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Abstract

The Gohberg}Heinig explicit formula for the inversion of a block-Toeplitz matrix is used to build an estimator of the inverse of the
covariance matrix of a multivariable autoregressive process. This estimator is then conveniently applied to maximum likelihood
parameter estimation in nonlinear dynamical systems with output measurements corrupted by additive auto and crosscorrelated
noise. An appealing computational simpli"cation is obtained due to the particular form taken by the Gohberg}Heinig formula. The
e$ciency of the obtained estimation scheme is illustrated via Monte-Carlo simulations and compared with an alternative that is
obtained by extending a classical technique of linear system identi"cation to the framework of this paper. These simulations show that
the proposed method improves signi"cantly the statistical properties of the estimator in comparison with classical methods. Finally,
the ability of the method to provide, in a straightforward way, an accurate con"dence region around the estimated parameters is also
illustrated. � 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Parameter estimation; Nonlinear system; Maximum likelihood; Correlated noise; Block-Toeplitz

1. Introduction

In David and Bastin (2001), a maximum likelihood
(ML) parameter estimation method for nonlinear systems
was proposed for the case of autocorrelated output noise.
It was assumed that all state variables are measured and
that there does not exist any crosscorrelation between the
noise sequences corrupting each state measurement. Ba-
sically, the method consisted of computing a preliminary
weighted least-squares (WLS) estimate of the parameter
vector, estimating the inverse of the noise covariance
matrix from the residuals of this preliminary estimate
and using this inverse covariance matrix (ICM) to com-
pute an ML estimate. The originality of the method was in
the particular estimate of the ICM. This estimate was
derived from an explicit inversion formula for a Toeplitz

matrix (Gohberg & Semencul, 1972) and required to
identify an autoregressive (AR) model of the residuals. In
David and Bastin (1999) the method was successfully
applied to a real life application.

In this paper the method is generalized by removing
two restrictive assumptions. First, the measured output
variables are not necessarily the state variables and sec-
ond, both the auto and the crosscorrelation of the noise
sequences are taken into account. This leads to a more
complicated block-Toeplitz structure of the covariance
matrix. The generalization of the Gohberg}Semencul
inversion formula to a block-Toeplitz matrix is therefore
required in order to follow the same approach as in
David and Bastin (2001). This formula is obtained as
a particular case of Gohberg and Heinig (1974) and will
require two multivariable AR models of the residuals to be
identi"ed, a causal and an anticausal one.

2. Problem formulation

It is assumed that a phenomenological model of the
system under consideration is available to the user. The
model is given under the quite general form of a set of
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deterministic di!erential nonlinear state-space equations
combined with a set of static nonlinear output equations.
Both dynamic and static parts may be parametrized, the
set of parameters being grouped into a single row vector
�"[�

�
,2,�

�
]. The model structure is as follows:

x� (t, �)"f (x(t), �, u(t)),

y(t, �)"g(x(t), �, u(t)), (1)

where x(t)"[x
�
(t),2,x

�
(t)]� is the state vector,

u(t)"[u
�
(t),2, u

�
(t)]� is the input vector and

y(t)"[y
�
(t),2, y

�
(t)]� is the output vector.

The parameter estimation problem is to estimate the
parameter values from input and output data obtained
from a single experiment carried out on the system in
presence of output additive correlated noise. The experi-
ment is performed with a known input signal u(t) and
a known initial state x(t

�
). The measurements of the

output variables are recorded at N evenly distributed
time instants t

�
"t

�
,2, t

�
and are denoted by

z( j)"[z
�
( j),2, z

�
( j)]�.

