1. Introduction

A sustainable solution for the energy crisis requires both replacing fossil fuels and diversifying our energy resources. As more than half the energy produced by home heating, automotive exhaust, and industrial processes is lost as waste heat, the recovery of even a very small amount of this energy would greatly contribute to global energy solutions. In this sense, thermoelectric materials, which convert waste heat into useful electrical energy, possess great potential as a sustainable and reliable energy source. Thermoelectric waste heat recovery is a proven technology and has been successfully implemented in deep space exploration missions for decades. However, to broaden the application areas, lower cost and improved thermoelectric efficiencies are required.

The thermoelectric efficiency of a material depends on the dimensionless thermoelectric figure of merit, $zT = S^2T/k\rho$, where T is the absolute temperature, S is Seebeck coefficient (thermopower), ρ is electrical resistivity, and k is the total thermal conductivity. The latter is comprised of three components: the electronic contribution, k_e (related to ρ for metals through the Wiedemann–Franz law, $k_e = LT/\rho$, where L is the Lorenz number), due to either electrons or holes; the bipolar contribution, k_b, due to both electrons and holes; and the lattice contribution, k_L, due to quantized lattice vibrations (phonons). k_L should be low or lowered to achieve high thermoelectric efficiency. Reductions in k_L can be achieved by shortening the mean free path of the lattice phonons with several strategies such as point defect scattering, alloy scattering, grain-boundary scattering or interface scattering. However, some materials, such as clathrates, skutterudites, and zintl pnictides, display intrinsically low lattice thermal conductivities associated with their structures and lattice dynamics. Apart from k_L, which can, to some extent, be manipulated independently, all other parameters in the thermoelectric efficiency equation are interdependent and governed by the charge carrier concentration, n. The optimum carrier concentrations for high

YCuTe$_2$: a member of a new class of thermoelectric materials with CuTe$_4$-based layered structure

Umut Aydemir,*ab Jan-Hendrik Pöhls,c Hong Zhu,de Geoffroy Hautier,f Saurabh Bajaj,a Zachary M. Gibbs,9 Wei Chen,gh Guodong Li,ab Saneyuki Ohno,ab Danny Broberg,1 Stephen Dongmin Kang,ab Mark Asta,1 Gerbrand Ceder,6gi Mary Anne White,c Kristin Persson,9i Anubhav Jain9 and G. Jeffrey Snyder*ab

Intrinsically doped samples of YCuTe$_2$ were prepared by solid state reaction of the elements. Based on the differential scanning calorimetry and the high temperature X-ray diffraction analyses, YCuTe$_2$ exhibits a first order phase transition at ~440 K from a low-temperature-phase crystallizing in the space group $P\bar{3}m1$ to a high-temperature-phase in $P\bar{3}$. Above the phase transition temperature, partially ordered Cu atoms become completely disordered in the crystal structure. Small increases to the Cu content are observed to favour the formation of the high temperature phase. We find no indication of superionic Cu ions as for binary copper chalcogenides (e.g., Cu$_2$Se or Cu$_2$Te). All investigated samples exhibit very low thermal conductivities (as low as ~0.5 W m$^{-1}$ K$^{-1}$ at 800 K) due to highly disordered Cu atoms. Electronic structure calculations are employed to better understand the high thermoelectric efficiency for YCuTe$_2$. The maximum thermoelectric figure of merit, zT, is measured to be ~0.75 at 780 K for Y$_{0.96}$Cu$_{1.08}$Te$_2$, which is promising for mid-temperature thermoelectric applications.
efficiencies are generally observed for heavily doped semiconductors ($n = 10^{19}$ to 10^{21} carriers cm$^{-3}$).8

We recently initiated a high-throughput search for new thermoelectric materials with high power factors, S^2/ρ, within the Materials Project (www.materialsproject.org) electronic structure database.10 The bulk thermal conductivity was largely neglected in this first-order screening due to the computational costs associated with direct evaluation of this metric; however, minimum thermal conductivity estimates11 were computed for many promising candidates. By assuming constant relaxation time for electron scattering, we revealed a new group of thermoelectric materials, XY_2 (X, Y: rare earth or transition metals, Z: group VI elements).12 Among them, we previously reported the thermoelectric properties of TmAgTe$_2$ displaying extremely low thermal conductivity (0.2–0.3 W m$^{-1}$ K$^{-1}$ for $T > 600$ K, comparable to the glassy limit) but with high electrical resistivity due to low carrier concentrations ($\sim 10^{17}$ cm$^{-3}$) at room temperature.13 A higher carrier concentration was observed by Lin et al. for TmCuTe$_2$ crystallizing in a different crystal structure (DyCuTe$_2$ structure type)13,14 from TmAgTe$_2$, leading to relatively high α of 0.81 at 745 K.15 The substitution of Ag with Cu might lead to an increase in carrier concentration due to intrinsic defects generally found for copper chalcogenides (Cu$_2$–Y (Y = S, Se, Te)).16–21 Apart from copper vacancies, copper chalcogenides have attracted renewed attention mainly for superionic Cu atoms with liquid-like mobility leading to extremely low thermal conductivity.16–18,20 However, it was not reported whether this mechanism is responsible for the low thermal conductivity observed for the high temperature phase of TmCuTe$_2$. Inspired by our high-throughput calculations and reported results on TmCuTe$_2$, we synthesized YCuTe$_2$ (using the much cheaper and more abundant element Y) and characterized its thermoelectric properties. In this paper, we present the crystal structure, thermal behaviour, optical absorption, first-principles calculations, and electronic and thermal transport results of intrinsically doped YCuTe$_2$. Furthermore, we measured the heat capacity to investigate the potential superionic character of the Cu atoms in this material.

