPRESENT-[4]

The problem with the reduced cipher presented in [Lea10] is the key sched-
ule. Actually, in the whole PRESENT, most of the bits of a subkey are di-
rectly used in the subkey of the next round. Since, for SMALLPRESENT-
[s], the number of key bits is always 80 but the state size is only 4 s, this

3

111



is not true anymore for a small s. We decided to introduce two additional
key schedules for our experiments.

1. Same key: The cipher has a master key that has the same size as
the state and each subkey is equal to this master key. Therefore
SMALLPRESENT-[4] is parameterized by a 16 bits master key.

2. 80-bits: This key schedule is the one used in the full version of PRESENT
and proposed in [Lea10].

3. 20-bits: a homemade key schedule used with SMALLPRESENT-[4]
similar to the one of the full version.
The master key is represented as K = k19k18 . . . k0. At round i the
16-bits round key Ki = k19k18 . . . k4 consists in the 16 left-most bits
of the current content of register K. After extracting the round key
Ki, the key register is updated as follows:
(a) [k19k18 . . . k1k0] = [k6k5 . . . k8k7]
(b) [k19k18k17k16] = S[k19k18k17k16]
(c) [k7k6k5k4k3] = [k7k6k5k4k3] ⊕ roundcounter
The key is rotated by 13 bit positions to the left, the left most four bits
are passed through the PRESENT Sbox, and the roundcounter value
is exclusive-ored with bits k8k7k6k5k4. We keep the 5-bits counter
version. But we only study less than 7 rounds of SMALLPRESENT-
[4] so the counter can be represented in 3 bits.

3 Differential trail probability

3.1 Notation

Let us denote by K the master key. The round subkeys derived from K
are denoted by K1,K2, . . . ,Kr. Let FKi : Fm

2 7→ Fm
2 be a round function

of a block cipher. We will denote by F r
K the application of r rounds of

the block cipher.
F r
K = FKr ◦ FKr−1 ◦ · · · ◦ FK1 .

Generally, there is not one but many ways to go from the input differ-
ence to the output difference of a differential. Since the term if differential
characteristic seems to be ambiguous, we use the linear cryptanalysis no-
tation and call such a way a differential trail.

Definition 2. Differential trail
A differential trail of a cipher is a (r+1)-tuple (β0, β1, · · · , βr) ∈ (Fm

2 )r+1

of intermediate differences at each round. The probability of a differential
trail β = (β0, β1, · · · , βr) is

PrX,K

[
∀i F i

K(X) ⊕ F i
K(X ⊕ β0) = βi

]
.

4
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Computing the exact value of a trail probability is not possible for
real ciphers since it needs to encipher the whole codebook for all possible
keys. The classical way of estimating a trail probability is to chain trails
on 1 round. This approach is based on a formalism introduced by Lai,
Massey and Murphy [LMM91].

Markov cipher
A Markov cipher is a cipher for which, the probability

PrX,K [F r
K(X) ⊕ F r

K(X ⊕ δ0) = δr|X = x]

does not depend on x if the subkeys Ki are uniformly distributed.

In the case of Markov ciphers where the subkeys are xored to the state,
the theoretical probability of a trail β = (β0, β1, · · · , βr) is computed as
follow

ptβ =

r∏

i=1

PrX [F (X) ⊕ F (X ⊕ βi−1) = βi] .

Notice that we did not used the notation FKi because when the subkeys
are xored to the state, the probability PrX [F (X) ⊕ F (X ⊕ βi−1) = βi]
does not depend on the value of the subkey.

3.2 Key dependency of a trail

The probability of a differential trail can be influenced by the choice
of the master key used to encipher samples. This remark is the main
motivation of the work in [DR05]. In order to take into account this
fact, let us introduce some notation. For a r-round differential trail β =
(β0, β1, · · · , βr), let us define

TK
def
=

1

2
#{X ∈ Fm

2 |F i
K(X) ⊕ F i

K(X + β0) = βi ∀ 1 ≤ i ≤ r},

T [j]
def
= #{K|TK = j}. (1)

Let nk be the number of bits of the master key. The real or effective value
of the trail probability is

pβ = 2−m−1
∑

K∈Fnk
2

TK = 2−m−1−nk
∑

j

T [j] · j.

To motivate these new notation, we give an example where the key de-
pendency is obvious.

5
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Example of a trails with experimental probability not equal to
the theoretical one
We illustrate this phenomena by a differential trail over 3 rounds on

SMALLPRESENT - [4]: β = (0x1101, 0xdd, 0x30, 0x220) (see Figure 1).

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
S 3 S 2 S 1 S 0

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
S 3 S 2 S 1 S 0

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
S 3 S 2 S 1 S 0

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

j 0 8 16

T [j] 131072 524288 393216

Fig. 1. Trail β = (0x1101, 0xdd, 0x30, 0x220) and the corresponding T [j]’s

First, we are going to compute the theoretical probability of this trail.
We suppose that SMALLPRESENT-[4] is a Markov cipher and that uses
independent subkeys.

– Round 1 3 S-boxes with input difference 0x1 and output difference
0x3.

– Round 2 2 S-boxes with input difference 0xd and output difference
0x2.

– Round 3 1 S-box with input difference 0x3 and output difference 0x6.

We have 6-Sboxes with transition probability 2−2 therefore ptβ = 2−12.
This means that the number of plaintext such that (X,X ⊕ 0x1101)
follows this trail for a fixed key should be 216−1 · 2−12 = 23. We made
experiments to check this assumption. For a fixed key we computed the
number of plaintexts that follows this trail. In Figure 1 are given the
values taken by T [j] for all keys in F20

2 using the 20-bit key schedule. We
can see that there are three kinds of key leading to three different values
of T [j].

Experiments on this trail show that for a fixed key, the theoretical
probability of a differential trail do not always match with the value of

6
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this trail probability for a fixed key. Experiments also show that for some
keys the trail can be impossible. This can be of real significance because
such phenomenon is also existing on 3 rounds of PRESENT. That means
that, maybe, some differential trails used in a differential cryptanalysis
may not have the expected probability for most of the keys.

Averaging the probabilities over the keys, we see that the effective
probability of this differential trail is 2−11.6 (the theoretical one is 2−12).
This difference between real and theoretical probabilities may weaken
(or strengthen) some attacks. Does a lot of trails have such a difference
between their theoretical value and the average probability? In the next
subsection we will show that, most of the times, the theoretical value of
a differential trail is close to the effective one (averaged over the keys).

3.3 Theoretical probability and average probability of a trail
over the keys

We observed that the theoretical probability is likely to be the average
of the trail probabilities over all the possible keys. We made experiments
on SMALLPRESENT-[4] with different key schedules. Let us recall that
the theoretical probability of the differential trail β is denoted by ptβ and
the effective one (averaged over the keys) is denoted by pβ. In Figure 4,
Figure 3 and Figure 2, we have computed the difference between log(ptβ)
and log(pβ) for 500 random trails.

– In Figure 4 we assume that the round subkeys are derived from the
20-bits key schedule. We average the probabilities over the whole set
of 220 keys to obtain the value pβ.

– In Figure 3 we assume that all the round subkeys are the same. We
average the probabilities over the whole set of 216 keys to obtain the
value pβ.

– In Figure 2 we assume that the round subkeys are derived from the
80-bits key schedule. Since we cannot average probabilities over the
280 possible master keys, the computed value is obtained averaging
over 220 keys.

Remark:
We can see that the phenomenon is not the same depending on the

key schedule. Indeed, in Figure 3 when the same key is taken over the
5 rounds the dependency of the round key is more important than in
Figure 2 where the 80-bits key schedule is used implying that all the key

7
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Number of trails as a function of log(pβ) − log(pt
β) for a sample of 500 trails

on 5 rounds using different key schedules

0
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log(pβ) − log(pt
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pt
β = 2−17
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β = 2−23

pt
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Fig. 2. 80-bits key schedule.
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Fig. 3. same subkey for all rounds.
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Fig. 4. 20-bits key schedule.

bits are used only once (on average). This remark has motivate the 20-
bits key schedule we use in the following experiments that seems to be
the most appropriate.

Experiments show that the average proportion of pairs satisfying a
differential trail is close to the theoretical probability. We can observe
that this behavior is getting worse as the probability is decreasing.
Nevertheless, it seems to be some symmetry what leads to the idea that
taking enough trails into account will correct this and give better results.

8
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3.4 Automatic search of differential trails

In order to find the best trails, we use a Branch and Bound algorithm (the
one used in linear cryptanalysis). This one is explained in Appendix A.

4 Differential probability

4.1 Differential probability and trail probabilities

The first thing to say here is that the probability of a differential is the
sum of the probabilities of the corresponding differential trails.

Lemma 1. Let (δ0, δr) be a r-round differential. Then the probability p∗
of this differential is

p∗ =
∑

β=(δ0,β1,...,βr−1,δr)

pβ.

Proof. A pair that matches a trail cannot match any other (they are
disjoint events) and thus Pr [∪iAi] =

∑
i Pr [Ai].

For a large number of rounds, it is impossible to compute the proba-
bility of a differential (δ0, δr) because there is too much differential trails
that go from δ0 to δr. Actually, in differential cryptanalysis, one uses a
lower bound on the probability of the differential (δ0, δr) by considering
the sum of the likeliest trail probabilities.

In Section 3, we saw that the effective trail probability may not match
with the theoretical one. Nevertheless, it seems to be some symmetry what
leads to the idea that the sum of theoretical trail probabilities may give
a good estimate of a effective differential probability.

We made some experiments on 5 rounds of SMALLPRESENT-[4] with
the 20 bits key schedule to see how many trails are required to get a good
estimate of a differential probability. We computed the sum of the theo-
retical probabilities of many trails corresponding to the same differential.
Since the cipher is small we also have computed the effective value of the
differential by averaging over all plaintexts and all keys. In Figure 5 we
have plotted the difference between both values for 20 differentials. We
can see that taking many trails give a better estimation of the differential
probability.

Looking at the results in Figure 5 we can wonder whether it is possible
to determine the number of trails to consider for estimating a differential
probability. In this example we see that taking 27 trails seems to be suf-
ficient but when we look at the whole cipher it is obviously not enough
(see the following paragraph).

