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H I G H L I G H T S

• A simple procedure to infer macroscopic models from metabolic networks is proposed.

• Macroreactions can be selected among the elementary flux modes (EFMs).

• A linear optimization problem is formulated to select the best candidate EFMs.

• Nonlinear parameter estimation is used to fit kinetic models.

• Data from cultures of hybridoma cell line HB58 illustrate the approach.
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A B S T R A C T

This study aims at providing a methodology based on both data- and knowledge-driven approaches to build
dynamic macroscopic models of cell cultures. This methodology proceeds in three steps. A principal component
analysis is first applied in order to determine the minimum number of macroreactions necessary to faithfully
describe the available data. These reactions are then selected among the elementary flux modes associated with a
chosen metabolic network through the definition of an original linear programming problem. Kinetic laws are
finally identified so as to reproduce the measurement data. The proposed methodology is illustrated using four
different perfusion cultures of hybridoma cells and demonstrates a good capacity to select macroreactions
capable of reproducing well the complex experimental data, even with the use of simple kinetic laws and without
re-identifying the stoichiometry.

1. Introduction

Mammalian cell cultures are a representative source of a number of
biopharmaceutical products, including monoclonal antibodies [1,2],
viral vaccines [3], and hormones [4]. Predicting the behavior of
mammalian cells during cell culture processes under different culture
conditions is highly desirable for both industrial and scientific reasons
[5]. The efficiency of these processes can be further increased by model-
based optimization and control strategies. Therefore, a reliable kinetic
model for the cell metabolism is required to identify the parameters
which have a significant impact on cell viability and on protein pro-
duction and to understand their effects on the cellular phenotype.

Kinetic models can be categorized as structured or unstructured
models. Structured models correspond to a relatively detailed

representation of the cells, including the interaction between in-
tracellular components [6]. They attempt to explicitly describe the
physiological state of the cells, its composition or its regulatory adap-
tation to the environmental changes, resulting in a high number of
equations which are difficult to handle. Instead, unstructured models
do not consider the intracellular activity of the cells. They are regarded
as a black-box, where substrates are consumed and converted into
products. These models are known to describe the evolution of extra-
cellular culture variables, such as biomass, substrates and products by a
small set of macroscopic reactions connecting the initial components to
the final products. They are simpler than structured models, thus
making the model easier to identify, to use for optimization, or design
of on-line algorithms for process monitoring and control.

Despite the differences between structured and unstructured
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models, recent studies have highlighted the strong link between both
modeling approaches. Several methods have been devised in order to
deduce macroscopic reaction schemes from metabolic networks of in-
tracellular reaction pathways thanks to model reduction procedures
[7–14].

In this study, a simple procedure to infer macroscopic bioreaction
models from metabolic networks is proposed. As in previous reports,
the concept of elementary flux modes (EFMs) is used to translate the
metabolic network into macroscopic bioreactions linking extracellular
substrates to products. However, even considering a small metabolic
network, the number of EFMs can be quite large, and a selection of
specific EFMs as candidate macro-reactions for the model is needed
[13–15].

In this connection, several approaches have been investigated. In
[9], a method based upon dynamic metabolic flux analysis (DMFA) is
used to find an optimal selection of EFMs based on concentration
measurements instead of reaction rates. In [11], the metabolic network
is simplified by eliminating insignificant fluxes. Moreover, Hybrid Cy-
bernetic Models (HCM) [16] have been used to reduce the number of
EFMs by projection of the modes into the yield space. Another approach
is the class of Lumped Hybrid Cybernetic Models (L-HCM) [17], which
consist in grouping EFMs into clusters and creating an average EFM for
each cluster. Finally, Flux Balance Analysis (FBA) and its extension
Dynamic Flux Balance Analysis (DFBA) can also be seen as a method to
reduce the number of EFMs using optimization [7]. Indeed, a solution
of FBA corresponds to a positive linear combination of EFMs and the
solution for any optimal product/substrate ratio always coincide with
an elementary mode [18].

In this study, a linear optimization problem is formulated to select
the best candidate EFMs that describe the macroscopic bioreactions.
This strategy proceeds in three steps:

• first, a data-driven approach is exploited, where principal compo-
nent analysis is used to infer the minimum number of bioreactions
that are required to explain the observed experimental data (this
approach follows [19]);

• next, the knowledge of the metabolic network is exploited to select a
corresponding number of EFMs that are a priori the best candidates
to describe the bioreaction network;

• finally, simple kinetic laws, e.g., Monod and inhibition factors, are
formulated and nonlinear parameter estimation is used to fit the
model to the experimental data. At that stage, the range of operation
of the bioreactor (range of concentrations of the main components)
and the dynamical changes within this range are determinant in the
possibility to estimate kinetic parameters and to possibly model
additional phenomena, such as inhibition.