2. Experimental methods

2.1 Sample preparation

All synthetic procedures of YCuTe$_2$ were performed in an Ar-filled glove box. For preparation, stoichiometric amounts of Y pieces (Alfa Aesar, 99.9%), Cu slug (Alfa Aesar, 99.995%, oxygen free) and Te pieces (Alfa Aesar, 99.9999%) were vacuum sealed ($\sim 10^{-6}$ mbar) in carbon-coated fused silica ampoules and heated to 475 °C for 10 h, then heated to 800 °C for 15 h, to 1170 °C for 15 h, then annealed at 1170 °C for 15 h, cooled to 800 °C for 15 h, to 400 °C for 15 h, and finally cooled to 100 °C in 15 h; the furnace was turned off at this temperature. The resulting ingots were hand-ground in a glove box and placed in 1/2 inch diameter high-density graphite dies (POCO) for consolidation. The samples were hot-pressed at 600 °C for 1 h under 80 MPa pressure in Ar atmosphere. The pressed samples were cooled to room temperature over 2 h.

2.2 Sample characterization

Sample purities were monitored by X-ray diffraction (XRD) using a PANalytical X’Pert Pro diffractometer (45 kV, 40 mA, Cu-K$_\alpha$ radiation) with reflection mode. High-temperature XRD (HT-XRD) measurements were carried out under He atmosphere with a sealed high-temperature stage equipped in the same instrument.22 The lattice parameters determinations and Rietveld refinements were performed using the WinCSD program.23 The density of the samples was measured with Archimedes’ principle. To investigate the microstructure and chemical composition (by energy dispersive X-ray spectroscopy, EDS) of the secondary phases, a scanning electron microscope (Zeiss 1550 VP Field Emission SEM equipped with Oxford X-Max SDD EDS system) was used. The chemical composition of the target phases was determined by microprobe analysis using wavelength dispersive X-ray spectroscopy (WDS, JEOL JXA – 8200 system). A TA Instruments24 Q200 differential scanning calorimeter (DSC) was used to determine potential phase transitions. DSC thermograms of samples ($m \sim 10$ to 30 mg, known to ± 0.02 mg), hermetically sealed in aluminium pans, were recorded with a constant scanning rate of 1 K min$^{-1}$ (for transition temperatures of events) to 20 K min$^{-1}$ (for ΔH determination), under N$_2$ atmosphere. The heat capacity was measured via the enthalpic method using the same DSC.24 For the heat capacity studies ($m \sim 12$ mg, known to ± 0.02 mg), 10 K intervals were recorded from 320 K to 530 K with a scanning rate of 2 K min$^{-1}$. Before and after each temperature step the calorimeter was held isothermally for 5 min. Three experiments were carried out to calculate the heat capacity. In the first run, an empty hermetically sealed aluminium pan was recorded to determine the background of the DSC and aluminium pans. In the next two runs, Al$_2$O$_3$ powder as a standard sample and YCuTe$_2$ were measured. For each temperature interval the background was subtracted from the standard sample and YCuTe$_2$, respectively, and the area, $F(\Delta H, t)$, was integrated over time. The heat capacity of YCuTe$_2$, $C_p,YCuTe_2$, was calculated by:

\[C_p,YCuTe_2 = \frac{F(\Delta H, t)_{YCuTe_2}}{m_{Al_2O_3}} \frac{m_{Al_2O_3}}{m_{YCuTe_2}} C_p,Al_2O_3 \]

The heat capacity of the standard sample, C_p,Al_2O_3, was acquired from ref. 25. The heat capacity was calibrated with relaxation calorimetry using a Physical Property Measurement System (PPMS, from Quantum Design) in the temperature range from 270 K to 390 K under high vacuum ($<10^{-4}$ Torr). The relaxation technique is described in ref. 26. Thermogravimetric analysis (TGA) was conducted under constant Ar flow on a Netzsch STA 449 C Jupiter thermal analyser with a heating rate of 10 K min$^{-1}$.

The electronic band gaps of the target phases were determined from room temperature to 573 K using diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) obtained with a Nicolet 6700 FTIR spectrophotometer (Thermo Scientific) equipped with a Praying Mantis Diffuse Reflection accessory (Harrick) as described in a previous work.27 The measured reflectance, R, was related by Kubelka-Munk theory to a value proportional to the absorption coefficient using: $R(R) = (1 - R)^2/2R$.