9
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Remark on Wang’s paper [Wan08]
In [Wan08], the target is the whole PRESENT (64 bits). One of the

differentials used is

(d0, d14) = (0x0700000000000700, 0x0000000900000009)

on 14 rounds obtained by iterating 3 times a differential trail on 4 rounds
and by adding one more round at the beginning and at the end.

– This trail on 4 rounds is not one of the best since it has a probability
equal to 2−18 and we found a lot of differential trails with probability
2−12. Nevertheless, it is the best iterative differential on 4 rounds.

– There exists lots of differential trails on 14 rounds with probability
2−62 and using algorithm given in Subsection 3.4, 2−62 seems to be
the best trail probability over 14 rounds.

– We have theoretically computed all differential trails with input dif-
ference d0, output difference d14 and probability greater than 2−73.
Summing the probabilities of the 212 best trails, we observe that the
probability of the differential (d0, d14) is greater than 2−57.53 and that
it does not seem to converge yet (see Figure 6).

4.2 Key dependency of a differential probability

We now consider a differential (δ0, δr) that is to be used in a differential
cryptanalysis. The attacker will get some samples enciphered with a fixed
master key. Depending on this key, the real probability of the differential
will be smaller/equal/larger than the theoretically computed value.

10
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For a fixed key K, let us denote by DK the number of pairs of plain-
texts with input difference δ0 that lead to an output difference δr. Since
we do not want to count a pair twice, we introduce a 1

2 coefficient.

DK
def
=

1

2
#{X|F r

K(X) + F r
K(X + δ0) = δr}.

We are going to study the distribution of DK ’s.

D[j]
def
= #{K|DK = j}.

It is proven in [DR05] that DK follows a hypergeometric distribution that,
in cryptography setting, is tightly approximated by a binomial distribu-
tion of parameters (2m−1, p∗).

We made some experiments on 5 rounds of SMALLPRESENT-[4] to
check this. Using the 20-bits key schedule we computed the repartition of
the DK ’s. In Figure 7, we see that the DK ’s seems to follow a binomial
distribution.

0

50000

100000

150000

200000

0 5 10 15 20

D
[j

]

j

Fig. 7. Distribution of D[j]’s for 8 differentials over 5 rounds of SMALLPRESENT-[4].
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This observation should be taken into account when computing the
success probability of an attack. Let us denote by pt∗ the theoretical prob-
ability of the differential used in a cryptanalysis. We recall that nk is the
number of key bits. For K ∈ Fnk

2 , the effective probability of the differ-
ential is DK

2m−1 where DK is a random variable that follows a binomial
distribution of parameters (2m−1, pt∗). If we denote by PS(p∗) the success
probability of a differential cryptanalysis using a differential with effec-
tive probability p∗ (see [Sel08,BGT10]). Then the success probability of a
differential cryptanalysis using a differential with theoretical probability
pt∗ is

Psuccess =

2m−1∑

i=0

PS

(
i

2m−1

)
·
[
(pt∗)

i(1 − pt∗)
2m−1−i

(
2m−1

i

)]
.

5 Conclusion

We have presented lots of experiments on differential cryptanalysis. The
main teaching of this work is that claimed complexities of differential
cryptanalyses on recent ciphers may be under/over-estimated.

The first point is the fact that estimating a differential probability
with the probability of its main trail is really not suitable. To illustrate the
first point, we estimated the probability of a differential used in [Wan08]
to 2−57.53 while the author only takes into account the best trail and
provides an estimate of 2−62.

The second point is the key dependency of a differential probability.
Experiments confirmed the theory exposed in [DR05] and thus we propose
a formula for the success probability that takes this phenomenon into
account.

This work give some elements for understanding differential cryptanal-
ysis but it still remains some open questions. The two main problematics
that seems to be of great interest are the following.

– The theoretical probability of a trail seems to be less meaningful as
this probability decreases. How far does this theoretical value make
sense?

– How can we get a good estimate of a differential probability without
finding all the corresponding differential trails?

12

120



References

[BBS99] E. Biham, A. Biryukov, and A. Shamir. Cryptanalysis of Skipjack Reduced
to 31 Rounds Using Impossible Differentials. In EUROCRYPT ’99, volume
1592 of LNCS, pages 12–23, 1999.

[BGT10] C. Blondeau, B. Gérard, and J.-P. Tillich. Accurate Estimates of the Data
Complexity and Success Probability for Various Cryptanalyses . DCC special
issue on Coding and Cryptography, 2010. To appear.

[BKL+07] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B.
Robshaw, Y. Seurin, and C. Vikkelsoe. PRESENT: An Ultra-Lightweight
Block Cipher. In CHES ’07, volume 4727 of LNCS, pages 450–466. SV, 2007.

[BS91] E. Biham and A. Shamir. Differential Cryptanalysis of DES-like Cryptosys-
tems. Journal of Cryptology, 4(1):3–72, 1991.

[BS92] E. Biham and A. Shamir. Differential Cryptanalysis of the Full 16-round
DES. In CRYPTO’92, volume 740 of LNCS, pages 487–496. Springer–Verlag,
1992.

[DR05] J. Daemen and V. Rijmen. Probability distributions of Correlation and
Differentials in Block Ciphers. Cryptology ePrint Archive, Report 2005/212,
2005. http://eprint.iacr.org/.

[Knu94] L. R. Knudsen. Truncated and Higher Order Differentials. In FSE ’94,
volume 1008 of LNCS, pages 196–211. Springer–Verlag, 1994.

[Lea10] G. Leander. Small Scale Variants Of The Block Cipher PRESENT. Cryp-
tology ePrint Archive, Report 2010/143, 2010. http://eprint.iacr.org/.

[LMM91] X. Lai, J. L. Massey, and S. Murphy. Markov Ciphers and Differential
Cryptanalysis. In EUROCRYPT ’91, volume 547, pages 17–38, 1991.

[NK92] K. Nyberg and L.R. Knudsen. Provable Security Against Differential Crypt-
analysis. In CRYPTO’92, volume 740 of LNCS, pages 566–574. Springer–
Verlag, 1992.
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A Algorithm for finding differential trails

Let B be a lower bound on the probability of the trails we are looking for.
We suppose that we are interested in differential trails over r rounds and
that we already know the best trail probabilities for a smaller number of
rounds.

We are going to traverse the tree defined as follow.

– Each node contains a difference.

– The root contains the input difference.

– The sons of a node correspond to all differences that are reachable
after one round of the cipher from the input difference contained in
the node.
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– An edge has a weight that corresponds to the probability of transition
from the father’s difference to the son’s one.

Then, we do a depth-first traversal of this tree and only consider leaves
of the tree. The path from the root to the leave is a differential trail. The
probability of this trail is computed multiplying the weights of the path
edges.

There is a simple criterion to avoid some useless branches. When going
from a father to a son, we compute the path probability from the root
to the son and multiply it to the best trail probability for the remaining
rounds (that is the depth between the son and the leaves). If it is smaller
than B, then no leaves under the son will leads to a trail with probability
greater than B. Then we look at another son and so on. . . Notice that
this criterion can be quickly checked because the probability of a trail is
computed as one advances through the tree and thus when looking at a
node, the probability of the path from the root to that node is already
known (the cost is one multiplication when going one step deeper and one
division when returning to the father node).

B Characteristics of PRESENT

Here are the Sbox and the round function of both PRESENT and SMALL-
PRESENT - [4].

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

Table 1. The S-box of PRESENT
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Abstract

We propose a software toolkit, intended to automate the differential cryptanal-
ysis of cryptographic constructions based on the operations addition, rotation
and xor (ARX). The toolkit consists of several programs, each of which evaluates
the probability that xor or additive differences propagate through a certain type
of operation. Types of operations that are supported are xor, modular addition
and multiplication by a constant.

A subset of the problems to which the proposed toolkit can be applied, have
been studied in literature before. In [1], matrix multiplications are used to cal-
culate the differential probability xdp+ of addition modulo 2n, when differences
are expressed using xor, and the differential probability adp⊕ of xor when dif-
ferences are expressed using addition modulo 2n. The time complexity of these
computations is linear in the word size n.

In our toolkit, we use the same concept of matrix multiplications. The gen-
erated matrices are correct by construction, and their size is automatically min-
imized. The main advantage of our technique, is that it is more general, and
can therefore easily be extended to a larger number of cases. The proposed tools
can be used to compute xdp+ and adp⊕, as well as xdp+(α, β, . . . → γ) – the
calculation of xdp+ for more than two inputs, and the differential probability
xdp×C of multiplication by a constant C where differences are expressed by xor.

The tool is also capable of efficiently counting the number of output dif-
ferences for each of the mentioned operations. An instance where this problem
occurs, is in the cryptanalysis of Threefish-512 [2], where an exponential-in-n
time algorithm is proposed. Using the toolkit, this can be solved in linear time
in n.
⋆ This work was supported in part by the IAP Program P6/26 BCRYPT of the Belgian

State (Belgian Science Policy), and in part by the European Commission through
the ICT program under contract ICT-2007-216676 ECRYPT II.

⋆⋆ This author is funded by a research grant of the Institute for the Promotion of
Innovation through Science and Technology in Flanders (IWT-Vlaanderen).

⋆ ⋆ ⋆ DBOF Doctoral Fellow, K.U.Leuven, Belgium.
† Postdoctoral Fellow of the Research Foundation – Flanders (FWO).
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The tool also provides a general algorithm to efficiently list the output differ-
ences with the highest probability, for a given type of difference and operation.