For a given input signal and a given initial state, the
solution of the state and output equations in (1) is param-
etrized by � and denoted x(t, �) and y(t, �), respectively.
The state sensitivity matrix, �x(t, �)/��, is obtained by
integrating the following matrix di!erential equation
along with the system state equations (see Walter &
Pronzato, 1997):

d

dt

�x(t, �)
��

"

�f

�x�

�x(t, �)
��

#

�f

��
. (2)

The output sensitivity matrix is derived from the state
sensitivity matrix using

G(t, �)"
�y(t, �)

��
"

�g

�x�

�x(t, �)
��

#

�g

��
. (3)

There is always a deviation between the model output
evaluated at the sampling instants, y(t

�
, �), and the

measurements z( j). The origin of this deviation may be
multiple: modeling error, input or process noise and
measurement noise. It is usually called the output error
or the residual and is denoted by

w( j, �)"z( j)!y(t
�
, �) j"1,2,N.

The sequence of output error vectors w( j, �) is then
viewed as a realization of a stationary zero mean stochas-
tic process with covariance matrix at lag k de"ned by

�
�
"E�w( j)w( j!k)��3����. (4)

In most applications, the residual sequences corre-
sponding to each output variable are assumed to be
independent, i.e. not crosscorrelated, which amounts to
considering a diagonal covariance matrix. Often also,

each residual sequence is assumed to be uncorrelated
along the time, i.e. not autocorrelated, which amounts to
considering only �

�
. In David and Bastin (2001), the case

of autocorrelated residuals was treated only. Here the
more general problem of auto and crosscorrelated resid-
ual sequences is addressed.

Let us de"ne the following compact notations:

x(�)"[x(t
�
, �)�,2, x(t

�
, �)�]�3���,

y(�)"[y(t
�
, �)�,2, y(t

�
, �)�]�3���,

G(�)"[G(t
�
, �)�,2,G(t

�
, �)�]�3�����,

z"[z(1)�,2, z(N)�]�3���,

w(�)"[w(1, �)�,2,w(N,�)�]�3���,

"z!y(�).

The full covariance matrix, �"E�w(�)w(�)��, of the
random vector w(�) is then a very large (qN�qN)
block-Toeplitz matrix of the form

�"�
�

�
�
��

�
���

�
�

) )

) ) )

) ) �
��

�
���

�
�

�
�
�. (5)

Assuming furthermore, a normal probability density
function for w(�), the negative log-likelihood function
takes the following form:

qN

2
log (2�)#

1

2
log ���#

1

2
w(�)����w(�). (6)

If � is known, only the last term of (6) depends on �. The
ML estimate of � is given by maximizing the likelihood
function which is equivalent to minimizing the last term
of (6) (see e.g. Seber & Wild, 1989):

�K ��"argmin
�

J(�), (7)

where the scalar cost function is given by

J(�)"w(�)����w(�). (8)

The gradient of the cost function and the CrameH r}Rao
(CR) lower bound on the covariance matrix of the es-
timator are given, respectively, by

�J(�)
��

"!2w(�)����G(�), (9)

��K ��_[G(�)����G(�)]��. (10)

It turns out that the ICM, ���, is required at several levels
of the computation of the ML estimate of �. It appears in
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the cost function (8) that has to be minimized, in gradient
(9) of the cost function that is needed if a gradient search
method is used to solve the nonlinear minimization prob-
lem (7) and "nally, in the CR lower bound (10) which is
commonly used to build a con"dence region around the
estimated parameter. This ICM is unknown, in practice,
and has therefore to be estimated. An original solution to
this problem is given in the next section.

3. Gohberg}Heinig inverse

In Gohberg and Semencul (1972) an explicit formula
was derived for the inversion of a "nite Toeplitz matrix.
This result was generalized two years later (Gohberg
&Heinig, 1974) for a Toeplitz matrix with entries belong-
ing to a noncommutative algebra, the block-Toeplitz
matrix being a particular case. Other formulas exist for
this inversion problem (see e.g. Iohvidov, 1982), and
several numerical methods to solve it have been de-
veloped and are still under investigation. It will be shown
in this section that the Gohberg}Heinig formula can be
very conveniently used in the ML parameter estimation
framework.