This journal is © The Royal Society of Chemistry 2016
2.3 Measurements of transport properties

Electrical and thermal transport properties were measured from 300 to 800 K. The electrical resistivity and Hall coefficient measurements were performed using the van der Pauw technique under a magnetic field of 2 T using pressure-assisted tungsten electrodes.28 The Seebeck coefficients of the materials were determined using chromel–Nb thermocouples by applying an oscillated temperature gradient of ±7.5 K.29 Thermal diffusivity, D, measurements were performed with a Netzsch LFA 457 laser flash apparatus. Thermal conductivity was calculated using the relation: $\kappa = D \times d \times C_p$, where d is the density of material being investigated and C_p is the heat capacity determined here at constant pressure.29 The longitudinal and transverse sound velocities were determined by ultrasonic measurements (Panametrics NDT 5800 pulser/receiver with a Tektronix TDS 1012 digital oscilloscope) at room temperature. Honey was used as a coupling agent.

2.4 Electronic structure calculations

Density functional theory (DFT) calculations in this work were performed using the Vienna Ab initio Simulation Package (VASP)30 with the Perdew–Burke–Ernzerhof (PBE)31 generalized gradient approximation (GGA)31 and the projector augmented-wave (PAW)32 method to model core states. The PAW potentials consider as valence the following electrons: 4s24p65s24d1 for Y, 3p63d104s1 for Cu, and 5s25p4 for Te. The cut-off energy of the plane wave basis was set to 520 eV, electron occupations were smeared using a Gaussian smearing width of 0.05 eV, and the electronic transport calculations were performed using the Boltztrap code33 based on the Boltztrap results and implemented in pymatgen.34 The electronic transport calculations were performed using the Boltztrap code37 under a constant relaxation time approximation of 10^{-14} s. The Grüneisen parameter (γ) was calculated using the Vaschenko–Zubarev formulation ($\gamma = K' / 2 - 5/6$, in which K' is the pressure derivative of the bulk modulus, K)38 and fitting the total energy of the relaxed structure at different volumes to the Murnaghan equation of state,

$$E(V) = E(V_0) + \frac{1}{K} \left(\frac{V_0}{V} \right)^K - \frac{1}{K'} \left(\frac{V_0}{V} \right)^{K' - 1},$$

in which V_0 is the equilibrium volume.39 To compute the average effective mass tensor, we followed the method we developed before,40 which is based on the Boltztrap results and implemented in pymatgen. This approach takes into account nonparabolicity, anisotropy, and the competitions of pockets in the Brillouin zone. Workflows were executed using the pymatgen41 and FireWorks42 software libraries.

3. Results and discussion

3.1 Phase analysis

Intrinsically doped YCuTe$_2$ samples were synthesized by solid state reaction of the elements and the resulting target materials were obtained either almost as single phase or together with Y$_2$Te (EDS composition) and YCu$_2$Te$_3$– (ref. 43) as by-products (Fig. 1). The chemical compositions of the target phases are presented in Table 1. Compared with the nominal compositions, the WDS results indicate that as the nominal copper content increases, the Y content of the samples decreases leading to Y-deficient compositions for compounds with Cu = 1.08. A complete phase diagram analysis could not be performed in this study as the observed phase Y$_2$Te has not been reported in the literature, and is the subject of an ongoing investigation. The EDS mapping of the elements for the YCuTe$_2$ sample indicates homogenously distributed Y, Cu, and Te atoms throughout the target phase region (see Fig. S1†). Based on the SEM investigation, Cu precipitation was not observed on the surfaces of the samples after the hot press and transport measurements, which was generally reported for super ionic Cu chalcogenides.44

Based on the TGA measurement, YCuTe$_2$ shows negligible mass loss (<0.1%) in the temperature range from 300 K to 550 K (Fig. 2a). The DSC thermogram indicates a broad phase transition from a low-temperature phase to a high-temperature phase with a peak temperature of ~440 K on heating (Fig. 2b; the onset temperature, which would be a more accurate transition temperature, is less clearly defined here due to the wide transition region). The transition is rather subtle: $\Delta H = 4.1 \pm 0.4$ J g$^{-1}$. The breadth of the anomaly in YCuTe$_2$ indicates either an intrinsic double transition with the second (minor) phase transition at slightly lower temperature, or transition from a single-phase region to a mixed-phase with change in phase fractions over a temperature range indicating discontinuous

Fig. 1. SEM images of intrinsically doped YCuTe$_2$ samples: (a) YCu$_{0.96}$Te$_2$, (b) Y$_{0.96}$Cu$_{0.04}$Te$_2$, (c) YCu$_{0.94}$Te$_2$, (d) YCu$_{1.06}$Te$_2$, (e) YCu$_{0.08}$Te$_2$, (f) Y$_{0.96}$Cu$_{1.08}$Te$_2$ in the backscattered electron imaging mode. The secondary phases of Y$_2$Te (EDS composition) and YTe$_2$Cu$_3$ precipitate at the grain boundaries and/or within the large grains of the target phases. With increasing Cu content there is a decrease in the secondary phase(s).
A broad exothermic peak also appears in the cooling cycle, indicating that the phase transition(s) is reversible. No additional phase transitions were recorded for YCuTe$_2$ in the temperature range from 300 K to 775 K. DSC of Y$_{0.96}$Cu$_{1.08}$Te$_2$ shows only a very minor anomaly at T_{C_p} = 370 K, confirmed by C_p measurements (see Section 3.4). TmCuTe$_2$ also shows a first order phase transition at \sim600 K. Copper chalcogenides, in comparison, undergo several phase transitions: Cu$_4$S at \sim370 and \sim700 K, Cu$_3$Se at \sim414 K, and Cu$_2$Te at five successive temperatures between 300 K and 900 K.