The cases handled by the toolkit, are encountered in many ARX-based cryp-
tographic algorithms. Examples are the XTEA block cipher [3], the Salsa20
stream cipher family [4], and the hash functions MD5 and SHA-1. Other exam-
ples are 6 out of the 14 second-round candidates of NIST’s SHA-3 hash function
competition [5]: BLAKE [6], Blue Midnight Wish [7], CubeHash [8], Shabal [9],
SIMD [10] and Skein [11]. Our tools can assist in the cryptanalysis of each of
these algorithms.
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KђѐѐюјTќќљѠ (abstract)*

Guido Bertoni1, Joan Daemen1, Michaël Peeters2, and Gilles Van Assche1
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Keywords: Keccak, soĞware tools
KђѐѐюјTќќљѠ is a set ofC++ classes aimed at helping analyze the sponge function familyKђѐѐюј

[1,2,3]. The first version of KђѐѐюјTќќљѠ was released in April 2009 and provided the following
features:
– the parameterized implementation of the seven Kђѐѐюј- f permutations, from Kђѐѐюј- f [25]
to Kђѐѐюј- f [1600], possibly with a specific number of rounds;

– the implementation of the inverses of the Kђѐѐюј- f permutations;
– the generation of look-up tables for Kђѐѐюј- f [25];
– the generation of GF(2) equations of the round functions and step mappings in the Kђѐѐюј- f
permutations and their inverses;

– the generation of optimized C code for the Kђѐѐюј- f round functions, including lane comple-
menting and bit interleaving techniques;

– the implementation of the sponge construction using any transformation or permutation, and
of the Kђѐѐюј sponge function family.

Note that the equations can be generated in a format compatible with SAGE [5,4].
In June 2010, we released version 2.1 of KђѐѐюјTќќљѠ, which adds several important classes

aimed at the linear and differential cryptanalysis of Kђѐѐюј- f . Essentially, these classes provide
ways to represent and process linear and differential trails. As much as possible, linear and differ-
ential trails are considered on an equal footing, and most routines can be applied to both kinds of
trails. In more details, the new classes provide the following features:
– the representation and serialization of linear and differential trails;
– for χ, the affine representation of

• the output differences compatible with a given input difference, and
• the input masks compatible with a given output mask;

– for the round function, the iteration through all
• the output differences compatible with a given input difference,
• the input differences compatible with a given output difference (possibly up to a specified
weight),

• the input masks compatible with a given output mask,
• the output masks compatible with a given input mask (possibly up to a specified weight);

– the generation of the conditions, expressed as equations in GF(2), for a pair to follow a given
differential trail.

The package includes examples of trails and an example routine that takes a trail and extends it
forwards and backwards to show how to use the various classes.

The code is documented with comments in Doxygen format. The documentation can also be
browsed online. Finally, the code is released in the public domain, allowing anyone to freely extend
it or to adapt it to its own needs.
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Introduction

It has been shown in the past that tools from coding theory are very powerful in the cryptanalysis
of cryptographic primitives. For instance they can be used to find differential characteristics with
low Hamming weight like in the cryptanalysis of SHA-0 [3], SHA-1 [7], EnRUPT [4], CubeHash [1]
or SIMD [6]. As observed by Rijmen and Oswald [8], all differential characteristics for a linearized
hash function can be seen as the code words of a linear code. Algorithms for finding low Ham-
ming weight code words in a linear code work well for finding linear differential characteristics
with low Hamming weight. Our contribution is a library which should make the cryptanalysis
of cryptographic primitives a little easier. The library implements a search algorithm, interfaces,
data structures and several other useful functionalities. The abstraction level is high, so that a
cryptanalyst does not have to care about complicated implementation details.

The Library

The CodingTool library is a new collection of tools to use techniques from coding theory in
cryptanalysis. It is completely independent from other libraries and can be used on Unix and
Windows platforms. It benefits from the 64-bit architecture in terms of speed. The core part is
an implementation of the probabilistic algorithm from Canteaut and Chabaud [2] to search for
code words with low Hamming weight. Additional functionalities like shortening and puncturing
of a linear code or adding a weight to each bit of a code word are implemented. Furthermore,
the library provides data structures to assist the user in creating a linear code for a specific
problem. An easy to use interface to the provided algorithms, powerful data structures and a
command line parser reduces the implementation work of a cryptanalyst to a minimum. Beside
the existing functionality, the library can be extended very easily. A possible improvement is the
implementation of faster search algorithms or the improvement of the existing one.

The complete library is under the GPL 3.0 license. The provided archive consists of the source
code, documentation, examples and precompiled binaries.

Example

To demonstrate some of the functionalities we picked the SHA-1 message expansion. Jutla and
Patthak showed [5] that the minimum Hamming weight for the last 60 words of the SHA-1 message
expansion is 25. We show how one can use the library to build the linear code, search for low
Hamming weights and force specific bits to zero for this kind of problem.
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Stream Ciphers through SAT Solvers
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Abstract. In this paper we describe Grain of Salt, a tool developed
to automatically test stream ciphers against standard SAT solver-based
attacks. The tool takes as input a set of configuration options and the
definition of each filter and feedback function of the stream cipher. It
outputs a problem in the language of SAT solvers describing the cipher.
The tool can automatically generate SAT problem instances for Crypto-1,
HiTag2, Grain, Bivium-B and Trivium. In addition, through a simple
text-based interface it can be extended to generate problems for any
stream cipher that employs shift registers, feedback and filter functions
to carry out its work.

1 Introduction

SAT solvers have recently been enjoying a boom in the area of cryptanalysis. It
has been shown in multiple papers [1,2,3] that SAT solvers are indeed a viable
technique in algebraic cryptanalysis to both analyse and potentially break stream
or block ciphers. SAT solvers work with problems described in Conjunctive
Normal Form (CNF), but obtaining such a problem description is non-trivial.
Essentially all works that aimed to analyse a cipher through SAT solvers have
developed a way to convert descriptions of ciphers to their CNF form.

In this paper we present Grain of Salt (GoS), a tool that generates optimised
CNFs given the description of a stream cipher. It is aimed to be flexible and easy
to use, helping the cryptanalyst obtain the best results within the least amount
of time. The tool comes loaded with the descriptions of ciphers Crypto-1 [4],
HiTag2 [5], Trivium [6], Bivium-B [7], and Grain [8], but can be easily extended
with any stream cipher that uses shift registers, feedback functions and filter
functions to carry out its work. The tool is designed to be intuitive to use and
general enough to cover a large set of different ciphers while remaining specific
enough to address the optimisations possible for the SAT-based cryptanalysis of
many stream ciphers.

The rest of this paper is structured as follows. In Sect. 2 we give some
background on SAT solvers and SAT-based cryptanalysis. Then, in Sect. 3 we
present the input format that GoS uses to describe ciphers. In Sect. 4 we present
the various features that GoS offers, and in Sect. 5 we shortly describe the timing
results possible with the use of the GoS tool. Finally, in Sect. 6 we conclude this
paper.
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2 Background

In this section we give a short description of SAT solvers and their use in
cryptanalysis.

2.1 SAT solvers

Satisfiability solvers are complex mathematical algorithms used to decide whether
a set of constraints have a solution or not. This paper only discusses the well-
known conjunctive normal form (CNF) constraint type. The CNF formula ϕ on
n binary variables x1, . . . , xn, is a conjunction (and-ing) of m clauses ω1, . . . , ωm

each of which is the disjunction (or-ing) of literals, where a literal is the occurrence
of a variable e.g. x1 or its complement, ¬x1.

In this paper we focus on solvers that use the DPLL algorithm. The DPLL
procedure is a backtracking, depth-first search algorithm that tries to find a
variable assignment that satisfies a system of clauses. The algorithm branches
on a variable by assigning it to true or false and examining whether the value
of other variables depend on this branching. If they do, the affected variables
are assigned to the indicated value and the search continues until no more
assignments can be made. During this period, called propagation, a clause may
become unsatisfiable, as all of its literals have been assigned to false. If such
a conflict is encountered, a learnt clause is generated that captures the wrong
variable assignments leading to the conflict. The topmost branching allowed by
the learnt clause is reversed and the algorithm starts again. The learnt clauses
trim the search tree, reducing the overall time to finish the search. Eventually,
either a satisfiable assignment is found or the search tree is exhausted without a
solution being found and the problem is determined to be unsatisfiable.

Most DPLL-based SAT solvers understand and deal with problems described
in CNF. Usually, a non-trivial part of using SAT solvers is to convert the problem
at hand to CNF format. The CNF can then be given to many different SAT
solvers, and an appropriate one (e.g. fastest, distributed, etc.) can be selected.

2.2 SAT Solver-based cryptanalysis

SAT solver-based algebraic cryptanalysis have successfully been applied to break
a number of ciphers secure against other forms of cryptanalysis. The first SAT
solver-based algebraic cryptanalysis was by Massacci et al. [9], experimenting
with the Data Encryption Standard (DES) using DPLL-based SAT solvers. More
recent work by Courtois and Bard has produced attacks against KeeLoq [10]
and investigated DES [1]. SAT solver-based algebraic cryptanalysis has also been
effectively used on modern stream ciphers, such as the reduced version of Trivium,
Bivium-B [3] by Soos et al.

In parallel to the above mentioned papers, there have been multiple tools
developed that convert cryptographic functions to CNF. Among them is the
python module developed by Martin Albrecht for the sage mathematics platform
[11], Logic2CNF developed by Edd Barrett [12], and STP (Simple Theorem Prover)
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by Ganesh et al. [13]. These tools offer widely different features and can be used at
different levels of abstraction. For instance, Logic2CNF only converts a description
of the cipher in Algebraic Normal Form (ANF) to CNF, but cannot generate
the ANF given a cipher description. STP can parse a complete cipher description
but does not retain or deal with the ANF form of the description, thus omitting
optimisations possible at that level of abstraction. Finally, the sage module only
converts to CNF a description that has already been described in sage, but can
use the tools provided by sage to process (and simplify) the problem at the ANF
level.

Most of the above mentioned papers and tools implement their own way of
describing the cipher in CNF, inventing or re-inventing methods on the way.
A well-known reference is the paper by Bard et al. [14] which describes some
starting points for the conversion, but individual conversion methods vary widely.
Grain of Salt tries to merge the ideas from these papers and tools into one,
easy-to-use package.

3 The input to GoS

The input to GoS describes a stream cipher in terms of shift registers, feedback,
filter and output functions. There are two phases for each attack, the initialisation
phase, and the standard running phase. Accordingly, there are two feedback
functions associated with each shift register: one that operates during initialisation,
and one that operates during normal operation. These feedback functions are
often different, as is the case with Crypto-1, Grain and Trivium. Filter functions
are always calculated, and their outputs can be used at any point in time by
any of the functions, including other filter functions, thus forming a chain. This
is important for ciphers such as Crypto-1, where there are multiple micro-filter
functions that make up the final output (when in normal mode) and the feedback
(when in initialisation mode). The output function is simply a specially designated
filter function that produces the output, active only during the normal phase.