Let us postulate a causal and an anticausal multi-
dimensional AR representation of the residuals, de"ned by
the following relations:

w( j)#
�
�
	��

A

	
w(j!r)"�
( j),

w( j)#
�
�
	��

A�
	
w(j#r)"��( j), (11)

where A

	

and A�
	

are q by q matrices containing the
coe$cients of the causal and anticausal AR models, �
( j)
and ��( j) are zero mean i.i.d. random vectors with
covariance matrix equal, respectively, to ��
"

E��
( j)�
( j)�� and ���"E���( j)��( j)�� while d is the
order of the AR models with d(N.

The Yule}Walker equations generalized for the multi-
dimensional case can be explicitly derived by substituting
w( j) in (4) by its expression coming from (11), taking into
account the stationarity assumption. This provides the
following sets of relations, for k"0,2,N!1:

�
�
	��

A

	

�
��	

"	
���

��
 , A

�

"I
�
,

�
�
	��

A�
	

�
	��

"	
���

��� , A�
�

"I
�
. (12)

The use of the Gohberg}Heinig formula requires "rst to
"nd the coe$cients that verify the so-called generating
system. The inverse matrix is then obtained explicitly
from these coe$cients. In the general case, this system is

constituted of four sets of equations. In the particular
case of symmetric block-Toeplitz matrix, i.e. with blocks
satisfying �

��
"��

�
, the generating system is reduced to

two sets of equations and corresponds exactly to (12).
Hence, for the inversion of the covariance matrix of an AR

process, the coe$cients of the causal and anticausal AR

models are also the generating coe$cients. Therefore
Gohberg and Heinig (1974, Corollary 1.1) directly gives
the following explicit expression for the ICM of w(�):

���"U�����
 U!V������ V, (13)

where U and V are qN�qN lower triangular block-
Toeplitz matrices of the form

U"�
I
�

A

�

)

) )

A

�

) )

0 ) ) )

) ) ) )

0 0 A

�

A

�

I
�

�,
V"�

0

)

0 )

A�
�

) )

) ) )

) ) )

A�
�

A�
�

0 0
�

while ����
 and ����� are qN�qN block-diagonal matrices
of the form:

����
 "�
����


�

����
 �, ����� "�
�����

�

����� �.
Assuming that the coe$cients of the causal and an-
ticausal AR models of the residual sequence are available,
(13) provides a straightforward way to obtain the ICM

required for the computation of the ML parameter esti-
mate. In David and Bastin (2001), only the causal scalar
AR model of each independent output noise sequence was
necessary to build the ICM.

Besides the evident advantage that this ICM formula
overcomes matrix inversion, the particular form of (13)
provides also an appealing computational simpli"cation.
Indeed, in order to compute expressions involving the
ICM like (8)}(10) that are of the form L����R, one has just
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� ¸( j)"w( j) in (8,9) and ¸( j)"G(t
�
) in (10), R( j)"w( j) in (8) and

R( j)"G(t
�
) in (9,10).

to apply appropriate "lters to the columns of L and R.
Here follows a short proof.

Let ¸( j) and R( j) be any sequences of column vectors
(matrices)� for j"1,2,N and let L and R be their
corresponding vertically stacked vectors (matrices)

L"[¸(1)�,2,¸(N)�]�,

R"[R(1)�,2,R(N)�]�.