This paper is organized as follows. The next section presents the
methodology for determining the minimum number of macroreactions
and the most representative EFMs. Information on the experimental
databank, i.e. data collected from cultures of hybridoma cell line HB58
in 2 L bioreactor operated in perfusion mode is provided in Section 3.
The considered metabolic reaction network is introduced in Section 4.
Then, the results of the experimental application are discussed and a
dynamic macroscopic model is developed and validated in Section 5.
Conclusions are finally drawn in Section 6.

2. Determining minimal sets of macroscopic bioreactions

Based on the method originally developed in [19], this section
proposes a methodology to determine a minimal set of macroscopic
bioreactions which is consistent with the available experimental data.

The general mass-balance model equations are given by:

= + − −Kφ D C C QdC
dt

( )m
m m min (1)

where Cm is the vector of concentrations of the nm measured species in
the culture medium. The full rank (equal to the number of reactions nr)
matrix R∈ ×K n n( )m r represents the stoichiometry of the reaction net-
work. R∈φ nr is the vector of reaction rates and D is the dilution rate.
The term Cmin represents the inflow concentrations. The gaseous flow
rate Qm is the exchange of matter in gaseous form between the sur-
rounding and the reaction medium. At each measurement time tj, the
vector of (measurable) biological rates of consumption/production of
each species can thus be defined as:

= − − +u t
t

D t C t C t Q t( )
dC ( )

dt
( )( ( ) ( )) ( )j

m j
j m j m j m jin (2)

In general, the computation of flux vectors can be achieved following
two approaches, i.e., a rate-based approach where the differentiation of
a filtered version of the concentration measurements is achieved (such
as for instance in [20,21]), or an extent-based approach [22,23] which
makes use of integration rather than differentiation but requires the
prior knowledge of the stoichiometry. In this study, as we do not know
a priori the structure of the network of macroreactions, but would like
to deduce it from the selected EFMs, we cannot apply this latter ap-
proach, and we therefore resort to the rate-based approach. In parti-
cular, smoothing B-splines are available in Matlab through the function
spaps and can be applied to the noisy concentration measurements prior
to differentiation using the function fnder in Matlab. Eq. (1) therefore
leads to:

=u t Kφ t( ) ( ).j j (3)

This equation can be written in matrix form as follows:

=U KW (4)

where matrix Unm×N is made of the vectors u(tj) at N (> nm) mea-
surement times t1, …, tN. In the same way, the associated matrix of
reaction rates W is made of N φ(tj) vectors. We assume that the reaction
rates are linearly independent (none of the reaction rates can be written
as a linear combination of the others, otherwise the model has to be
reformulated and some rates eliminated) and that the experimental
conditions provide data that are sufficiently informative to have a full
rank matrix W (i.e., the time evolution of the rates is such that none of
the lines of W can be written as a linear combination of the others).
Then, the following classical result can be used (see [19]):

Property 1. If matrix K has rank nr, and W has full rank, then the nm× nm
matrix M=UUT=KWWTKT has rank nr. Since it is a symmetric matrix, it
can be written:

=M P PΣT where P is an orthogonal matrix (PTP= I) and
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with σi−1≥ σi > 0 for i∈ 2, …, nr. The number of macroscopic reactions
corresponds to the number of non-zero eigenvalues of UUT.

In practice, due to data sampling and measurement noise, there will
be no zero eigenvalues, and the question on how to determine the
number of eigenvalues that must be taken into account in order to
reasonably approximate the experimental data is answered in [24] by
selecting the nr first principal axes, which represent a total variance
larger than a fixed threshold. To avoid conditioning problems, the
components uk(tj) of the vector u(tj) are normalised as follows:

=
∥ ∥

= …u t
u t
u t

k n˜ ( )
( )
( )

, 1, ,k j
k j

j
m

(5)

for the computation of the matrix UUT.
Having determined the number nr of macro-reactions, the next
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challenge is to select an appropriate subset of nr reactions among the ne
elementary flux modes. In principle, the number of possible combina-
tions is given by

=
−

C n n n
n n n

( , ) !
! ( )!e r

e

r e r (6)

The number of combinations therefore increases with the size of the
initial metabolic network and the associated number of EFMs.
However, not all the combinations considered in Eq. (6) are mean-
ingful, and only the combinations of EFMs connecting all the measured
substrates to the measured products should be considered. This number
is obviously smaller but cannot be determined a priori.

Due to measurement errors and smoothing spline approximations, it
may happen that the sign of small fluxes in Eq. (3) becomes uncertain.
Therefore, in order to cope with the situation where the fluxes φ(t) are
known to be of constant sign along the data of the experiment, a linear
programming problem is formulated. This problem aims at finding the
smallest tolerance corridor ϵ making Eq. (3) feasible with non-negative
fluxes:

(7)

where

• R∈tϵ( )j nm is a positive vector of minimal tolerances that allow
computing an approximate solution to the system of equations
Kφ(tj)≈ u(tj) (this system is overdetermined when nr < nm).