Let us now take Grain as an example cipher, and describe it in GoS. Grain
has two shift registers, both 80 bits long and its initialisation phase has 160 steps.
The main configuration file for this cipher is grain/config, and looks as follows:

sr_size = 80,80 (1)

linearizable_sr_during_init = (2)

linearizable_sr_during_norm = 1 (3)

filters = 1 (4)

init_clock = 160 (5)

tweakable = sr1-0...63 (6)

one_out = sr1-64...79 (7)

Line (1) tells that there are two shift registers, numbered sr0 and sr1. Line
(2) means that none of the shift registers’ feedback functions are linearizeable
during the initialisation phase — i.e. their feedback functions are non-linear. Line
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(3) says that during normal operation, shift register sr1’s state is linearizeable,
as according to the Grain specification [8], the second shift register is an LFSR.
Line (4) says that the number of filter functions used is one, called f0. The
function f0 models the complex filter that is used during both the initialisation
and the normal phase of the cipher. Line (5) says that the initialisation takes
160 cycles. Line (6) says that the first 64 bits of the second shift register is the
IV, i.e. these bits are tweakable (can be freely chosen). Finally, line (7) says that
the last 16 bits of the second shift register must be filled with binary ones.

3.1 Initialisation phase

The Grain cipher has two phases: the initialisation phase and the normal running
phase. Each shift register has to have a feedback function associated with it for
each phase. The files describing these functions for Grain must be under the
directory grain/functions/srX/, where X is the number of of the shift register
(0 or 1 in case of Grain). The feedback of sr0 during initialisation is described
in the file grain/functions/sr0/feedback init.txt shown in Fig. 1(a), which
corresponds to the line in the Grain specification file

bi+80 =si + bi+62 + bi+60 + bi+52 + bi+45 + bi+37 + bi+33 + bi+28 + bi+21+

+ bi+14 + bi+9 + bi + bi+63bi+60 + bi+37bi+33 + bi+15bi+9+

+ bi+60bi+52bi+45 + bi+33bi+28bi+21 + bi+63bi+45bi+28bi+9+

+ bi+60bi+52bi+37bi+33 + bi+63bi+60bi+21bi+15+

+ bi+63bi+60bi+52bi+45bi+37 + bi+33bi+28bi+21bi+15bi+9+

+ bi+52bi+45bi+37bi+33bi+28bi+21

The last line of the file (containing “f0”) in Fig. 1(a) cannot be found in this
equation since the filter (modelled with f0 in our case) must be XOR-ed into
the feedback during the initialisation phase. This filter function is defined in
grain/functions/f0.txt, present in Fig. 2, which corresponds to the following
set of definitions in the Grain specification:

zi =
∑

k∈A
bi+k + h(si+3, si+25, si+46, si+64, bi+63)

A ={1, 2, 4, 10, 31, 43, 56}
h(x) =x1 + x4 + x0x3 + x2x3 + x3x4 + x0x1x2 + x0x2x3 + x0x2x4 + x1x2x4 + x2x3x4

The feedback function of the second filter function during initialisation is
present in file grain/functions/sr1/feedback init.txt, present in Fig. 1(b),
which corresponds to the line in the Grain specification

si+80 = si+62 + si+51 + si+38 + si+23 + si+13 + si

which again is missing the f0, since the authors of the paper only specified the
initialisation phase later, in Sect. 2.1. Here, they make it clear that the filter
function, described by f0 in our case, needs to be XOR-ed to this feedback
function during the initialisation phase.
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(a) Feedback of the NLFSR
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(b) Feedback of the LFSR

Fig. 1. Feedback functions of Grain used during the ini-
tialisation phase. The left-hand figure is stored in the file
grain/functions/sr0/feedback init.txt while the right-hand figure is
stored in the file grain/functions/sr1/feedback init.txt

3.2 Normal phase

The feedbacks during normal running look exactly like the feedbacks for initial-
isation, except for the last lines: the filter function is not XOR-ed in, instead
it is simply output as the keystream. Therefore the file describing the feedback
of the NLFSR during normal operation, grain/functions/sr0/feedback.txt,
is exactly the same as that present in Fig. 1(a), with the exception of the last
line, f0. Similarly, the file describing the feedback of the LFSR during nor-
mal operation is missing the f0. Finally, the file that specifies the keystream,
grain/functions/output0.txt, contains just one line with f0, signifying that
it is equal to the filter function f0.

3.3 Composition of filters

Filter functions, such as f0 for Grain can be used extensively in the function
descriptions of the cipher. They can also be combined to create some interesting
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Fig. 2. File that describes the filter function for Grain, stored in the file
grain/functions/f0.txt

effects. For instance, the output of the Crypto-1 cipher is generated using a
set of mini-filter functions as present in Fig. 3(b). In the case of Crypto-1, it
is best not to describe the final feedback function as one big function, but to
preserve the structure of the mini-filter functions. To achieve this, we can define
f0. . . f4, similarly to how we defined filters in Grain, and define the output in
crypto1/functions/output0.txt, present in Fig. 3(a), as a combination of the
internal filter functions.

4 Features offered

The GoS tool offers multiple features to help analyse the stream cipher. We list
the most important features here.

4.1 Variable number of generated output bits

The number of output bits generated and given to the solver as the base of solving
can be chosen at will. The command line switch for this option is --outputs

NUM, where NUM is a number that should be sufficient to fully determine the
searched-for data. For example, if the initialisation is used for Grain, the number
of output bits needed should be at least 80. However, if the initialisation is not
used, then at least 160 bits are needed, since the solver has to solve for 160 bits
of unknowns (the full state of both shift registers) in that case.
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(b) The functional diagram of the Crypto-1
cipher

Fig. 3. The Crypto-1 cipher (on the right), and the description of its final filter
function (on the left), made up of multiple micro-functions. The network of
micro-functions is clearly visible in the functional diagram, and is replicated in
Grain-of-Salt with the use of multiple filter functions.

4.2 ANF generation with fact propagation

An Algebraic Normal Form of the described cipher with the given number of
parameters (described below) can be generated. Various statistical data on the
ANF can also be obtained, such as the size (number of monomials) of the each
function, the sum size of all functions, etc.

We call fact propagation the effect of evaluating all equations with respect to
the given information. The given information can be the output of the cipher or
other form of helping information. The evaluations might, for instance, cause a
variable to be set instantly, for example, if a = bc⊕ d and b = false, d = true

then a = true, and by substituting this fact into other equations, further facts
could be found. GoS automatically handles this, and recursively propagates all
such facts.

Under the aegis of fact propagation GoS also propagates variable equivalences.
For example, if a = bc and c = true then a = b, which might lead to further facts.
For example, the equation d = b⊕ ab would be changed to d = b⊕ bb = b⊕ b =
false allowing the propagation of a further fact. Fact and variable equivalence
propagation considerably shortens problems, which help when they need to be
solved using the SAT solver.

4.3 CNF Generation

GoS automatically generates CNF from the fact-propagated ANF using a variety
of mechanisms to optimise the conversion. There are mainly two ways of converting
an equation in ANF to CNF:
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1. Through cutting long XOR-s, and introducing internal variables for each
monomial of degree > 1.

2. Through the use of a Karnaugh map generator [15]. Karnaugh maps essentially
directly generate the CNF from a truth table, needing no conversion. This
method was first used in converting cryptographic ANFs by Soos et al. [3].

Deciding which method to use is non-trivial, and GoS can be given a heuristic
cut-off that decides which method to use. The cut-off is given with the command-
line parameter --karnaugh NUM where if more than NUM monomials are present in
an ANF, the first method is used, while if less or equal, the second method is used
to convert to CNF. Essentially, the first method is relatively straight-forward, but
can generate very non-optimal representation if the number of monomials is small,
their average degree is high and they make use of a small number of variables.
For example, the Crypto-1 and HiTag2 ciphers’ mini filter functions all fall into
this category, and they are best represented as such. However, if for example the
degree is low, then the Karnaugh map representation is uniquely non-optimal, as
Karnaugh maps behave the worst (exponentially) for XOR functions, and they
also behave very badly with near-XOR functions.

The straight ANF-to-CNF method of simply converting the XOR to CNF and
then introducing internal variables for monomials of degree > 1 is done as follows.
Long XOR-s must be cut due to the exponential nature of their conversion: an
n-long XOR can only be represented (without introduction of internal variables)
as 2n−1 clauses. To overcome this, XOR-s are cut such as:

a⊕ b⊕ c⊕ d⊕ e⊕ f =true↔
a⊕ b⊕ c⊕ i =false

d⊕ e⊕ f ⊕ i =true

but the best limit at which XOR-s must be cut, which is usually called the cutting
number is not easy to determine. The default is 7 in GoS, but can be changed
with --xorcut NUM. Monomials are expressed in the CNF language through the
introduction of internal variables. For example, the monomial ab is expressed as
i2 = ab, leading to the clause-set:

¬i2 ∨ b
¬i2 ∨ a

i2 ∨ ¬a ∨ ¬b

An optimisation for the straight ANF-to-CNF conversion is that monomials
in the CNF world can contain negations, i.e. it is no longer necessary to write
a ⊕ ab, since that can be simply written as a(1 + b) = a¬b. This optimisation
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can be applied recursively. For example:

a⊕ b⊕ ab⊕ c⊕ cd =true↔
b⊕ a(1⊕ b)⊕ c(1⊕ d) =true↔

1⊕ (1⊕ a)(1⊕ b)⊕ c(1⊕ d) =true↔
¬a¬b⊕ c¬d =false

reducing the original 5 monomials into a mere two. Representing these monomials
that are not free of negations takes exactly the same amount of resources in
CNF as representing those that are free of negations, leading to a potential
overall reduction in the final CNF. The reduction is only potential, as the internal
variables that represent monomials that are used in multiple places need only
be described once, and the extended monomials could possibly make it more
difficult for the same monomials to appear, limiting their benefits. Therefore, this
optimisation can be turned off with the command-line switch --noextmonomials.
The default is for this optimisation to be turned on, as we have experienced
speedups using it.

4.4 Dependency tree generation

It is assumed that only the output of the stream cipher is known to the attacker.
Therefore, functions that are not connected in some way to the output of the
function can be discarded: they are internal variables that need not be calculated,
since they cannot help solving the internal state. To remove these functions, a
dependency tree is generated that takes as root all the output bits of the cipher,
and generates a tree that reaches the original internal state bits. All functions
that are not connected to this tree can be discarded.