Let us also de"ne the following multidimensional dis-
crete "lters, associated with the AR models (11):

A
(z��)"I
�
#A


�
z��#2#A


�
z��

A�(z��)"A�
�

#A�
���

z��#2#A�
�
z��
�

and let ¹�
 and ¹�� denote the square root of the innova-
tion covariance matrices: ��
"¹�
¹�
 , ���"¹��¹�� .
Then, considering the "ltered versions of ¸( j) and R( j)
through ¹

��

�
A
(z��) and ¹
��

��A�(z��):

¸
�
( j)"¹���
 A
(z��)¸( j),

R
�
( j)"¹���
 A
(z��)R( j),

¸
�
( j)"¹���� A�(z��)¸( j),

R
�
( j)"¹���� A�(z��)R( j)

and their corresponding stacked matrices:

LU"[¸
�
(1)�,2,¸

�
(N)�]�,

RU"[R
�
(1)�,2,R

�
(N)�]�,

LV"[¸
�
(1)�,2,¸

�
(d)�]�,

RV"[R
�
(1)�,2,R

�
(d)�]�,

it becomes trivial to see, using the particular form of
U and V, that:

L����R"L�URU!L�VRV . (14)

The practical consequence of (14) is that to compute
expressions involving the ICM like (8)}(10), one has just to
apply appropriate "lters, A
(z��) and A�(z��), to the
columns or part of the columns of L andR and normalize
with ¹�
 and ¹�� . Hence, only the coe$cients of the AR

"lters, A

	
, A�

	
, ��
 and ��� have to be carried along. The

large ICM does not need to be formed explicitly. This is

a major advantage that leads us to propose the following
two-step ML estimation algorithm.

4. Estimation algorithm

The idea is to obtain a rough WLS estimate of � in a "rst
step and identify the causal and anticausal AR models on
the residuals of this preliminary estimate. The anticausal
model is simply obtained by presenting the residual vec-
tor in the reversed order to the AR model identi"cation
procedure. Then, these AR models are used to estimate the
ICM needed to compute the ML estimate in a second step.

If we denote the estimates of the AR matrix coe$cients
as AK 
"[AK 


�
,2,AK 


�
], AK �"[AK �

�
,2,AK �

�
], �K �
 and �K �� ,

then the ICM estimator may be written, according
to (13), as

�K ��"U(AK 
)��K ���
 U(AK 
)!V(AK �)��K ���� V(AK �),

while the cost function (8), can be rewritten using the
computational simpli"cation (14) as

w(�)��K ��w(�)"
�
�
���

e
( j, �)��K ���
 e
( j, �)

!

�
�
���

e�( j, �)��K ���� e�( j, �),

where e
( j, �) and e�( j, �) are the residuals of the AR

models, or say the posterior innovations, de"ned by

e
( j, �)"AK 
(z��)(z( j)!y(t
�
, �)),

e�( j, �)"AK �(z��)(z( j)!y(t
�
, �)).

The cost function is thus made up of two terms, the "rst
one is related to the normalized variance of the residuals
of the causal AR model and the second, involving the
anticausal model, may be viewed as a correction term
that is necessary to make the ICM the inverse of a Toeplitz
matrix, that is to say to consider a stationary noise
sequence. Asymptotically, actually for N<d, the second
term can be neglected. For a rather small number of data
though, this correction term plays an important role as it
will show up in the sequel.

The WLS preliminary estimate is de"ned by

�K 	�
"argmin
�

�
�
���

w ( j, �)�
w( j, �), (15)

where 
 is a q by q diagonal weighting matrix used to
normalize the residuals in order to balance the individual
contribution of each output variable. The weights can be
determined from a preliminary data analysis. For in-
stance, one could take them inversely proportional to the
variance of the output measurements.
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The proposed algorithm for ML parameter estimation
in dynamical systems with auto and crosscorrelated out-
put noise is then as follows:

1. � obtain 
 from data analysis,
� compute a preliminary WLS estimate,

2. � compute the residuals w(�K 	�
),
� estimate the AR models of w(�K 	�
),
� compute the ML estimate.

Let us notice that the estimate outcoming from this
algorithm is not strictly speaking the ML one since the
true ICM is replaced by an estimated one. Nevertheless,
for simplicity, it is still denoted ML in the following. This
estimation algorithmmay be extended to an iterative one
by repeating several times step 2 with �K 	�
 replaced by
�K �� of the previous iteration.