• ϵ(tj)≥ 0 and φ(tj)≥ 0 impose positivity constraints on the solutions,
• R∈ ×K n n( )m r is the stoichiometry matrix of the selected set of mac-
roreactions (among the EFMs),

• the scaling matrix Γ normalizes the errors since the various external
fluxes may evolve on different scales, and is defined as follows:
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with

= = …γ u t k nmax | ( )|, 1, , .k t k j mj (9)

In system (7), the unknown variables are thus the tolerances ϵ(tj)
and the fluxes φ(tj), while the matrix K is a a priori information on the
stoichiometry (according to the assumption that a set of EFMs is cap-
able of representing the data) and the vectors u(tj) are the measurement
information. The linear programming problem returns the tolerances ϵ
(tj) and the fluxes ϕ(tj) so that the following inequalities are satisfied:

− ≤ ≤ +u t t Kϕ t u t t( ) ϵ( ) ( ) ( ) ϵ( )j j j j j (10)

with the tightest corridor of error.
The aim of the overall procedure is to select the most appropriate set

of EFMs and corresponding stoichiometry matrix K. A guide in this
selection is the capacity of the model associated with K to accurately
describe the external data as measured by the indicator:

∑ ∑=
= =

R tϵ ( )
j

N

k

n

k j
1 1

m

(11)

Obviously the model capacity to predict the data is reflected in a de-
crease of the quantity (11). The several model-candidates (stemming
from the combinations of all the subsets of nr EFMs taken out of the
global set of ne EFMs) can be selected accordingly.

The admissible solutions φ(tj) give the evolution of the fluxes along
the EFMs. Further, these kinetics could be modelled using specific ki-
netic laws (Michaelis–Menten factors, inhibition factors, etc) whose
parameters could be estimated using the signals φ(tj) and standard
parameter identification techniques.

In Section 5, this methodology is applied to a small metabolic net-
work proposed in [25] and experimental data from perfused hybridoma
cell cultures.

3. Material and methods

3.1. Cell line and media

This study is illustrated with experimental data from cultures of
hybridoma cell line HB58 (ATCC), which produces antibodies type
IgG1, anti-CD54, specific for mouse kappa light chain. These experi-
ments have been performed at the State Key Laboratory of Bioreactor
Engineering, East China University of Science and Technology (ECUST),
Shanghai [12]. Serum-free medium chemically defined with 1:1 mix-
ture of DMEM and F12 (Gibco) was used and supplemented with 10mg
of bovine insulin, 10mg of transferring-selenite (Fe-saturated),
500 μmol of ethanolamine and other property additives. Glucose, glu-
tamine and other amino acids were added to the cultures. Table 1 de-
scribes the operating conditions of the cultures and the glucose, glu-
tamine and alanine concentrations in the feed stream. It must be
stressed that the experiments are designed to cover a wide operating
range and capture information about glucose and glutamine saturation
and limitation levels.

3.2. Bioreactor operation mode and analysis methods

Cultures were conducted in a 2-L stirred bioreactor (B. Braun Biostat
B-DCU) and were settled in a working volume of 1.8 L during the whole
cultures. All cultures started in batch mode and were inoculated to
reach an initial concentration between 0.2 and 0.5×109 cells/L.
Temperature was kept at 36.8 °C; the gases air, CO2, O2 and N2 were
mixed to maintain DO at 40% air saturation and bicarbonate solution
(0.75 mol/L Na2CO3 and 0.5mol/L NaHCO3) was used for pH control
around 7.0 ± 0.2. Data acquisition and process control were per-
formed using the supervisory software MFCS/Win 3.0.

Perfusion phase started after 36–48 h of batch culture with a con-
stant dilution rate of 0.0197 h−1. Cells were retained by a spin-filter
(20 μm) and the stirring speed was kept at 200 rpm.

Cells were counted with hemocytometer using the trypan blue ex-
clusion method. Glucose, lactate and ammonia concentrations were
determined using YSI 7100 biochemical analyzer (Yellow Springs
Instruments). The amino acids were analyzed by reverse-phase high

Table 1
Operating conditions for both cultures.

Units Initial viable
cells

Feed stream Duration of
batch

[109 cells/L] Glcin
[mM]

Glnin
[mM]

Alain
[mM]

[h]

Cult.1 0.19 11 5 0.5 54
Cult.2 0.23 15 11.5 0.1 56.5
Cult.3 0.36 28 4.0 0.3 48
Cult.4 0.36 28 9.5 0.05 44
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performance liquid chromatography (HPLC) with a UV–vis detector.

4. Metabolic network presentation

A small metabolic network is used to represent the central meta-
bolism of hybridoma cells (see Fig. 1). This metabolic network describes
only a part of the metabolism concerned with the utilization of the main
energetic nutrients (glucose and glutamine), the secretion of the main
extracellular products (lactate, ammonia, alanine and CO2) and the
production of the intracellular nucleotides.