Dependency tree generation is very important, as it lets the designer describe
as many filter functions as he or she wishes: the functions that are not used will
not hamper the solving. For example, some ciphers use filter functions that are
specific to the initialisation phase. Without dependency tree generation, these
filter functions would be calculated (but not used) during the normal running
phase, slowing down the solver.

4.5 Solving with and without initialisation phase

The GoS tool has two running modes. It can either try to solve for the non-
tweakable and non-oned-out parts of the cipher when initialisation is turned on,
or it can solve for the entire state when initialisation is turned off. In other words,
the two typical scenarios are covered: either the IV is known, the key is unknown,
and the initialisation is carried out, or the entire state of the cipher is unknown,
but the initialisation is not carried out. This behaviour can be simply switched
using a command line switch --init yes or --init no.

Typically, with the initialisation turned on, the number of bits to be solved is
much less. For example, in the case of Grain, the IV is 64, and the one-ed out part
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is 16 bits, so only 80 bits of the first shift register (i.e. the key) is the unknown.
However, the initialisation takes 160 cycles, which greatly increases the difficulty
of the resulting set of equations. On the other hand, without initialisation, the
number of unknown bits increases to 2*80 = 160, but since initialisation is not
carried out, most equations are very short.

4.6 Base shifting

Base shifting can be activated when solving without initialisation. Base shifting
is the name we use for the technique first presented in [3, Sect. 4.3]. There, the
authors show that the base unknown of the cipher can be any moment in time. So,
for example, if the number of output bits generated is 200, and no initialisation
is used, then the cipher is clocked for 100 bits, with a total length of 100 + 80 =
180 (since 80 is the original size of each). Any consecutive 80 bit frame of this
can be taken as the unknown, as the feedback functions can be re-arranged to
clock backwards for these ciphers. This is very advantageous, as typically, the
complexity increases exponentially starting from a point T , and if we take T to
be near the middle of the time-frame (e.g. at T = 90 in our example), then the
total complexity of the generated functions are much less than if we had taken
the typical approach, i.e. to take T = 0.

The command line parameter for base shifting is --base-shift NUM where
NUM must be smaller or equal to the number of output bits. For this to work with
NUM > 0, the feedback functions of the cipher must be reversible. This is true for
Crypto-1, HiTag2, Bivium-B, Trivium, and Grain. Stream ciphers can be created
where this is not the case — these stream cipher are, however, usually constrained
in that it is hard to make them work faster through parallel implementation of
the feedback and filter functions in hardware.

As a concrete example, let us take the Grain cipher, without the initialisation
phase switched off. If the number of output bits generated is 200, the base shifting
can be any number between 0 and 200. For a shifting number x, the unknowns
are the states of the shift registers at time x. In other words, if we take each shift
register as a memory line that does not forget its old contents, then the unknowns
are the state variables x . . . x+ 80 of both shift registers. We call these variables
the reference state variables. When initialisation is turned on, the reference state
variables are simply the variables that are neither tweakable nor one-ed out, i.e.
they are the state variables where (typically) the key is loaded.

4.7 Help bit calculation

Help bits are data pieces that are given such that it is easier to solve for the state
of a cipher. These are important, as it is infeasible to wait immense amounts of
time to check whether, for example, the state of Grain can be solved. In order
to circumvent this problem, we give some reference state variables as help bits
to the solver, such that it can solve faster. Once the solving has finished, one
can estimate the time it would take to solve for the whole state of the cipher,
without the help bits. The GoS tool offers two types of help bit calculations. One
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is a probabilistic calculator, and the other is a deterministic calculator, and both
employ a Monte-Carlo method to achieve their goals. For the following sections,
let us assume that V the possible set of variables that can be help bits (i.e. V
contains exactly the reference state variables).

The Monte-Carlo method, first introduced by Metropolis and Ulam [16] is
used in many areas of research such as integration and computer security (e.g. the
Rabin primality test [17]). It is essentially a randomised algorithm that samples a
tiny part of the possibly immense space and processes the results to approximate
an unknown value for the whole space. In case of the Rabin primality test, the
Monte-Carlo algorithm uses a randomised test to decide if a positive integer is a
prime or not. The algorithm has a certain chance (< 1/4) to give a false negative
result, but running the algorithm many times essentially eliminates the chance
that a number is composite.

Deterministic method Since using different reference state variables as help
bits could give different timings, it is non-trivial which ones to use. To achieve
maximum performance, we use an approach that we have found to be adequate
to find a good set.

We first generate the ANF that describes the cipher given all settings. Then,
we set a variable v ∈ V , v ← true, and propagate all changes. We count the
number of monomials in the resulting ANF. Then, we set v ← false, and again
count the size of the resulting ANF. The sum of these two values is the “score”
for this help bit. We perform these steps for each variable in L, and the one that
has the smallest score wins. We now put this winning variable into the ordered
set H, and continue the search as follows.

Let us call L the possible set of variables that can be help bits (i.e. L contains
exactly the reference state variables). We take a variable v ∈ L
H and randomly set all variables in H, plus we set v ← true, and count the
score. We do ten such measures, each time setting the variables in H randomly,
and sum the scores. Then, we do the same, but with v ← false, and sum the
scores. The sum of these 20 measurements will be the score for this v. We do
this for all v ∈ L
H: the variable with the smallest score wins and enters H. At the end of the
algorithm, we reach a point where L
H = ∅, and all variables have been ordered in H.

The presented algorithm is a randomised greedy algorithm that tries to find
a local minima at each point. Since even a local minima is very difficult to find,
the algorithm probabilistically tries to find this local minima, through 20 random
tests. For better local minima finding, the number 20 can be increased to any
even number, ameliorating the algorithm.

We have found this algorithm to be very powerful in reducing the time to
solve a given cipher. Without such ordering of bits, the speed to solve a certain
problem can be hundreds of times more difficult. The output of this algorithm is
simply put a file called “best-bits”, and the variable numbers are simply listed
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one after the other. If the cryptographer knows a better ordering, this file can
simply be overwritten.

Once the “best bits” file has been generated, it can be used from the program
by giving the option --deterBits NUM, where NUM is the number of best bits the
program should set randomly when generating the problem instances. Averaging
the time it takes to solve these problems and multiplying the average by 2NUM one
gets the amount of expected time to solve the cipher.

The program specifically does not include a method to break a cipher, though
given a specific cipher output, it could generate all 2NUM possible problems.
Naturally, one of the generated problems would actually break the given output
stream, revealing the key or the state of the cipher (depending on whether
initialisation was enabled or not).

Probabilistic method The probabilistic method is activated with the command
line switch --probBits NUM and it simply randomly sets a random set of NUM

variables from L and does many runs of these random configurations. The time
it takes to solve these randomly picked instances is then averaged.

To approximate the time it takes to attack the cipher without giving any
variables we use the following technique. We run many instances of the above
algorithm with NUM = n, n−1, . . . n−k number of reference state variables, where
n is small enough such that the algorithm is not trivial to solve, and n− k is as
small as possible such that the resulting system is still solved within a reasonable
amount of time. The average time is then plotted against the number of reference
state variables given, and the plot is extrapolated to the point where there are
no reference state variables given.

Although there is no proof that at any point during NUM = n − k − 1 . . . 0
the graph does not suddenly change, we believe this to be extremely unlikely.
For the explication of the reasons, let us first define some notions. Let us define
two problems for a given cipher: problem A is when NUM = x, and problem B is
where NUM = x− 1, where n ≥ x > 0 but otherwise x is irrelevant. Let us assume,
without loss of generality, that V ′ is the set of reference variables selected to be
assigned in B. Let the set of reference variables assigned in A be V ′

⋃
v. We can

now list the reasons why we believe the graph does not deviate from a straight
line if the time is plotted in a logarithmic scale:

– Every problem in B can be directly mapped to 2|V \ V ′| = 2(n − x + 1)
problems in A. Since the underlying algorithm of DPLL-based SAT solvers is
essentially an intelligent brute-force, we can safely assume it does not behave
worse than a brute-force, and solves the problem B in at most twice the time
than solving any problem in A. This is further underlined by our observation
that SAT solvers branch on the reference state variables — thus the first
branching of the solver when solving B will indeed be a variable from |V \V ′|

– The more choice of variables a SAT solver has to branch on, the better the
dynamic variable branch ordering will work. This means that it is expected
of the solver to solve in less than twice the time problem B with a choice of
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n− x branch variables, than two problems in A with a choice of n− x− 1
branch variables

– Clauses learnt during the solving of A that are independent of the setting of
variable v cannot be reused between the solving instances. Therefore, it is
expected that problem B can be solved faster than two problems in A, as
the solver in the former case does not need to re-learn these same clauses

– The underlying problem structure does not change between problem A and
problem B

– It is the same underlying randomised solving algorithm that is used to solve
both problem A and problem B

The extrapolation is usually straightforward if a large enough number of
randomisation steps are involved: the plotted graph is straight if plotted against a
logarithmic time. We note that the possibility of extrapolation is an advancement
over previous attempts. Previous attempts failed, as they did not introduce
sufficient randomness into the system. This lack of suitable randomisation meant
that their results were not extrapolateable [18,2].

5 Results

GoS in conjunction with an appropriate SAT solver such as CryptoMiniSat [19]
can be used to break Crypto-1 in 40 s, HiTag2 in 214.5 s, and Bivium-B in an
approximated 236.5 s using a a Xeon E5345@2.33GHz computer. All these figures
are faster than exhaustive search, leading to the breaking of these algorihtms.
In the literature we have not found any results that indicated a faster solving
time for these ciphers using a SAT-based cryptanalsysis, and so we believe these
figures to be the current state-of-the-art.