Naturally, the "rst thing to do in the computation of
the ICM estimate is to select an appropriate order d for the
AR models. A number of methods have been developed in
the last three decades for that purpose (see e.g. Ljung,
1999). The two most common being the strategies based
upon the Akaike's information criterion (Akaike, 1981)
and the Rissanen's minimum description length (MDL)
criterion (Rissanen, 1985). It is worth noting that several
alternatives are extensively analyzed in Dickie and Nandi
(1994) from simulation studies for the particular case of
the AR model order selection. It is out of the scope of this
paper to give a detailed description of each of the possible
strategies and to analyze their e!ect on the estimate of
the ICM.

5. An alternative method

By extending directly a method coming from the "eld
of discrete time identi"cation for linear systems (Ljung,
1999; SoK derstroK m & Stoica, 1989) to the framework of
this paper, the following alternative approach can be
considered. It consists of augmenting, from the begin-
ning, the continuous time phenomenological model (1)
with a discrete time AR noise model parametrized by �:

z( j)"y(t
�
, �H)#

1

A(z��,�H)
�( j),

where �H and �H denote the true parameter values and
�( j) are i.i.d. random normal vectors with a covariance
matrix equals to ��3����. The complete model is there-
fore a mixture of continuous time and discrete time
parts.

The vector of parameters is then augmented with the
parameters of the noise model, namely �, and the maxi-
mization of the log-likelihood function is done with re-
spect to the augmented parameter vector. That is, the

phenomenological and the stochastic models are opti-
mized at the same time.

In this context, the residuals of the overall model are
given by

e( j, �,�)"A(z��,�)(z( j)!y(t
�
, �))

and the negative log-likelihood function takes the follow-
ing form:

qN

2
log (2�)#

N

2
log ��� �

#

1

2

�
�
���

e( j, �,�)����� e( j, �,�), (16)

where �� is obtained, if unknown, from the residuals by

�K �"
1

N

�
�
���

e( j, �,�)e( j, �,�)�. (17)

If (17) is introduced into (16), the last term of the log-
likelihood function becomes constant and the estimate
is given by the solution of the following minimization
problem:

�K ���"argmin
���

log �
�
�
���

e( j, �,�)e( j,�,�)��. (18)

For a "xed �, the minimization of (18) with respect to � is
a linear problem whose explicit solution can be directly
plugged into (18) in order to end up with a nonlinear
optimization related to � only. Therefore, the computa-
tion load of (18) is comparable to the one of (7) or (15).

This method will be denoted as alternative maximum
likelihood (AML) in the following. The question that nat-
urally arises now is: How does this method di!er from the
algorithm of the previous section? Although the two
methods could look similar at a "rst glance since both
whiten the residuals with an AR "lter, there exists three
main di!erences.

The "rst one is in the cost functions to be minimized.
Basically, �K �� minimizes the last term of the negative
log-likelihood (6), the second one being constant, while
�K ��� maximizes the second term of the log-likelihood
(16), the last one being constant. Moreover, as we have
already mentioned, the ML approach contains a correc-
tion term in the cost function while the AML one does not.

Second, in the ML method the covariance matrix is
estimated only once and it is kept constant during the
optimization with respect to � while in the AML method,
the noise model is updated at each step of the optimiza-
tion process. As a consequence, the ML method requires
to solve two successive nonlinear optimization problems
(or more if the algorithm is further iterated) while only
one nonlinear optimization pass is necessary for the AML

method.
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Fig. 1. Input signal u, output model trajectories y

in plain line and

output measurements z

in dotted line, for the AR and FIR cases.

Finally, both the causal and the anticausal AR models
are required for the ML estimator while only the causal
one is used in the AML estimator.

It is obvious that from a computational point of view,
the AML method is to be preferred to the ML one. How-
ever, it will be shown in the next section that the ML

estimate clearly outperforms, in the considered example,
the AML one from the point of view of their statistical
properties and their robustness against noise model mis-
speci"cation.