This network is quite small in comparison with more detailed net-
works (e.g. [26]) but this case study is used to develop and illustrate the
concepts in a clear, traceable way. This small-size example is therefore
more to be seen as a “proof-of-concept”.

From this metabolic network, eleven elementary flux modes are
obtained (see [25] for details). They induce the ten macroscopic input/
output bioreactions given in Table 2 (note that EFMs e9 and e10 give the
same input/output reaction). In the sequel of this study, the macro-
reactions of Table 2 will be labelled with the notations ei of the corre-
sponding EFMs. The stoichiometry matrix corresponding to these ten
macroreactions is given in Table 3.

5. Application to hybridoma cell cultures in perfusion

5.1. Selection of the candidate macroreactions

Our case study includes the experimental data of four different

Fig. 1. Metabolic network for mammalian cell central metabolism.

Table 2
Macroscopic reactions.

EFM Macroscopic reaction

e1 Glc→ 2 Lac
e2 2 Glc+3 Gln→Ala+Nucleotide+ 9 CO2

e3 Gln→ Lac+2N+2 CO2

e4 Gln→ 2 N+5CO2

e5 Gln→Ala+N+2CO2

e6 2 Glc+3 Gln→ Lac+Ala+Nucleotide+ 6 CO2

e7 3 Glc→ 5 Lac+3 CO2

e8 2 Glc+3 Gln→ 2 Lac+N+Nucleotide+6 CO2

e9, e10 Glc→ 6 CO2

e11 2 Glc+3 Gln→N+Nucleotide+12 CO2

Table 3
Stoichiometry of the macroreactions of Table 2.

e1 e2 e3 e4 e5 e6 e7 e8 e9/10 e11

Glc −1 −2 0 0 0 −2 −3 −2 −1 −2
Lac 2 0 1 0 0 1 5 2 0 0
Gln 0 −3 −1 −1 −1 −3 0 −3 0 −3
N 0 0 2 2 1 0 0 1 0 1
Ala 0 1 0 0 1 1 0 0 0 0
Nuc 0 1 0 0 0 1 0 1 0 1
CO2 0 9 2 5 2 6 3 6 6 12
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perfused cell cultures, from which on-line measurements of glucose,
glutamine, lactate, ammonia and alanine are available. The vectors are
computed by fitting smoothing B-splines to the data and computing
their derivatives:

=

⎡
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Then, using the normalization (5), the eigenvalues of the matrix UUT

are computed and the principal component analysis (PCA) indicates, as
shown in Fig. 2, that 3 reactions are sufficient to explain 95% of the
observed variance, 4 reactions explain 99% of the total variance and 5
reactions obviously allow explaining 100%. In this application, we
know by assumption that, whatever the selected macroreactions in
Table 2, the fluxes φ(tj) must be positive. The numerical results of LP (7)
show that to cope with slight potential deviations in this positivity
constraint, some of the flux values have to be saturated to zero on some
periods of time. The consequence of these punctual saturations is visible
in Table 4, which gathers the residual cost R (Eq. (11)) of the best
candidate-combinations of 2–10 macroreactions connecting the

substrates to the products, i.e., which allow describing the evolution of
all the measured species. It shows that the minimal residual cost de-
creases with the number of EFMs up to 7, with no significant further
improvements with more EFMs. The residual cost for 5 EFMs is rela-
tively small but not zero, and the residual cost does not vanish even
when including all the EFMs in the model. This counter-intuitive result
is indeed due to the positivity constraint imposed on the solutions φ(tj)
of system (7) which transform a problem of linear algebra into a convex
analysis. When removing the positivity constraint, the results are in
agreement with the PCA outcome and the total data variance is ex-
plained by all combinations of 5 elementary fluxes leading to K ma-
trices of rank 5 (independent reactions). In contrast, when the positivity
constraint is active, a network of more than 5 EFMs can provide a better
representation.

This interesting observation induces that the several candidate-
combinations corresponding to a specific number of macro-reactions
usually do not lead to the same level of accuracy in representing the
data. LP (7) therefore constitutes a useful tool to discriminate among
candidates, even for combinations of more than 5 reactions. This is il-
lustrated in Fig. 3 which plots the time evolution of the concentrations
associated with the solutions obtained from the computation of (7) for
all the combinations of 5 EFMs covering the network. Due to the large
number of curves to display, the same colors are used several times to
plot the curves, which makes difficult to distinguish individual fluxes
on the graph. Some important information can however be extracted:
(a) when only a few curves are visible, this means that many combi-
nations of 5 EFMs lead to almost identical results for the considered
concentration evolution; (b) many EFM combinations are not suited to
describe accurately the available data. In fact, among the possible
combinations, only 4 seem particularly well suited to reproduce the
data, which are presented in Table 5.