6 Conclusions

We have presented Grain of Salt, an integrated package to test stream ciphers
against SAT solver-based attacks. The tool can flexibly generate with a minimum
of user intervention a CNF representation of any shift-register based stream cipher,
helping the researcher evaluate the cipher against SAT solver-based algebraic
attacks. The input language and the command line options of the tool are easy
to use and user-friendly, helping the novice as well as the advanced users to
profit from the tool. We envision that Grain of Salt will be further extended by
researchers to carter for their specific needs, making the tool more diverse and
more useful for the whole of the research community.
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Abstract. This paper proposes a new method of solving certain classes of
systems of multivariate equations over the binary field and its cryptanalytical
applications. We show how heuristic optimization methods such as hill climb-
ing algorithms can be relevant to solving systems of multivariate equations.
A characteristic of equation systems that may be efficiently solvable by the
means of such algorithms is provided.
As an example, we investigate equation systems induced by the problem of
recovering the internal state of the stream cipher Trivium. We propose an
improved variant of the simulated annealing method that seems to be well-
suited for this type of system and provide some experimental results.

Keywords. simulated annealing, cryptanalysis, Trivium

1 Introduction

Cryptanalysis focuses on efficient ways of exploiting, perhaps unexpected, structure
of cryptographic problems. It could be a difference which propagates with a high
probability through the cipher as used in differential cryptanalysis [6, 2] or a linear
approximation of the non-linear parts of a cipher that holds for many of the possible
inputs as it is the case with linear cryptanalysis [20].

More recently, the so-called algebraic attacks have received much attention. They
exploit the fact that many cryptographic primitives can be described by sparse mul-
tivariate non-linear equations over the binary field in such a way that solving these
equations recovers the secret key or the initial state in the case of stream ciphers.
In general, solving random systems of multivariate non-linear Boolean equations is
an NP-hard problem [12]. However, when the system has a specific structure, we can
hope that more efficient methods may exist.

One technique to tackle such equation systems is linearisation, where each non-
linear term is replaced by an independent linear variable. It works only if there are
enough linear independent equations in the resulting system. Courtois et al [7] pro-
posed the XL algorithm which increases the number of equations by multiplying them
with all monomials of a certain degree. It has been refined to the XSL algorithm [9],
which, when applied to the AES, exploits the special structure of the equation system.
Neither the XL nor the XSL algorithm have been able to break AES but algebraic
attacks were successful in breaking a number of stream cipher designs [8, 1].

In this paper we also investigate systems of sparse multivariate equations. The
important additional requirement we make is that each variable appears only in a
very limited number of equations. The equation system generated by the key stream
generation algorithm of the stream cipher Trivium [10] satisfies those properties and
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will be examined in this paper as our main example. The fully determined Trivium
systems consists of 954 equations in 954 variables. Solving this system allows us to
recover the 288-bit initial state.

Our approach considers the problem of finding a solution for the system as an
optimization problem and then applies an improved variant of simulated annealing
to it. As opposed to the XL and XSL algorithms, the simulated annealing algorithm
does not increase the size of the problem, it does not generate more nor change the
existing equations. The only additional requirement is an objective function, called
the cost function, that should be minimized.

Simulated annealing has been studied in the context of cryptography before. Knud-
sen and Meier [19] presented an attack on an identification scheme based on the per-
muted perceptron problem (PPP). They found an appropriate cost function which
enabled them to solve the simpler perceptron problem as well as the PPP using a
simulated annealing search. The attack showed that the recommended smallest pa-
rameters for the identification scheme are not secure. The same identification scheme
was later a subject to an improved attack by Clark and Jacob [5]. They used simu-
lated annealing to solve a related problem that had solutions highly correlated with
the solution of the actual problem. They also made use of timing analysis where the
search process is monitored and one can observe that some variables are stuck at
correct values at an early state and never change again.

With our current experiments, we are not able to break Trivium in the crypto-
graphic sense which means with a complexity equivalent to less than 280 key setups
and the true complexity of our method against Trivium is unknown. However, if we
consider the Trivium system purely as a multivariate quadratic Boolean system in 954
variables then we are able to solve the system significantly faster than brute force,
namely in around 2210 bit flips which is roughly equivalent to 2203 evaluations of the
system. This shows that our variant of simulated annealing seems to be a promising
tool for solving non-linear Boolean equation systems with certain properties.

2 Hill climbing algorithms

Hill climbing algorithms are a general class of heuristic optimization algorithms that
deal with the following optimization problem. We have a finite set X of possible con-
figurations. Each configuration is assigned a non-negative, real number called cost,
or, in other words, we have a cost function defined as f : X → R. For each config-
uration x ∈ X a set of neighbours η(x) ⊂ X is defined. The aim of the search is to
find xmin ∈ X minimizing the cost function f(x), f(xmin) = min{f(x) : x ∈ X}, by
moving from neighbour to neighbour depending on the cost difference between the
neighbouring configurations.

Johnson and Jacobsen [15] presented a unified view of many hill climbing algo-
rithms by describing conditions on accepting a move from one configuration to an-
other. The transition probability pk(x, y) of accepting a move from x to y ∈ η(x) is
defined as the product of a configuration generation probability gi(x, y) and a config-
uration acceptance probability Pr[Rk(x, y) ≥ f(y)−f(x)], where Rk(x, y) is a random
variable and k is an iteration index that is increased by one after a fixed number of
moves. Algorithm 1 presents a general form of a hill climbing algorithm.

Note that when Rk(x, y) = 0, we obtain a local search algorithm as only moves
that decrease the cost are accepted.
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Algorithm 1 General formulation of hill climbing algorithms
xbest ← x
while stopping criterion not met do

k ← 0 � set the outer loop counter
while k < K do

for m = 0, . . . , M − 1 do
generate a neighbour y ∈ η(x) with probability gk(x, y)
compute the cost function f(y) of the candidate
if Rk(x, y) ≥ f(y)− f(x) then

x← y � accept the move
if f(x) < f(xbest) then

xbest ← x � store the best configuration
end if

end if
end for
k ← k + 1

end while
end while

Simulated annealing Classical simulated annealing algorithm [18] is a special case
of the general hill climbing algorithm presented above with a particular definition of
the transition probability. The inspiration and the name comes from the process used
in metallurgy to improve the durability of steel and alloys. When a metal is heated
above its recrystallization temperature, the atoms break from their initial positions in
the crystals and are able to relocate to other places. When slowly cooling down, the
atoms are most likely to stay in new positions guaranteeing a lower total energy of
the system, improving its regular structure and thus also the mechanical properties.

The simulated annealing algorithm uses a key parameter called the temperature
t. The configuration generation probability is taken to be uniform, i.e. each neighbour
is equally likely to be picked from each state. The acceptance probability depends on
the difference f(y)−f(x) in cost function between the current state x and the selected
neighbour y and the current temperature tk. The move is always accepted when it
decreases the cost and with probability e−(f(y)−f(x))/tk when the cost increases. In
terms of the general formulation presented above, we get this behaviour when we
define Rk(x, y) = −tk ln(U), where U is a uniform random variable on [0, 1].

Note that when the temperature tk is high, many cost-increasing moves are ac-
cepted. When the temperature is lower, worsening moves are less and less likely to be
accepted.

The way the “temperature” tk of the system decreases over time (k) is called the
cooling schedule. The condition necessary for the global convergence of the method
is that tk ≥ 0 and limk→∞ tk = 0. In practice, two most commonly used cooling
schedules are the exponential cooling schedule tk = α · βk for some parameter 0 <
β < 1 and the logarithmic cooling schedule tk = α/ log2(k+1) proposed in [13], where
α is a constant corresponding to the starting temperature.

3 Trivium system as an optimization problem

Trivium [10] is an extremely simple and elegant stream cipher that was submitted to
the ECRYPT eStream project. It successfully withstood significant cryptanalytical
attention [21–23, 3] and became part of the portfolio of the eStream finalists.
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To our knowledge, there is no attack on Trivium faster than the exhaustive key
search so far. However, several attacks have been proposed which are faster than the
naive guess-and-determine attack with complexity 2195 which was considered by the
designers [10]. A more intelligent guess-and-determine attack with complexity 2135

using a reformulation of Trivium has been sketched in [17]. Furthermore, Maximov
and Biryukov [21] described an attack with complexity 285.5 and Raddum proposed a
new algorithm for solving non-linear Boolean equations and applied it to Trivium in
[22]. The attack complexity was 2164. There have been further attacks on the small
scale variant called Bivium as well as fault attacks on Trivium but we do not go into
the details here.

Trivium has an 80-bit key, an 80-bit IV and 288 bits of the internal state (s1, . . . , s288).
At each clock cycle it updates only three bits of the state and produces one bit of the
key stream using the following procedure.

for i = 1, 2, . . . do
zi ← s66 + s93 + s162 + s177 + s243 + s288 � Generate output bit zi

ti,1 ← s66 + s93 + s91 · s92 + s171

ti,2 ← s162 + s177 + s175 · s176 + s264

ti,3 ← s243 + s288 + s286 · s287 + s69

(s1, s2, . . . , s93)← (ti,3, s1, . . . , s92)
(s94, s95, . . . , s177)← (ti,1, s94, . . . , s176)
(s178, s179, . . . , s288)← (ti,2, s178, . . . , s287)

end for

During the key setup phase, the key is loaded into the first 80 bits of the state,
followed by 13 zero bits, then the IV is loaded into the next 80 bits of the state and
the remaining bits are filled with constant values. Then 4 ·288 clockings are computed
without producing any keystream bits. Our results do not depend on this procedure.

The initial state which is the state of the registers at the time when the key
generation starts can be expressed as system of sparse linear and quadratic Boolean
equations [22]. We consider the initial state bits as variables and label them with
s1 . . . , s288. In each clocking of the Trivium algorithm three state bits are updated.
The update function is a quadratic Boolean function of the state bits. In order to keep
the degree low and the equations sparse we introduce new variables for each updated
state bit ti,1, ti,2, ti,3. We get the following equations from the first clocking

s66 ⊕ s93 ⊕ s91 · s92 ⊕ s171 = s289

s162 ⊕ s177 ⊕ s175 · s176 ⊕ s264 = s290

s243 ⊕ s288 ⊕ s286 · s287 ⊕ s69 = s291

s66 ⊕ s93 ⊕ s162 ⊕ s177 ⊕ s243 ⊕ s288 = z

(1)

where the last equation is the key stream equation with z being the known key stream
bit.