6. Monte-Carlo simulations

The purpose of this section is to illustrate, from
Monte-Carlo simulations on a particular example, the
statistical properties of the ML estimator obtained with
the proposed two-step algorithm and to compare it with
the alternative approach. The iterative version of the
algorithm will be also brie#y analyzed.

A three-parameter estimation problem on a nonlinear
fourth order dynamical system with two output measure-
ments is treated. The model is as follows:

x�
�
"u!�

�
x
�
,

x�
�
"!2x

�
#h

�
(x


,x

�
,�

�
),

x�

"x

�
!x


!h

�
(x

�
, x


,�


),

x�
�
"!x

�
#h

�
(x

�
,x


,�


),

y
�
"x

�
,

y
�
"h

�
(x


, x

�
,�

�
),

where

h
�
(x


, x

�
,�

�
)"

x
�

1#x

/�

�

,

h
�
(x

�
, x


,�


)"4x


e���� .

The output trajectories of this model are computed for
a true parameter �H"[8,5,10] and zero initial states. The
experiment lasts 20 s. The input u(t) is a piecewise con-
stant signal and the output trajectories are sampled with
a frequency of 10 Hz to form the y(�H) vector containing
N"200 data samples.

Two di!erent types of noise generator are used to
produce the true output error sequences. The "rst type is
a "rst order bidimensional AR stochastic process with
i.i.d. normal random innovation vectors. The objective of
this "rst structure is to illustrate the behavior of the
algorithm when the stochastic part of the system belongs
to the model set scanned by the algorithm. The structure

of the process is

w��( j)#�
!0.65 !1.80

!0.07 !0.5 �w��( j!1)"���( j),

���� "10���
90 3

3 2.5�.
The goal of the second type of noise generator is to
evaluate the robustness of the algorithm when the
stochastic part of the system is not in the model set. For
that case, a bidimensional "nite impulse response (FIR)
"lter of the following form is used:

w���( j)"�
0.5 0.25

0.05 0.1 ��
B
�
(z��) ����

�
( j)

B
�
(z��) ����

�
( j)�,

whereB
�
(z��) andB

�
(z��) are scalar FIR lowpass discrete

"lters of order 10 with normalized cuto! frequencies
equal to 0.1 and 0.08, respectively, and ����

���
( j) are i.i.d.

normal random variables with unit variance.
The structure of the two processes have been scaled in

order to produce highly auto and crosscorrelated noise
sequences with a similar signal-to-noise ratio of 20 dB on
each measured output trajectory.

A bunch of independent realizations of the AR and FIR

stochastic processes have been generated and added to
the model output trajectory vector y(t

�
, �H) to form two

benchmarks of 5000 sets of measurements each. The
input signal, the model output trajectories and one
example of the measured output trajectories under both
cases of stochastic process are illustrated in Fig. 1.
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Fig. 2. Typical evolution of the empirical standard deviation of a para-
meter estimate with respect to the number of experiments. The dotted
lines delimit the 5% interval around the "nal value.

Table 1
Standard deviations of �K and CR bounds

�WLS ���� ��� ���

�K ��
�

0.535 0.132 0.136 0.108
�K ��
�

0.400 0.100 0.103 0.085
�K ��


0.286 0.089 0.093 0.069

�K ���
�

0.566 0.224 0.136 0.087
�K ���
�

0.426 0.166 0.101 0.064
�K ���


0.288 0.126 0.093 0.069

For each set of measurements, an ML estimate of the
parameter vector has been computed with the algorithm.
The WLS estimate obtained in the "rst step has been
recorded as well, for comparison purpose. For a more
appropriate comparison, the parameters estimated by
the AML method are also computed. The order of the AR

models used to estimate the ICM in the ML approach is
2 for the "rst type of noise generator and 8 for the second
type. The same values are used for the order of the AR