The corresponding kinetics, inferred from the computation of (7),
have almost identical shapes. As shown in Fig. 4a, which presents the
kinetics of the second of these combinations, the complex kinetics
shapes might be difficult to reproduce using products of Michae-
lis–Menten laws or inhibition factors, as it is classically achieved in
biological system modelling. In the sequel of this study, we will in-
vestigate in more details how well these standard kinetic laws can re-
produce the experimental data using parameter identification techni-
ques. Before embarking in this identification work, a first very global
approach is taken, which consists in smoothing the raw kinetic signals
using B-splines, to integrate them, and to compare the results with the
measurements. It is interesting to observe that the concentration evo-
lutions obtained by integration of the smoothed kinetic signals for the
four model-candidates are similar and satisfactorily fit the experimental
data (Fig. 4b), despite the loss of information associated with the
smoothing approximation. This observation supports the possibility to
describe the kinetic signals using simple kinetic structures. However,
the reproduction of alanine in dataset 3 is less satisfactory, whatever
the number of macroreactions considered. We can only conjecture
about this observation: (a) the level of alanine is dataset 3 is lower than
in the other experiments and might be close to the detectability levels of
the HPLC technique, (b) alanine is provided in the feed stream and
quantification errors as well as small perturbations can have a direct
impact on the concentrations in the culture medium, (c) alanine con-
sumption could occur in some phases of the culture, but as all fluxes are
assumed irreversible, this phenomenon is not modelled here (we have
not pursued this route, which seems unlikely, because of the limited
information in dataset 3 and the lack of further evidence).

Any of the combinations of Table 4 might thus be considered for
model identification. As the results of PCA indicate that 3 reactions
explain 95% of the variance, it is proposed to also investigate models
with 4 and 3 reactions. Combination 1-3-5-9-11 (i.e. combination 2 of
Table 5) seems to be a good base to achieve this objective since the
residual cost of combinations 1-3-5-11 and 1-5-11 are the second and
first best combinations of 4 and 3 elementary fluxes, respectively.

Fig. 2. PCA results giving the total variance explained with respect to the
number of reactions.

Table 4
Best success combinations of varying numbers of macroreactions passing test
(7), where R (11) represents the sum of minimal errors necessary for LP (7) to
allow feasible solutions. Note that R has no unit.

# reactions Macroreactions combination R

2 e5, e8 76.0
3 e1, e5, e11 23.9
4 e1, e4, e5, e11 12.6
5 e1, e3, e5, e8, e9 7.2
6 e1, e3, e5, e6, e9, e11 6.5
7 e1, e3, e5, e6, e8, e9, e11 6.37
8 e1, e3, e4, e5, e6, e8, e9, e11 6.37
9 e1, e2, e3, e4, e5, e6, e8, e9, e11 6.37
10 e1, e2, e3, e4, e5, e6, e7, e8, e9, e11 6.37
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The mass balance ordinary differential equations, for which kinetic
evolution have now to be postulated, are given by:

= − − − + −φ X φ X φ DdGlc
dt

2 (Glc Glc)1 9 11 in (13)

= − −φ X φ XdLac
dt

2 D Lac1 3 (14)

= − − − + −φ X φ X φ DdGln
dt

3 (Gln Gln)3 5 11 in (15)

= + + −φ X φ X φ XdN
dt

2 DN3 5 11 (16)

= + −φ X DdAla
dt

(Ala Ala)5 in (17)

where Glcin, Glnin and Alain are the concentrations of glucose, glutamine
and alanine in the feed stream and D is the dilution rate. The parameter
identification procedure is described in the following section.

5.2. Nonlinear parameter estimation

The model identification performed in this work is achieved using
classical nonlinear parameter estimation techniques [27]. Since the
stoichiometric coefficients of the macroreactions are provided by the
elementary fluxes modes, only the kinetic parameters are estimated by
minimizing a weighted nonlinear least-square criterion (sum of squared
differences between model predictions and experimental measure-
ments) of the form:

∑= − −
=

−J y y θ S y y θmin ( ( ˆ)) ( ( ˆ))
θ k

N

k m k k m k
T

ˆ
1

,
1

,
(18)

where θ̂ is the set of parameters to identify, J is the value of the cost
function, yk are the measurements, ym,k are the model predictions, S is a
scaling matrix whose diagonal elements are the squares of the max-
imum measurement values of each component concentration, and N is
the number of sampling times. Biomass is considered as a known
variable, whose values are obtained by smoothing B-splines.