After observing 288 key stream bits we can set up a fully determined system of
954 Boolean equations in 954 unknowns [22]. We only need to consider 954 equations
and unknowns instead of 1152 since we do not care about the last 66 state updates
for each register. These variables will not be used in the key stream equation because
the new bits are not used for the key stream generation before 66 further clockings
of the cipher. By clocking the algorithm more than 288 times we can easily obtain an
overdetermined system. We know that the initial state together with the correspond-
ing updated state bits fulfills all the generated equations (1). On the other hand,
for a random point each equation is satisfied with probability 1

2 . If we consider the
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problem of solving the Trivium equation system as an optimization problem which is
suitable for hill climbing algorithms (cf. Section 2) X = {0, 1}954 is the set of possible
configurations. As a cost function f : X → R we count the number of not satisfied
equations in the system. We know that the minimum of the cost function is 0 and that
the initial state of the Trivium system is a configuration for which the cost function
is minimal. Of course there might be other optimal solutions. However, it is easy to
check if the solution we found is the desired one. That a configuration is an optimal
solution for the discrete optimization problem means that it generates the same first
288 bits of keystream than the initial state we are looking for. But it is unlikely that
the keystream will be the same for the following keystream bits. Therefore we can
check if a solution is the desired one by observing a few more keystream bit and
comparing them to the keystream generated by the solution. In our experiments it is
unlikely that multiple solutionss occur because we set some of the variables to there
correct values and consider therefore a highly overdetermined equation system.

4 Properties of Trivium landscapes

Hill climbing algorithms are sensitive to the way in which the cost function changes
when moving between configurations. Best results are obtained when a move from a
configuration x ∈ X to one of the neighbours η(x) does not change the value of the
cost function too much.

In our case we move from one configuration to another by flipping the value of a
single variable. But each variable appears in at most 8 equations and in 6 equations on
average, so when moving to a neighbour of the current configuration the cost function
will change by at most 8. Furthermore, changing the value of a single variable will
change the value of the equation with probability 1 if the variable appears in a linear
term and with probability 1

2 if the variable appears in a quadratic term. In the latter
case flipping the value of a variable will just change the outcome of the equation if
the other variable in the quadratic term is assigned to ’1’. If a variable appears in the
maximum of eight equations it appears in two equations in the quadratic term only.
(Here it is important to note that each variable appears only once in an equation.)
The expected number of equations which change their outcome is 7. Additionally it
is unlikely that flipping the value of a variable changes the outcome of all equations
which contain this variable in the same direction or respectively it is unlikely that
all equations which contain the variable have the same outcome for the configuration
before the flip. (Of course the case that a lot or even all equations have the same
outcome will appear with higher probability the closer we are to the minimum.)

From these observations we infer that even if we move from a configuration x to
one of its neighbours by flipping the value of a variable which appears in 8 equations
we do not expect that the value of the cost function changes by 8 in almost all of the
cases.

We confirmed this by the following experiment. We generated a Trivium system
for a random key and calculated the cost function for a random starting point. Then
we chose a neighbour configuration of our starting point and recorded the absolute
value of the change in the cost function. To simulate being close to the minimum we
set a number of bits to the correct solution but we allowed those bits to be flipped to
move to a neighbouring configuration. The results are summarized in Table 1.

These properties of Trivium cost landscapes can be captured more formally using
the notion of NK-landscapes and landscape auto-correlation as follows.
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Table 1. Change of the cost function when moving to a neighbour configuration:
The first row denotes the number of preassigned bits we use to simulate different distances
from the minimum. We count how often out of 10000 trials the cost function changes by 0
to 8 units. The last row gives us the average change of the cost function.

i 0 100 200 300 400 500 600 700 800 900 954

0 1714 1702 1685 1560 1309 1052 944 767 601 264 0
1 3253 3246 3297 3158 2641 2143 1856 1550 1120 389 34
2 2248 2235 2240 2241 1930 1720 1385 1172 937 1001 1062
3 1557 1571 1550 1659 1821 1757 1488 1278 1258 1515 1537
4 675 665 668 754 1024 1020 911 810 741 596 648
5 386 400 380 409 691 940 1088 1078 1024 1068 1160
6 127 128 130 164 409 916 1372 1630 1866 2002 2049
7 32 44 41 46 165 439 837 1352 1854 2297 2534
8 8 9 9 9 10 13 119 363 599 868 976

average change 1.81 1.824 1.814 1.9 2.32 2.83 3.32 3.85 4.38 4.97 5.3

4.1 Trivium systems and NK-landscapes

NK-landscapes were introduced by Kaufmann [16] to model fitness landscapes with
tunable “ruggedness”. An NK-landscape is a set of configurations X = {0, 1}n to-
gether with the cost function defined as

f(x) =
n∑

i=1

fi(xi; xπi,1 , . . . , xπi,k
) ,

where each πi is a tuple of k distinct elements from the set {1, . . . , n} \ {i}. In other
words, the cost function of an NK-landscape is a sum of n local cost functions fi, each
one of them depending on the main variable xi and a set of k other variables. In a
random neighbourhood model, the k indices are selected randomly and uniformly for
each fi. Depending on the value of k, we get either smooth landscapes with relatively
few local minima when k is small and rugged landscapes for large values of k.

The Trivium optimization problem can be seen as such combinatorial landscape.
Consider the basic system of equations. We define each fi as the contribution of i-th
equation (either 0 or 1 depending on whether it is satisfied). Each equation depends
on six distinct variables, we verified by a computer program that indeed we can always
pick one of them as the main variable leaving exactly five other ones for each equation.
Trivium optimization problem can thus be seen as an instance of NK-landscape with
n = 954 and k = 5, a rather small value hinting at a certain smoothness of this
landscape.

4.2 Landscape auto-correlation

Another measure of landscape ruggedness is the notion of landscape correlation in-
troduced by Weinberger [24]. We will follow the exposition by Hordijk [14]. The main
idea is to perform a random walk on the landscape via neighbouring points. At each
step, the cost function yt is recorded. That way a sequence (yt)t=1...T is obtained and
we compute its auto-correlation coefficients.

The auto-correlation of a sequence (yt) for the time lag i is defined as

ρi = Corr(yt, yt+i) =
E[yt · yt+i]− E[yt]E[yt+i]

V ar[yt]
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where E means the expected value and V ar variance of a random variable. Estimates
ri of these auto-correlations ρi are

ri =

∑T−i
t=1 (yt − ȳ)(yt+i − ȳ)

∑T
t=1(yt − ȳ)2

where ȳ means the mean value of yt. Here a large auto-correlation coefficient corre-
sponds to a smooth landscape. An important assumption that has to be made for
such analysis to be meaningful is that the landscape is statistically isotropic. This
means that the statistics of the time series generated by a random walk are the same,
regardless of the starting point. Only then a random walk is “representative” of the
entire landscape. By computing correlation coefficients for many random walks start-
ing at different points we experimentally verified that the Trivium landscape can be
seen as isotropic.

Selected correlation coefficients computed for a basic version of Trivium system
and overdefined versions are presented in Table 2. Clearly, generating the overdefined
system makes the landscape smoother.

Table 2. Correlation coefficients for landscapes generated by Trivium systems of different
sizes. n denotes the number of variables in the system.

keystream length n r(1) r(10) r(20) r(30) r(40) r(50)

288 954 0.989 0.896 0.803 0.720 0.646 0.580
576 1818 0.994
1152 3546 0.997

5 Solving Trivium system with modified simulated annealing

The properties of landscapes generated by the Trivium system of equations suggest
that it might be possible to employ stochastic search methods such as simulated
annealing to try to find a global optimum and thus recover the secret state of the
cipher. In this section we report the results of our experiments in this direction.

Initial experiments with standard simulated annealing were not very encouraging.
To be able to solve the Trivium system in reasonable time, we needed to simplify
the initial system by setting around 600 out of 954 variables to their correct values
throughout the search.

We experimented with the algorithm and its various modifications and found one
that yielded a significant improvements over the standard algorithm. The algorithm
works as follows. As with standard simulated annealing, we randomly generate a
neighbour. If the cost decreases, we accept this move. If not, instead of accepting
with probability related to the current temperature, we pick another neighbour and
test that one. If after testing a certain number of neighbours we cannot find any
cost decreasing move, we accept the increasing move with some probability, just as
in the plain simulated annealing. The parameter of this procedure is the number of
additional candidates to test before accepting cost increase.

If the parameter is zero, we get plain simulated annealing. On the other end of the
spectrum, if we test all possible neighbours, it is easy to see that we get an algorithm
that is equivalent to local search, we look for any possible decreasing move and we
follow it. When we are in a local minimum, we enter a loop, we finally accept one
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of the cost increasing candidates but in the next move we always go back to the
local optimum we found. Setting the parameter between those extremes yields an
intermediate algorithm.

In practice, we used a probabilistic variant of this approach that randomly selects
neighbours until it finds one with smaller cost or it exceeds the number of tests defined
as a parameter nochangebound. This algorithm is presented in Alg. 2.

Algorithm 2 Modified version of simulated annealing
xbest ← x
T ← α � initial temperature parameter is α
k ← 0 � set the outer loop counter
while T > 1 do

for m = 0, . . . , M − 1 do � parameter M is the number of inner runs
generate a neighbour y ∈ η(x) uniformly
if f(y) < f(x) then � if cost decreased

x← y � accept the move
if f(x) < f(xbest) then � found a new best value

xbest ← x � store the best configuration
nc← 0 � reset the neighbor counter
if f(xbest) = 0 then � if we found a solution

return xbest � finish and return it
end if

end if
else � the candidate cost is higher

nc← nc + 1
if (nc > nochangebound) ∧ (exp((f(y)− f(x))/T > rnd[0, 1]) then

x← y � accept the move
nc← 0 � reset the counter of tested neighbours

end if
end if

end for
k ← k + 1
T = α/ log2(k ·M) � Logarithmic cooling schedule

end while

The relationship between the number of neighbours tested and the time it took
to find a solution (measured in the number of neighbours tested) is presented in
Fig 1. Values of nochangebound below 25 result in running times exceeding 240 flips.
It suggests that the proper choice of nochangebound is critical for the efficiency of the
simulated annealing, in particular, it cannot be too small.

6 Experimental results

In this section we report results of our computational experiments with the basic
equation system generated by the problem of recovering internal state of Trivium.
We took the fully determined system with 954 equations and variables obtained after
observing 288 bits of the keystream.