"lter in the AML method.
The nonlinear minimization problems required to "nd

the parameter estimates have been solved using the
Nelder}Mead simplex method (Nelder & Mead, 1965).
This choice was motivated by its relative robustness for
optimization in presence of noise and its e$ciency for
small dimension problems, as stated in Parkinson and
Hutchinson (1972, Chap. 8). Some basic tests have been
done on a subset of 100 experiments out of the 5000 to
verify that local minima were not reached. These tests
consisted in repeating the optimization procedure with
di!erent starting values and checking that the same opti-
mum is achieved.

Since the true parameter vector and the true noise
structure are known, the CR lower bound on the
covariance matrix of the parameter estimates can be
computed exactly using (10). This bound provides the
minimum possible standard deviation that can be
achieved and will serve as a comparison basis.

The huge number of simulations will allow us to rep-
resent accurately several statistical properties of the es-
timators such as their empirical distribution and their
standard deviation. To justify this large number of simu-
lations, one has just to realize the way the empirical
standard deviation of a parameter estimate evolves with
the number of experiments. Indeed, as illustrated in
Fig. 2, the convergence of this quantity is quite slow.
On this typical example, it takes about 2500 experiments
for the value to stabilize around "ve percent of the "nal

value. A number of 5000 experiments should hopefully
ensure a su$cient accuracy on the statistical properties
we are now going to compare.

The standard deviation of the 5000 independent WLS,
AML and ML estimates of � obtained under each case of
stochastic process are given in Table 1, along with the CR

bounds. The empirical distributions of the estimated param-
eters are illustrated in Fig. 3, superimposed on normal
distributions corresponding to the CR lower bound.

In the AR case, i.e. the stochastic part of the system is in
the model set, the ML and AML estimates are not signi"-
cantly di!erent. The improvement of those estimators
with respect to the single step WLS estimator is impressive.
This clearly proves the necessity of taking into account
the correlation in the noise.

In the FIR case a very high improvement with respect to
the WLS estimator is still observed for the ML and AML

ones. That reveals the ability of an AR "lter to be used as
a noise model even if the actual noise has a di!erent
structure. It is also observed that the improvement
achieved by the ML estimator is signi"cantly better than
the one obtained with the AML estimator. This tends to
illustrate that the ML method appears to be more robust
against noise model misspeci"cation. Hence, this
suggests that the ML method is relevant in most practical
applications where the noise structure is unknown, at
least if the computational extra charge does not matter.

Let us now investigate the iterative version of the
algorithm. Three additional iterations of step 2 of the
algorithm have been computed, identifying each time
new AR models on the residuals of the previous iteration.
The standard deviation of the ML estimates obtained at
each iteration is represented in Fig. 4. For comparison
purpose, the CR bounds and the standard deviation of the
AML estimates, taken from Table 1, are illustrated as well.
In all cases, the biggest improvement is achieved at the
"rst iteration (step 2). Yet a second iteration still brings
a slight improvement in both AR and FIR cases while the
subsequent iterations do not signi"cantly reduce the
standard deviation. In David and Bastin (2001) and
David and Bastin (1999) it appeared that, in the scalar
case, further iterations were not necessary. We see,
from the considered example, that in the more general

B. David, G. Bastin / Automatica 38 (2002) 81}90 87



Fig. 3. The histograms are represented with an increasing degree of line thickness: 1 is for ML, 2 for AML and 3 for WLS. The dotted lines represent the
normal distributions corresponding to CR bounds.

framework addressed in this paper, one additional iter-
ation seems worthwhile.