3.2 Crystal structure

YCuTe$_2$ definitively displays two phases, a low-temperature-phase (LT-phase) and a high-temperature-phase (HT-phase). The crystal structures of the LT- and HT-phases were determined using powder X-ray diffraction (PXRD) data (Fig. 3). The detailed results of the Rietveld refinements are given in Tables S1–S4.† The crystal structure of the LT modification is isotypic to DyCuTe$_2$ structure type (space group $P\bar{3}m1$, Fig. 4a).† By analogy to CaAl$_2$Si$_2$, Y and Cu atoms are all octahedrally (NiAs-like) and tetrahedrally (wurtzite-like) coordinated by Te atoms, respectively (see Table S3†). There are two types of CuTe$_4$ based layers that are stacked along the c-axis with A–B–A sequence. Layer-A is formed by ordered Cu$_1$ atoms at the 2d site and disordered Cu$_3$ atoms at the 6i site, while layer-B comprises disordered Cu$_2$ atoms at the 6i site and vacant Cu positions. Unoccupied Cu positions destroy the chair-like six-membered rings, which would otherwise lead to two-dimensional infinite nets.

To understand the disorder of Cu atoms, we have performed DFT calculations on six configurations each for the LT- and HT-phase of YCuTe$_2$. These configurations were created using a $2\times2\times1$ supercell for each structure. Afterwards they were ranked according to electrostatic energy as determined by the Ewald sum using the pymatgen library.† In the most stable configuration (see Fig. S2a†), the Cu and Te atoms form ladder-like

Table 1

<table>
<thead>
<tr>
<th>Nominal compositions</th>
<th>WDS compositions</th>
</tr>
</thead>
<tbody>
<tr>
<td>YCu$_{0.96}$Te$_2$</td>
<td>Y${1.075(4)}$Cu${0.948(5)}$Te$_{1.974(6)}$</td>
</tr>
<tr>
<td>Y$_{0.98}$CuTe$_2$</td>
<td>Y${1.080(4)}$Cu${0.957(5)}$Te$_{1.962(6)}$</td>
</tr>
<tr>
<td>YCuTe$_2$</td>
<td>Y${1.052(4)}$Cu${0.71(3)}$Te$_{1.977(6)}$</td>
</tr>
<tr>
<td>YCu$_{1.04}$Te$_2$</td>
<td>Y${0.945(4)}$Cu${0.985(3)}$Te$_{1.973(5)}$</td>
</tr>
<tr>
<td>YCu$_{1.08}$Te$_2$</td>
<td>Y${0.971(4)}$Cu${1.01(3)}$Te$_{1.989(6)}$</td>
</tr>
<tr>
<td>Y${0.96}$Cu${1.08}$Te$_2$</td>
<td>Y${0.973(4)}$Cu${1.012(1)}$Te$_{2.015(6)}$</td>
</tr>
</tbody>
</table>

Fig. 2 (a) Thermogravimetric analysis of YCuTe$_2$ showing an insignificant mass loss (<0.1%) from room temperature to 550 K. (b) DSC thermogram of YCuTe$_2$ (scanning rate 1 K min$^{-1}$; mass 12.22 mg). YCuTe$_2$ shows a reversible, broad phase transition.

Fig. 3 Rietveld refinement plots for (a) LT-YCu$_{1.04}$Te$_2$ (room temperature) and (b) HT-YCu$_{0.94}$Te$_2$ (T = 493 K). Ticks mark the calculated reflection positions of the target phases and the baselines correspond to the residuals of the Rietveld refinements.
moieties in which the Cu atoms are found farther apart ($d_{\text{Cu-Cu}} \approx 3.34 \text{ Å}$) in the four membered nets. On the other hand, in the highest-energy configuration (see Fig. S2b†), the Cu atoms are placed closer to each other ($d_{\text{Cu-Cu}} \approx 3.17 \text{ Å}$) and arranged with Te atoms to form channels accommodating Y atoms along the c-direction. The energy difference between the lowest and highest energy configurations for the $P\bar{3}m1$ phase is $\approx 10 \text{ meV per atom}$. Additionally, the total energy of the LT-phase is lower than that of the HT-phase by $\approx 0.7 \text{ meV per atom}$ for all the calculated models, which is within the numerical tolerance of our calculations.

As discussed above, the LT-phase transforms to the HT-phase at $\approx 440 \text{ K}$ according to DSC results. The HT-phase crystallizes in the trigonal space group $P\bar{3}$ with $a = 4.2970(2) \text{ Å}$ and $c = 6.9087(5) \text{ Å}$.33 In this crystal structure, there is one Y (1a), one Cu (2d) and one Te (2d) Wyckoff site (see Tables S2 and S4†). During the Rietveld refinement, Y and Te sites were observed to be fully occupied, whereas the Cu site was partially occupied. Partially disordered Cu atoms in the LT-phase are completely disordered at the 2d site in the HT-phase (Fig. 4). The phase transformation was investigated by HT-XRD experiments using the $\text{YCu}_{1.04}\text{Te}_2$ sample (Fig. 5). Supercell reflections with very low intensity disappear at 453 K suggesting completely disordered Cu atoms at the HT-phase. Our results also indicate that small increases in the copper content might lead to stabilization of the HT-phase (Fig. 6), as the supercell reflections lose intensity with higher Cu content. This seems reasonable considering the very small energy difference between LT- and the HT-phases observed in the total energy calculations.