We made some comparisons between exponential and logarithmic cooling schedules
and from our limited experience the logarithmic cooling schedule performed better in
more cases, so we decided to pick that one for our further tests.
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Fig. 1. Influence of nochangebound parameter on the efficiency of simulated annealing ap-
plied to basic Trivium system for three values of initial temperature α. Other parameters
are M = 1024 (cf. Alg. 2), averages are over 10 tests. In the top figure we guessed 200 first
bits of the state, in the bottom one 180 bits.

The values of α were picked based on empirical observations. Too large α resulted
in prolonged periods of almost-random walks where there was no clear sign that any
optimization might occur. Too small values gave the behavior similar to a simple local
search when the process was getting stuck in some shallow local optima. After a few
trials we decided to use the initial temperature parameter α = 35.

For each number of bits of the state fixed to their correct values (preassigned) we
ran ten identical tests with different random seeds testing various values of nochange-
bound parameter (from the set 100, 150, 175, 200, 250, 300). After the test batch
finished, we picked that value of nochangebound that yielded lowest search time. We
managed to obtain optimal values for nochangebound for 200, 195, 190, 185, 180, 175
and 170 preassigned bits where we set the values of the first bits of the internal state.
We use this optimal nochangebound to estimate the total complexity of the attack.
The graph is presented in Fig. 2. The total complexity is the product of the num-
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ber of guesses we would need to make (2preassigned) multiplied by the experimentally
obtained running time of the search for the solution.
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Fig. 2. Running times of the attack based on modified simulated annealing depending on
the number of guessed bits. The numbers on the vertical axis are base two logarithms of
the total number of moves necessary to find the solution. Crosses represent results of single
experiments, the line connects averages.

The results show that the running time of the attack decreases with the smaller
number of guessed bits since the increase in time of the search procedure is smaller
than the decrease due to the smaller number of bits we have to guess. If the curve
goes down below the complexity level corresponding to 280 key setups of Trivium,
it would constitute a state-recovery attack. However, our problem is that due to
limited computational power we were not able to gather enough results for values of
preassigned smaller than 170. Our program running on 1.1GHz AMD Opteron 2354
was able to compute 235 bit flips per hour and tests with preassigned = 170 required
around 238 ∼ 239 bit flips.

It seems that trying to extrapolate the running times is rather risky, since we do
not have any analytical explanation of the complexities we get as often is the case with
heuristic search methods. Therefore we do not claim anything about the feasibility of
such an attack on full Trivium. We can only conjecture that there might be a set of
parameters for which such attack may become possible.

Due to the computational complexity, our experimental results are so far based
on only rather small samples of runs for the fixed set of parameters. Therefore, they
cannot be taken as a rigorous statisticial analysis but rather as a reconnaissance
of the feasibility of this approach. However, we have noticed that for overwhelming
fraction of all the experiments, the running times for different runs with the same set
of parameters do not deviate from the average exponent of the bit flips by more than
±2, i.e. most of the experiments have the number of flips between 2avg−2 and 2avg+2.
Therefore, we believe that the results give some reasonable impression of the actual
situation.
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7 Some variations

The previous section presented the set of our basic experiments. However, there is
a multitude of possible variations of the basic setup which could possibly lead to
better results. In this section we mention some variations of the search problem we
considered while looking for possible optimizations.

7.1 Guessing strategy

In order to lower the complexity of solving the equation system we set some of the
variables to their correct values. However, the search complexity depends on which
variables we choose.

We used different guessing strategies for pre-assigning variables and compared the
influence on the running time of our algorithm. We used the following strategies to
guess subsets of the state bits:

1. Select the first variables of the initial state.
2. Select the first variables of each register of the initial state.
3. Select the last variables of the initial state.
4. Select the last variables of the each register of the initial state.
5. Select the most frequent variables. These are the variables which are introduced

by the update function at the beginning of the key stream generation. We guess
values for variable s289 and the consecutive ones in this case.

6. An adaptive pre-assignment strategy which is similar to the ThreeFour strategy
in [11] (see Subsection 7.1).

7. Select the variables in such a way that the equation interdependence measure is
minimal. (see Subsection 7.1).

It turns out that the best guessing strategy of the ones we tested is to guess the first
bits of the initial state. In addition to a pre-assignment of variables we can determine
the value of further variables by considering the linear and quadratic equations (see
below). We use this technique in the adaptive pre-assignment strategy.

Table 3. Running time for different pre-assignment strategies. nochangebound=110, 190 bits
are preassigned, average taken over ten runs.

first bits of the
initial state

most frequent
bits

first bit of
every register

last bit of the
initial state

last bit of
each register

average 29.5 33.0 34.5 31.2 36.4

Adaptive pre-assignment strategy In this pre-assignment strategy we use the
fact that assigning 5 of the variables in a linear equation will uniquely determine the
6th variable. Starting with an arbitrary linear equation we guess and pre-assign 5 of
the 6 variables, determine the value of the remaining variable and assign this to its
value. We know that a large fraction of the variables appear in two linear equations.
So in the next round of pre-assignment we pick an equation in which at least one
variable is already assigned. That means we only have to guess at most 4 variable to
get one for free. We continue until we have made the maximum number of guesses or
we cannot find an equation in which one variable is already assigned. In the latter case
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we just have to pick an equation without preassigned variables and run the algorithm
again until we made the maximum number of guesses.

Additionally we also use the quadratic equations to determine the value of vari-
ables.

The advantage of this pre-assignment strategy is that we can assign many more
variables than we actually have to guess. Table 4 gives us an impression of this ad-
vantage.

Table 4. The table shows how many bits additional to the guessed bits can be assigned
using the adaptive pre-assignment strategy.

# guessed bits # assigned bits additional assigned bits in %

5 6 20%
50 66 32%

100 135 35%
200 281 40.5%

The disadvantage is that we instead of making the equations sparser we fix some
equations to be zero. That means that there are less equations left which contain free
variables but the maximum number of equations in which a variables appears is still
8. Therefore a variable influences a higher percentage of equations.

Minimizing equation interdependency If all the equations used different sets of
variables, it would be trivial to solve the system by a simple local search. However,
variables appear in many equations and changing the value of one of them influences
other equations at the same time. This suggests the idea of guessing (pre-assigning)
bits to minimize the number of variables shared by many equations and thus reduce
the degree of mutual relationships between equations.

Capturing this intuition more formally, let Ei be an equation and let V(Ei) denote
the set of not preassigned variables that appear in the equation. We can define the
measure of interdependence of two equations Ei, Ej as

IntrDep(Ei, Ej) = |V(Ei) ∩ V(Ej)| .

If the measure is zero, equations use different variables and we can call them separated.
Note that pre-assigning any bit that is used by both equations decreases the value of
interdependence.

To capture the notion of equations interdependence in the whole system of Trivium
equations E, the following measure could be used

∑

e,g∈E,e�=g

|V(e) ∩ V(g)|2 . (2)

We used the sum of squares to prefer systems with more equations with only few
active (non-preassigned) variables over less equations that have more active variables,
but it is possible to use an alternative measure without the squares,

∑

e,g∈E,e�=g

|V(e) ∩ V(g)| . (3)

The algorithm for pre-assigning bits to minimize the above measure is rather
simple. We start with computing the initial interdependence of the system. Then, we
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temporarily pick a free variable and assign it to compute the new interdependence of
the system. If this value is smaller than the current record, we remember it as a new
record. After we test all possible candidates, we pick the record one and assign it for
good. We repeat this procedure until we get the required number of preassigned bits.

We performed an experiment that compared the results of the reference pre-
assignment strategy fixing the first 190 bits of the state with two variants minimizing
(2) and (3). Results presented in Table 5 are interesting. It seems that in spite of
significant smoothening of the landscape indicated by higher values of the coefficient
ξ the first strategy minimizing (2) significantly worsens the running time. A pos-
sible explanation may be that the landscape became more like “golf-course” with
large areas without any direction and only very small attraction basins leading to
global solution(s). Another possibility is that for such systems, different parameter
of nochangebound is preferred. The second variant minimizing (3) seems to be only
slightly better than setting the first bits, but more tests would be needed for more
parameters to decide any definite advantage.

Table 5. Running times and landscape auto-correlation coefficients ξ for bit pre-assignment
strategies minimizing equation interdependence. Experiments used α = 33, M = 1024,
nochangebound = 110.

strategy: reference Case 1 Case 2

avg: 29.34 38.9 28.72

ξ 90.1 97.4 96.1

7.2 Using overdefined systems

Results on landscape auto-correlation suggest that using overdefined systems may
yield landscape with better structural properties. However, this happens at the ex-
pense of a larger set of variables and equations we have to deal with. Our experimental
results on overdefined systems suggest that the gain we get from a better landscape
is offset by the larger system size so search times are actually not better.

7.3 Variable persistence

According to [4, 5] while using simulated annealing to some optimization problems,
one can observe a bias in the frequency of assigning values to variables during the
simulated annealing procedure. This bias is related to the solution of the system and
observing it can give some information on the solution we are looking for.

We made some experiments that investigated if configurations of local minima
(states we run into after a long cooling run) have variables correlated with the global
minimum state. In our limited experiments with the basic Trivium system we did not
observe any such correlations.

8 Conclusions and future directions

We presented a new way of approaching the problem of solving systems of sparse,
multivariate equations over the binary field. We represent them as combinatorial op-
timization problems with the cost function being the number of not satisfied equations
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and then we apply some heuristic search methods, such as simulated annealing to solve
them.

We showed that such systems may be relevant in cryptography by giving an ex-
ample of the system generated by the problem of recovering the internal state of the
stream cipher Trivium.

Our experimental results were focused on Trivium system and they seem to be
promising but for now they do not seem to pose any real threat to the security of this
algorithm.

We hope that this paper will serve as a starting point for further research in this
direction. There are many open problems in this area, the most obvious ones are the
selection of better parameters of the search procedures and analytically estimating
the possible complexity of such algorithms.

The other interesting direction seems to be the investigation of alternative cost
functions. In all our experiments we use the simplest measure counting the number of
not satisfied equations. However, many results in heuristic search literature suggest
that the selection of a suitable cost function may dramatically change the efficiency
of a search. The question of determining whether in our case there exist measures
better than the one we used is still open.
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