Once an estimation θ̂* of the hypothetical true parameters θ* is
found, an a posteriori estimation of the measurement error variance σ̂2 is
obtained by:

=
−

σ J
N P

ˆ 2
(19)

where P is the number of parameters (dimension of the vector θ*). This
relation is then used to build the a posteriori covariance matrix of the
measurement errors Σ̂:

= σ SΣ̂ ˆ 2 (20)

which can be used to evaluate the Fisher information matrix (FIM):

∑=
=

−Y YFIM Σ̂
k

N

θ k θ k
T

1
ˆ,

1
ˆ, (21)

where Yθ,k is the sensitivity matrix of the model with respect to the
parameters at time k. These sensitivities are computed through in-
tegration of the parametric sensitivity equations:

=
∂
∂

+
∂
∂

f
Y

Y
f
θ

dY
dt

θ
θ (22)

A lower bound of the parameter estimation error covariance matrix is
then given by:

= −Q FIM 1 (23)

It must be stressed that due to possible measurement errors affecting
the initial concentrations of the experiments, the latter are introduced
in the identification problem as unknown parameters. This allows al-
leviating the bias that could introduce wrong initial concentrations.

Fig. 3. Time evolution of the concentrations obtained by integration of the solutions of LP (7) for all combinations of 5 EFMs covering the whole network.

Table 5
Best combinations of 5 elementary fluxes selected as candidates to build a
macroscopic model.

Combination number Macroreaction combinations J

1 e1, e3, e5, e8, e9 7.2
2 e1, e3, e5, e9, e11 7.5
3 e1, e4, e5, e8, e9 7.6
4 e1, e4, e5, e9, e11 8.0
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6. Results and discussion

In order to start the identification with a model with several degrees
of freedom, all kinetics are first set to the same general structure:

=
+ + + +

= …φ μ
K K

K
K

K
N K

iGlc
Glc

Gln
Gln Lac

1, ,5i i
N

N
max,

Glc Gln

Lac

Laci i

i

i

i

i

(24)

where Glc, Lac, Gln and N stands for the concentrations of glucose,

lactate, glutamine and ammonium, respectively, KGlc and KGln are the
half-saturation constants of Michaelis–Menten laws with respect to
glucose and glutamine, and Klac and KN are inhibition constants asso-
ciated with lactate and ammonium. This kinetic structure can subse-
quently be adapted depending on the parameter identification results as
well as parameter sensitivity analysis.

Moreover, since nonlinear parameter estimation problems are sub-
ject to local minima, a multi-start strategy is developed in order to
ensure the exploration of the solution space and the identification of the

Fig. 4. Smoothing splines of the fluxes φ for combination 2 (a) and time evolution of the concentration obtained by integration of the smoothed φ signals related to
the 4 best combinations of 5 EFMs (b).
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optimal parameters θ*. This strategy consists in performing repeated
optimization runs starting from initial guesses θ0 randomly chosen
among predefined admissible intervals (A.I.) in which the parameters
are likely to be found.

Since the purpose of the present work is to test the capacity of
system (7) to select sets of macroreactions able to reproduce the
available data, the identification procedure is first achieved using all
datasets at hand for identification and direct validation.

The application of the first round of optimization runs yields a first
model (model 1) where the kinetics have the following structure:

=
+ +

φ μ
K K

Glc
Glc

Gln
Gln1 max,1

Glc,1 Gln,1 (25)

=
+ + +

φ μ
K K

K
N K

Glc
Glc

Gln
Gln

N

N
3 max,3

Glc,3 Gln,3

,3

,3 (26)

=
+

φ μ
K

Gln
Gln5 max,5

Gln,5 (27)

=
+

φ μ Glc
Glc 0.019 max,9 (28)

=
+ + + +

φ μ
K

K
N K

K
K

Glc
Glc 0.01

Gln
Gln Lac

N

N
11 max,11

Gln,11

,11

,11

Lac,11

Lac,11 (29)

where arbitrary small half-saturation coefficients (0.01mM) have been
introduced in the Michaelis–Menten factors for glucose activation in φ9

and φ11 to ensure the positivity of the model prediction. Indeed, these
parameters cannot be estimated precisely from the available data, and
have to be fixed in order to resolve identifiability issues. It is notorious
that half-saturation coefficients can be delicate to estimate and require
enough data in specific concentration ranges (actually data points
where the glucose concentration values are relatively close to the half-
saturation coefficients). On the other hand, the positivity of the pre-
dicted concentrations is an essential feature of any candidate model,
which explains why these coefficients cannot be simply eliminated from

the model. It is also interesting to note that Michaelis–Menten factors
for glutamine and glucose appear in φ1 and φ3 respectively, while these
components are not consumed in the corresponding reactions. Glucose
and glutamine are indeed well-known to be interconnected in the cel-
lular metabolism through the TCA cycle and the related anaplerotic
reactions [28–31], which could explain the latter observation.

Identification results are provided in Table 6 which gathers the es-
timation results of the multistart strategy with a residual cost function J
below specified cut-off values. The minimum and maximum parameter
values are listed alongside with the best estimate θ̂* (leading to the
lowest residual cost). Coefficients of variation (standard deviations
expressed in percentage of the parameter values) are also evaluated
based on the Fisher Information Matrix. The normalized residual mean
squared error (RMSE), scaled with the square of the maximum mea-
sured values, is also provided. This information is given per dataset and
per variable and expressed in % of J (obviously, the sum of these re-
lative errors is 100%).