Landau's criteria were applied to reveal the nature of the phase transition,37 and the transition was found to be of first order similar to TmCuTe$_2$. In terms of concentration wave vectors,48 the collection of ordering vectors include $\{0, 0, 1/2\}$,
{1/2, 0, 0}, and {1/2, 0, 1/2} according to our structure model. These three add up to a reciprocal lattice vector, a condition which indicates a discontinuous phase transition.\(^n\)

The lattice parameters were refined for the samples with varied Cu content and temperature (Fig. 7). For the former, the lattice parameters remain almost constant up to slightly above 25 at.% Cu and start to increase thereafter. For lower Cu content (YCuxTe2, \(x < 1.04\)), it is highly probable that the samples crystallize almost in the same chemical composition displaying very similar secondary phases, lattice parameters and transport properties (see Fig. 1, Table 1, and Sections 3.3 and 3.4). For higher Cu content (\(x \geq 1.04\)), additional Cu atoms may fill the vacant positions and expand the Cu–Te layers. Above room temperature (Fig. 7b), the unit cell length increases almost linearly in the \(c\)-direction while the unit cell length in the \(a\)-direction increases non-monotonically. The value of \(c/a = 1.605\) is slightly smaller than ideal value for an hcp crystal structure (1.633) and remains constant until \(\sim 350\) K, decreasing slightly close to the phase transition temperature (\(c/a = 1.603\) at 450 K), then returning to approximately the same value as at 350 K. The change in \(c/a\) ratio might point to a complex reorganization of Cu atoms during the phase transition.

3.3 The electronic structure and transport properties

The computed lattice parameters of the HT-phase of YCuTe2 are \(a = b = 4.359\) Å and \(c = 6.921\) Å. The computed band structures with and without spin–orbit coupling (SOC) effect are shown in Fig. 8a and c, respectively; we observe a determined band gap of 0.36 eV and 0.58 eV with and without the consideration of SOC effect, and in the former case a band split of \(\sim 0.7\) eV occurs at the valence band maxima. This large split is due to the strong relativistic effect of Te, as the VBM is mainly comprised of Te orbitals. This type of band splitting has been observed widely in several telluride compounds such as PbTe.\(^{49}\)

The lattice thermal conductivity was determined using the minimum thermal conductivity model of Cahill and Pohl (with computed bulk and shear moduli used to determine sound velocities), yielding \(\kappa_{\text{min}}\) of 0.43 W m \(^{-1}\) K \(^{-1}\).\(^{11,50}\)

Assuming a constant relaxation time of \(10^{-14}\) s, the predicted p-type maximum average \(zT\) value over the three crystalline vectors at 600 K is 0.82 and 1.50 as determined from SOC and non-spin–orbit coupling (NSOC) electronic band structure calculations, respectively (Fig. 8b and c and Table 2). Thermal expansion has an important impact on the thermoelectric transport behaviour.\(^{49}\) We also find that the maximum \(zT\) at 600 K can be enhanced through tensile strain by increasing the lattice parameter, which is accompanied with a band gap and effective mass increase (see Fig. S3† and Table 2).

The electronic transport properties were measured for the YCuTe2 parent compound and the intrinsically doped samples; results are shown in Fig. 9. The electrical resistivity \((\rho)\) increases with temperature as expected for heavily doped semiconductors (Fig. 9a). The lowest electrical resistivity was observed for the samples that contained excess Cu (\(\rho \sim 4\) m\(\Omega\) cm at 300 K and
The electrical resistivity in all YCuTe$_2$ samples was greater than for Cu$_2$Te (\(r = 0.18 \, \text{m} \, \Omega \, \text{cm at 300 K}\)) and TmCuTe$_2$ (\(r = 0.99 \, \text{m} \, \Omega \, \text{cm at 300 K}\)) which is most likely due to an increased band gap energy and lower carrier concentration in YCuTe$_2$ (\(E_g = 0.58 \, \text{eV}\) from DFT-GGA NSOC calculation); Cu$_2$Te and TmCuTe$_2$ under the same theory exhibit no computed band gap (\(E_g = 0 \, \text{eV}\)) and a low band gap energy (\(E_g = 0.23 \, \text{eV}\)), respectively.

The Hall mobility (\(\mu_H = \frac{R_H}{\rho}\) where \(R_H\) is the Hall coefficient) is plotted as a function of temperature in Fig. 9b. \(\mu_H\) for the HT phase decreases with temperature and is nearly proportional to \(T^{-3/2}\), indicating that acoustic phonons are likely the dominant source of charge carrier scattering in YCuTe$_2$. All samples at high temperatures had a comparable mobility whereas the mobility at room temperature depends on the composition and increases from 43 cm2 V$^{-1}$ s$^{-1}$ for YCu$_{1.08}$Te$_2$ to 67 cm2 V$^{-1}$ s$^{-1}$ for YCuTe$_2$. Two distinct regions in \(\mu_H\) versus temperature were observed for all YCuTe$_2$ samples suggesting a phase transition from the low temperature phase to high temperature phase between 400 K and 440 K. This is in the range of the phase transition temperature as indicated in Fig. 2b.