Fig. 4 illustrates also the convergence behavior of the
algorithm. It shows up that the standard deviation of the
ML estimate converges very closely to the CR bound in the
AR case while it seems to converge to a greater bound in
the FIR case. This is normal since the ICM of the FIR

process will obviously never be exactly identi"ed from an
AR model. If we compare the convergence limit of the ML

estimator with the AML estimator, we can conclude that
even in the AR case now, the iterated ML estimator outper-
forms the AML one. If we forget the second term in its cost
function, the iterated ML approach would coincide with
the AML one. The slight di!erence that we observe here
comes therefore from this second term. Actually, without
noise model misspeci"cation, the AML method would
yield the true ML estimate asymptotically. For a "nite
N though, the AML method should not be considered as
the ideal one anymore since it is unable to account for
unknown initial conditions of the AR "lter. On the other
hand, the ML approach does implicitly take into account
these unknown initial conditions via the correction term.
For that reason, it achieves the best performances on the
condition that it is su$ciently iterated. Obviously, the

di!erence between the ML and AML approaches should
vanish as N increases, that is as the e!ect of the correc-
tion term becomes negligible.

7. Con5dence region

The ICM estimate can still be advantageously applied to
the construction of a con"dence region around the esti-
mated parameter vector. It is evident that the same
experiment is rarely repeated 5000 times in order to have
an idea of the parameter dispersion. Often, only one
experiment is carried out and a con"dence region around
the identi"ed parameter has to be evaluated. The
covariance matrix of the parameter vector, ��K , is com-
monly estimated using its CR bound (10) computed for
�K and �K ��. The large matrix �K �� being estimated by
inverting the sample covariance in the WLS case and with
the full ICM estimate in the ML case. Assuming a normal
distribution for �K , an approximate 100(1!)% con"-
dence region for the parameter vector �K is given by (see
e.g. Seber & Wild, 1989)

��: (�!�K )�K ���K (�!�K )�)pF�
�����

�, (19)
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Fig. 4. Standard deviation of �K �� with respect to the number of iter-
ations. The initial point (iteration 0) corresponds to the preliminary
WLS estimate (step 1). The horizontal dotted line indicates the CR

bounds while the standard deviation corresponding to the AML esti-
mates is represented by the horizontal plain line.

Fig. 5. Projections of the 5000 WLS and ML parameter estimates. The
projections of the con"dence ellipsoids are drawn for one estimate
chosen arbitrarily. The bold circles point the true value of �.

where F�
��

is the upper  critical value of the F
��

distri-
bution. The set described by (19) is the inner space of an
ellipsoid centered on �K .

Fig. 5 represents two projections of the 3D plot of the
5000 WLS and ML parameter estimates taken from the FIR

set. Superimposed are the projections of the 99% con"-
dence ellipsoids corresponding to one estimate chosen

arbitrarily. It clearly appears that the con"dence region
estimated in the ML case, using the full ICM estimate, is far
better than the one estimated in the WLS case. It includes
the true parameter value and its shape better "ts the
actual parameters dispersion.

The computation of �K �K has been done systematically
for each estimated parameter vector. If �K was really
normally distributed and if the estimate of each con"-
dence region was exact, 99% of those regions would
include the true parameter. Since those conditions are far
to be met, it turns out that among the con"dence regions
computed with the WLS method, only 6% include the true
parameter in the AR case and 21% in the FIR case. These
percentages become 93% and 83%, respectively, with the
ML method.

8. Conclusion

The ML parameter estimation method developed in
David and Bastin (2001) has been generalized in this
paper to the case of auto and crosscorrelated output
noise. The e$ciency of the estimation method has been
emphasized, in comparison with classical ones, from
Monte-Carlo simulations. A signi"cant gain is achieved
in the statistical properties of the estimator, namely a re-
duction of its standard deviation. In addition, the proposed
ICM estimate provides an e$cient way to compute accurate-
ly the con"dence region around the estimated parameter.

The quite general form of the nonlinear deterministic
part of model (1) and the ability of the proposed ICM

estimate to be successfully applied also when the noise
structure is not in the model set suggest a wide range of
application of the proposed method.
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