From 200 optimization runs, 33 present a residual cost lower than
10 and are considered as leading to interesting local minima (poten-
tially in the neighbourhood of the global minimum), while others are
rejected. The precision of the best estimate θ̂* is satisfactory since the
coefficients of variations are mostly below 50%. The model predictions
associated with θ̂* are given in Fig. 5a where the error bars represent
the a posteriori 95% confidence intervals on the measurements. Fig. 5b
shows the comparison between the fluxes obtained after identification
of the kinetic structures and the smoothing of the fluxes obtained by
applying LP (7) with the combination 1-3-5-9-11. Clearly, the evolution
of the concentrations obtained with model 1 are in good agreement
with the data sets. Although the fluxes predicted by the identified
model do not exactly match the smoothed fluxes, the deviations are not
alarming. In this study, our aim is mostly to show that simple kinetic
structures can reproduce the data satisfactorily. However, we have to
keep in mind that the identification of kinetic laws is always a difficult
task requiring informative data in specific concentration ranges. A
thorough study might require experiment design, new experimental

Table 6
Identifcation results for model 1, 2, 3 and 4. Admissible intervals (A.I.) are set to focus research within the solution space area where the parameters are likely to be
found. Results presents the minimum and maximum parameter values of the identifications with residual costs below the defined cut-off threshold as well as the
estimated optimal solution θ̂* and the related coefficient of variation C.V..

Models Model 1 Model 2 Model 3 Model 4
Macroreactions involved 1-3-5-9-11 1-3-5-11 1-5-11 1-3-5-9-11
Datasets for direct validation 1-2-3-4 1-2-3-4 1-2-3-4 1-2-3
Number of multistarts 200 200 200 200
Mutlistart cut-off J < 10 J < 14 J < 18 J < 9
Remaining identifications 33 64 80 103

Param. Units A.I. θmin ˆ θ̂* C.V. θmax ˆ θmin ˆ θ̂* C.V. θmax ˆ θmin ˆ θ̂* C.V. θmax ˆ θmin ˆ θ̂* C.V. θmax ˆ

μmax,1 h−1 [0.1–1] 0.080 0.468 2% 0.959 0.169 0.634 2% 0.975 0.231 0.800 1% 1.000 0.025 0.479 2% 0.994
KGlc,1 mM [0.1–30] 1.429 8.112 16% 29.011 5.796 25.961 11% 29.999 5.746 23.912 9% 29.985 1.012 9.498 15% 22.507
KGln,1 mM [0.01–3] 0.050 0.077 35% 1.856 0.015 0.026 42% 0.153 0.028 0.069 18% 0.195 0.026 0.075 36% 1.871
μmax,3 h−1 [0.01–0.2] 0.010 0.032 51% 0.160 0.014 0.044 41% 0.197 – – – – 0.010 0.030 43% 0.099
KGlc,3 mM [0.1–10] 0.092 0.230 50% 9.615 0.000 5.289 81% 9.631 – – – – 0.157 1.000 63% 9.990
KGln,3 mM [0.01–3] 0.047 0.063 46% 1.930 0.029 0.070 59% 0.870 – – – – 0.043 0.152 45% 1.902
KN,3 mM [1–10] 0.174 1.832 74% 9.931 0.120 3.153 98% 9.986 – – – – 1.084 8.233 184% 9.999
μmax,5 h−1 [0.01–0.2] 0.010 0.051 47% 0.099 0.014 0.043 39% 0.069 0.023 0.063 48% 0.129 0.011 0.066 59% 0.140
KGln,5 mM [0.01–3] 0.234 2.850 64% 6.540 0.360 1.650 63% 3.000 0.801 2.920 64% 6.347 0.048 3.785 80% 9.877
μmax,9 h−1 [0.01–0.2] 0.012 0.022 7% 0.073 – – – – – – – – 0.011 0.020 7% 0.098
μmax,11 h−1 [0.01–0.2] 0.025 0.066 12% 0.126 0.028 0.048 11% 0.101 0.039 0.103 23% 0.200 0.011 0.052 16% 0.099
KGln,11 mM [0.01–3] 0.048 0.071 33% 1.990 0.020 0.035 36% 0.184 0.035 0.089 12% 0.301 0.038 0.094 32% 1.909
KN,11 mM [1–10] 0.867 1.748 19% 9.532 1.283 2.642 30% 7.883 0.969 1.242 36% 5.395 1.020 2.345 20% 9.771
KLac,11 mM [10–100] 12.850 43.886 32% 97.940 12.970 47.502 61% 58.716 17.473 31.168 66% 58.314 11.418 82.418 69% 99.998
Residual cost =J θ( ˆ*) 8.7 =J θ( ˆ*) 12.3 J( =θ̂*) 16.3 =J θ( ˆ*) 6.8
Datasets set 1 set 2 set 3 set 4 set 1 set 2 set 3 set 4 set 1 set 2 set 3 set 4 set 1 set 2 set 3 set 4
RMSE (% of J) Glc 3% 0% 1% 3% 2% 1% 4% 1% 2% 0% 2% 0% 3% 0% 1% –