Table 2

<table>
<thead>
<tr>
<th>Strain (%)</th>
<th>(E_g) (eV)</th>
<th>Hole effective mass ((m_0))</th>
<th>Max avg. p-type z(T) (600 K)</th>
<th>Carrier conc. (h$^+$ cm$^{-3}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>−2</td>
<td>0.4 (0.16)</td>
<td>0.31 (0.17)</td>
<td>0.51 (0.17)</td>
<td>1.36 (0.51)</td>
</tr>
<tr>
<td>0</td>
<td>0.58 (0.36)</td>
<td>0.36 (0.33)</td>
<td>0.60 (0.39)</td>
<td>1.50 (0.82)</td>
</tr>
<tr>
<td>2</td>
<td>0.71 (0.49)</td>
<td>0.45 (0.39)</td>
<td>0.65 (0.46)</td>
<td>1.56 (0.90)</td>
</tr>
</tbody>
</table>
A similar temperature dependence was observed for the Hall carrier concentration \(n_H = \frac{1}{R_He} \) with \(e \) as elementary charge) as shown in Fig. 9c. The room temperature Hall mobility decreases with increasing Cu content (except for the parent compound) resulting in an increase in Hall carrier concentration. This behaviour is consistent with Cu\(_2\)Te, which has a lower Hall mobility (\(\mu_H = 13 \text{ cm}^2\text{V}^{-1}\text{s}^{-1} \) at 300 K) but a larger Hall carrier concentration (\(n_H = 2.77 \times 10^{21} \text{ cm}^{-3} \) at 300 K) than YCuTe\(_2\).\(^{18}\)

The positive Hall carrier concentration indicates that holes are the majority carriers in YCuTe\(_2\). At room temperature, the carrier concentration increases with increasing nominal Cu content and attains the highest values for YCu\(_{1.08}\)Te\(_2\). This behaviour is expected if the ‘true’ compositions of the compounds are considered (see Table 1). While both YCu\(_{1.08}\)Te\(_2\) and Y\(_{0.96}\)Cu\(_{1.08}\)Te\(_2\) are Y-deficient and slightly Cu-excess, all compounds with Cu < 1.08 have excess Y. Although the Cu content slightly increases, the presence of Y deficiency results in an overall increase in the p-type carrier concentration because Y is a trivalent cation whereas Cu is monovalent. Furthermore, the Hall carrier concentration in YCu\(_{1.08}\)Te\(_2\) shows no evidence of a phase transition at 400 K as observed in the Hall mobility, and displays a maximum at around 500 K. However, the change in carrier concentration for YCu\(_{1.08}\)Te\(_2\) with \(x < 1.08\) at 400 K is most likely due to a slight shift in composition during the phase transition from a single phase to a phase-mixture region.

The temperature dependence of the Seebeck coefficient (\(S\)) is plotted in Fig. 10. The positive Seebeck coefficient confirms the Hall carrier concentration results that holes are the majority carriers. Furthermore, the Seebeck coefficient increases with temperature, with a similar temperature behaviour for all samples, to a maximum Seebeck coefficient at 780 K. While the Seebeck coefficient of the parent compound increased from 170 \(\mu\text{VK}^{-1}\) to 290 \(\mu\text{VK}^{-1}\), YCu\(_{1.08}\)Te\(_2\) has a lower Seebeck coefficient (\(S = 270 \mu\text{VK}^{-1} \) at 780 K) that can be attributed to its higher carrier concentration. For comparison, Cu\(_2\)Te and TmCuTe\(_2\) both exhibit higher carrier concentrations than YCuTe\(_2\), and all YCuTe\(_2\) compounds have larger Seebeck coefficients than Cu\(_2\)Te (57 \(\mu\text{V K}^{-1}\) at 780 K)\(^{18}\) and TmCuTe\(_2\) (183 \(\mu\text{V K}^{-1}\) at 780 K).\(^{15}\)

The electrical properties were compared to data calculated using the Boltzmann transport equation where the relaxation time is limited by acoustic scattering \((\tau = \tau_0(T/T_{\text{ref}})^{-3/2}(E - E_{\text{ref}})^{-1/2})\) with \(\tau_0\) fitted to the mobility data, \(T_{\text{ref}} = 400\) K, and \(E_{\text{ref}} = E_{\text{VBM}}\) (see Fig. S4†).

The experimental Seebeck coefficient and power factor for YCuTe\(_2\) agree well with the calculated data. However, the computed Seebeck coefficient decreases at higher temperature, while the experimental Seebeck coefficient increases. The increase in Seebeck coefficient at high temperature is most likely a result of the rise in effective mass with increasing volume.

The optical properties of YCuTe\(_2\) were measured using diffuse reflectance spectroscopy. Because of the large free carrier concentration in intrinsic YCuTe\(_2\), the spectrum shows a broad peak at low energies. A maximum in the Kubella-Munk function is observed at approximately 0.12 eV (Fig. 11), which corresponds to a minimum in the reflectivity associated with the plasma frequency resulting from the large free carrier concentration. The free-carrier absorption was fit to a power law and subtracted prior to considering other optical features. The effect of the free carriers decays above the maximum and is followed by another rise in the Kubella-Munk function that we attribute to interband (valence-conduction) transitions. The extrapolated gap (assumed to be indirect as indicated by DFT calculations) is found to be \(-0.6 \pm 0.07\) eV; however some uncertainty exists because of the unknown Burstein-Moss shift and relatively large free carrier absorption (meaning the gap could be a few \(k_B T\) smaller).\(^{27}\) Temperature-dependent optical absorption edge measurements were also performed (Fig. 11 inset), which revealed a sudden decrease in the absorption edge position for \(T > 450\) K (to \(-0.3 \pm 0.07\) eV). This is consistent with the phase transition observed in the DSC (Fig. 2b) and the high-temperature XRD (Fig. 5).

Fig. 10 The Seebeck coefficient increases with temperature for the parent YCuTe\(_2\) compound and intrinsically doped samples. All investigated samples have higher Seebeck coefficient than that of TmCuTe\(_2\).

Fig. 11 Normalized optical absorption spectrum for YCuTe\(_2\) at room temperature. Inset: the band gap of YCuTe\(_2\) decreases above the phase transition.
3.4 Thermal transport

YCuTe2, TmCuTe2, and binary copper chalcogenides all undergo phase transitions. In the high-temperature phases of Cu2S,16 Cu2Se,17,18 and Cu2Te,18,19 the Cu ions are kinetically disordered and distributed throughout possible vacancy positions, while the anions maintain a rigid sub-lattice. The superionic Cu ions with liquid-like mobilities reduce the heat capacity as well as the thermal conductivity.17 Conversely, in the low-temperature phases, the Cu ions are localized (non-superionic) and the crystal symmetries are lower. To check for evidence of superionic behaviour in YCuTe2, the heat capacities (C_p) of the parent compound and Y0.96Cu1.08Te2 were determined as a function of temperature (Fig. 12a). The doped sample has an almost constant heat capacity above 380 K and is slightly higher than the predicted Dulong–Petit value for YCuTe2. The higher value is most likely due to the work resulting from the thermal expansion as the heat capacity at constant pressure was measured, whereas the Dulong–Petit value is C_V. The parent compound undergoes a phase transition at ~440 K in accord with the DSC (see Fig. 2b), XRD (Fig. 5) and optical results (Fig. 11). Above the phase transition, the heat capacity is constant and similar to the doped sample. No decrease in heat capacity with increasing temperature was found in the HT-phase which is dissimilar to the superionic behaviour found for CuSe2.17 Corroborating the heat capacity results, the change in enthalpy ($\Delta H = 1.7 \pm 0.2$ kJ mol$^{-1}$) and entropy ($\Delta S = 3.8 \pm 0.4$ J mol$^{-1}$ K$^{-1}$) are small at the phase transformation and, therefore, the Cu atoms in YCuTe2 should not be considered as superionic.

The thermal conductivity (κ) was determined from the measured thermal diffusivity, the mass density, and the experimental heat capacity. The temperature dependence of the thermal conductivity is plotted in Fig. 12b. The thermal conductivity decreases with increasing temperature and Cu content, which stabilizes the HT-phase (see Section 3.2). The HT-phase displays a higher Cu disorder compared to the LT-phase resulting in lower thermal conductivity as indicated by the low room temperature thermal conductivity of YCu1.06Te2 and Y0.96Cu1.08Te2 ($\kappa < 1$ W m$^{-1}$ K$^{-1}$). For all samples, the thermal conductivity is lower than that of TmCuTe2 (ref. 15) and Cu2Te,18 which might be due to a higher electronic thermal conductivity contribution in those compounds.

The electronic contribution of the thermal conductivity (κ_e) was calculated by the Wiedemann–Franz law ($\kappa_e = LT/\rho$) where the Lorenz number (L) was determined from the experimental Seebeck coefficients using the single parabolic band (SPB) model.19 The SPB model assumes that the mobility is limited by acoustic phonon scattering which was verified for YCuTe2. The electronic contribution of the thermal conductivity increases with Cu content and YCuTe2 samples with x > 1 exhibits a peak around 490 K (Fig. 12c inset).

The resulting phononic contribution of the thermal conductivity decreases with temperature. While the phononic contribution of the thermal conductivity in the YCuTe2 compounds with x ≤ 1 is proportional to 1/T in the temperature range from 320 K to 780 K, indicating that phonon-phonon interactions are the limiting scattering factor, YCu3Te2 compounds with x > 1 have a 1/T dependence above phase transition temperature of 440 K. There is no evidence of a bipolar contribution up to 780 K.
The lowest experimental limit of the thermal conductivity was calculated using the minimum thermal conductivity model by Cahill and Pohl and is given by:

$$\kappa_{\text{min}} = \frac{1}{2} \frac{T}{\Theta^2} \frac{1}{B} \frac{k_B}{N} \left(\frac{V}{N} \right)^{-2/3} (2\tau_T + \tau_L)$$ \(2\)