Lac 4% 1% 2% 1% 4% 20% 2% 6% 3% 12% 1% 3% 5% 1% 2% –
Gln 2% 3% 1% 7% 1% 2% 0% 7% 1% 1% 0% 4% 3% 3% 1% –
N 13% 5% 6% 3% 13% 3% 2% 2% 23% 1% 1% 21% 17% 6% 6% –
Ala 8% 12% 22% 4% 6% 7% 15% 2% 5% 5% 13% 2% 12% 11% 29% –
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data collection, and identification of modified kinetic laws. These re-
finements are considered out of the scope of the present study, whose
focus is on the methodology (supported by available data).

It is also interesting to note than 22% of the residual cost J is due to
alanine measurements in dataset 3. Yet, as mentioned in Section 5.1,
the alanine evolution could be delicate to reproduce given the positivity
constraints imposed on the fluxes and the possible errors in the mea-
sured feed concentrations.

To further test the capacity of the proposed method to select ap-
propriate model candidates, models 2 and 3, which are described by
combinations 1-3-5-11 and 1-5-11, respectively, are now identified.
Even though the residual costs increase with the model reduction, the
measurement prediction remain acceptable (Fig. 5a). The apparent

precision of the parameter estimates also increases as a side effect of the
reduction of the number of parameters to estimate from a given amount
of data information. These results are remarkable, as identification only
targets reaction kinetics, while the stoichiometry is imposed by the
selection of EFMs.

The next step consists in challenging the capacity of the model to
predict unseen experiments, and to this end, extra identification runs
are conducted using only a subset of the available data sets, while
keeping the rest for cross-validation.

As mentioned in Section 3.1, the experiments were designed to
highlight the limitation and saturation associated with glucose and
glutamine levels. Experiments 2 and 3 point out limitations with respect
to glucose or glutamine, while experiments 1 is expected to show both.

Fig. 5. Direct validation of models 1, 2 and 3 (a) and comparison of the predicted fluxes with the smoothing results of Fig. 4a (b).
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In contrast, experiment 4 aims at avoiding these limitations. In con-
sequence, extra identification runs are performed using the 3 datasets
where limitations are foreseen (data sets 1, 2 and 3) whereas data set 4
is kept for cross-validation. Models 4, 5 and 6 are basically the same as
model 1, 2 and 3, respectively, but they are identified based on only 3
data sets. The results are shown in Fig. 6 which confirms that sa-
tisfactory results can be obtained using 5 reactions (model 4) both in
direct and cross-validation (although the alanine behaviour is not very
well reproduced for reasons already mentioned). Other combination of
3 datasets have been tested but none of them leads satisfactory cross-
validation results (not shown in this work), which stresses the im-
portance of the information content of the data sets to achieve model
selection and identification. As shown in Table 6, the parameter esti-
mates of model 4 are close to the ones of model 1, which supports the
robustness of the approach.

7. Conclusions

In this study, a simple procedure to deduce a macroscopic model of
cell cultures is developed based on the concept of elementary flux
modes. This procedure relies on (1) a data-driven approach where a
principal component analysis is used to determine the minimum
number of bioreactions required to explain the observed experimental
data, (2) the selection of appropriate elementary flux modes based on
the solution of a linear programming problem and (3) the identification
of the model kinetic parameters using a nonlinear weighted least square
criterion.

The positivity constraints imposed on the solutions generally induce
a larger number of reactions to explain the data than the minimum
number suggested by PCA, and the models based on the selected
combinations of elementary flux modes provide a satisfactory predic-
tion of the concentration evolution, even when using simple kinetic
structures.

The apparent main limitation of the present study is the use of a
very simple metabolic network resulting in only eleven elementary flux
modes. The extension of the method to a larger network would imply a
significant increase in the computational load to explore the possible
combinations among a much larger set of EFMs. However, as the main
purpose of the approach is to deduce low-order dynamic models of cell
cultures, that could be used for optimization or control, one could
question the interest of initiating the procedure with large, detailed,

networks.
In its present form, the macroscopic model does not include a bio-

mass production reaction and the cell concentrations are directly de-
duced from smoothing-splines applied to the experimental measure-
ments. As biomass is nowadays a signal that is relatively easy to
measure on-line, the proposed model could be efficiently used for
process monitoring and control, the biomass signal becoming a (pos-
sibly filtered) dynamic input signal to the model. The construction of a
dynamic simulator might seems impossible at first, as it would require a
predictor of the biomass. However, this could be achieved in either of
two ways: (a) simply consider that biomass is in exponential growth
using the estimated growth rate (this parameter is estimated in the
procedure) (b) introduce a new reaction in the metabolic network for
the production of biomass (assuming a biomass composition).
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