where k_B is Boltzmann constant, V is the unit cell volume, N is the number of atoms per unit cell, and τ_T (1870 m s$^{-1}$) and τ_L (3420 m s$^{-1}$) are the measured transverse and longitudinal speed of sounds, respectively. The calculated minimum thermal conductivity of YCuTe$_2$ (0.43 W m$^{-1}$ K$^{-1}$), indicated by the dashed line in Fig. 12c, is similar to the computed minimum thermal conductivity by use of the shear and bulk moduli. For all samples, the phononic contributions of the thermal conductivity approach κ_{min} and YCu$_{1.08}$Te$_2$ is perhaps even slightly below. Therefore, the thermal conductivity is already close to the lowest limit. The lower measured thermal conductivity than the minimum thermal conductivity in YCu$_{1.08}$Te$_2$ might indicate overestimation of the speed of sound obtained by ultrasound measurements or an underestimation of the DFT computed sound velocities, those used to calculate the minimum thermal conductivity. In a recent study, the ultralow thermal conductivity in PCBM was described by a new minimum thermal conductivity model, where the Debye temperature was determined from the heat capacity measurements and the phonon mean free path was limited by the atomic density.52 We computed the Grüneisen parameter (γ) of HT-YCuTe$_2$ to be 1.18, which points to high anharmonicity of the bonds similar to PbTe ($\gamma \approx 1.45$)53 and Cu$_5$SbSe$_4$ ($\gamma = 1.22$).54 However, this value is still lower than some other low thermal conductivity materials, e.g., Cu$_5$SbSe$_3$ ($\gamma = 2.41$) and AgSbTe$_2$ ($\gamma = 2.05$) at 300 K.55 A typical Grüneisen parameter for high anharmonicity is considered to be ~ 2,56 thus, the Grüneisen parameter in YCuTe$_2$ is unlikely to be the main reason for the high C_p and low κ_L of the investigated samples.

3.5 Thermoelectric figure of merit

The thermoelectric figure of merit, zT, was calculated by polynomial fitting of the experimental electronic and thermal data. Fig. 13a indicates that zT increases with temperature for all samples. The maximum zT was observed for Y$_{0.96}$Cu$_{1.08}$Te$_2$, which reaches a value of 0.75 at 780 K. Furthermore, the maximum zT increases with increasing Cu content and decreasing Y content. A decrease in Y enhances the electronic transport properties while an increase in Cu both reduces the thermal conductivity and increases the electrical conductivity through a higher carrier concentration.

The peak figure of merit is about eight times higher than for Cu$_2$Te14 and $\sim 15\%$ smaller than for TmCuTe$_2$15 We note that our zT measurements include a more accurate treatment of thermal conductivity in that we employ experimental heat capacity measurements rather than Dulong-Petit estimates; a higher zT (~ 0.85 at 775 K) would result from using the Dulong-Petit value.

The optimum carrier concentration can be calculated by applying the SPB model and using the Seebeck coefficient, Lorenz number, and mobility.51 Assuming that the phononic contribution of the thermal conductivity is independent of the carrier concentration, the figure of merit is plotted as a function of the carrier concentration for the parent compound in Fig. 13b. The optimum carrier concentration is $\sim 10^{20}$ cm$^{-3}$ leading to a maximum zT of ~ 0.75 at 775 K. Although the carrier concentration could not be increased significantly, zT does increase somewhat with intrinsically doping due to the mobility and effective mass change.

4. Conclusions

Samples of intrinsically doped YCuTe$_2$ were prepared by solid state reaction of the elements. YCuTe$_2$ undergoes a first order phase transition at ~ 440 K from a low-temperature phase (space group $P\bar{3}m1$) to a high-temperature phase (space group $P\bar{3}$). In both crystal structures, layers of Cu–Te atoms are separated by octahedrally coordinated Y atoms. Although Cu atoms are partially ordered in the LT-phase, they are completely disordered in the HT-phase. Excess Cu content appears to favour the formation of the high temperature $P\bar{3}$ phase. All YCuTe$_2$ samples exhibit very low thermal conductivities, as low as ~ 0.5 W m$^{-1}$ K$^{-1}$ at 800 K, which is slightly above the calculated κ_{min}. A maximum zT value of ~ 0.75 at 780 K was obtained for
Y$_{0.96}$Cu$_{1.08}$Te$_2$ due to favourable electronic transport resulting from Y deficiency and low thermal conductivity stemming from higher Cu disorder in the crystal structure. This observed thermoelectric efficiency is reasonably high for mid-temperature thermoelectrical applications.

Acknowledgements

This work was intellectually led by the Materials Project which is supported by the Department of Energy Basic Energy Sciences program under Grant No. EDCBEE, DOE Contract DE-AC02-05CH11231. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy. We would like to thank Dr Timothy Davenport for his assistance in HT-XRD measurements. U. A. acknowledges the financial assistance of The Scientific and Technological Research Council of Turkey. J.-H. P. acknowledges the Dalhousie Research in Energy, Advanced Materials and Sustainability (DREAMS) NSERC CREATE program, and M. B. Johnson’s assistance. M. A. W. acknowledges the support of the Early Career Research Program. Optical measurements in this work were performed at the Molecular Materials Research Center (MMRC) in the Beckman Institute at the California Institute of Technology.

Notes and references

