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Abstract

In this paper an overview of optimal adaptive control of (bio)chemical reactors is presented. Following the paradigm of the

Minimum Principle of Pontryagin the derivation of optimal control sequences for fed-batch production processes is briefly revisited.

Next, it is illustrated how the obtained optimal profiles can be exploited in the characterization of nearly optimal control sequences in

terms of the qualitative behavior of the specific growth and production rates as function of the limiting substrates. Implementing this

knowledge leads in a natural way to the design of (nearly) optimal adaptive feedback controllers. Special emphasis will lie on the

potential of on-line biomass measurements (obtained with the Biomass Monitor) in the estimation algorithm of the growth

kinetics being the adaptive component of the controller. Extensions towards fermentation processes with (i) multiple substrates and

(ii) non-monotonic kinetics are also included. Finally, perspectives towards optimal adaptive control of not perfectly mixed

(bio)chemical reactor systems, such as chemical tubular reactors, are outlined.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Given the recent re-orientation of some key players in

the bulk chemical industry towards the field of life sci-

ences in which fed-batch processes are predominant

(e.g., production of baker’s yeast, food additives and

recombinant proteins), optimization and control of fed-

batch bioreactors has become more challenging than

ever. Fed-batch operation enables superior control as it

provides different avenues in the substrate plane for
control through distinct phases of biomass growth and

metabolite production. By programming substrate

feeding, one can control important phenomena such

as substrate inhibition, glucose effect and catabolite

repression. Furthermore, from the control engineering

viewpoint, fed-batch processes are quite challenging,

since the optimization of the substrate feed rate is a

dynamic problem [26]. Unlike the continuously stirred
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tank reactors, the primary goal of a substrate feedback

controller for a fed-batch fermentation process is not to
stabilize the process globally, but rather to optimize it

while keeping an inherently unstable type of behavior

under control (see also [5]). Control opportunities in fed-

batch operated fermentations have been reviewed in

detail in a number of articles [16,19,25,26]. It is well

known that the design of high-performance model-based

control algorithms for biotechnological processes is

hampered by two major problems which call for ade-
quate engineering solutions. First, the process kinetics

are most often poorly understood nonlinear functions,

while the corresponding parameters are in general time-

varying. Second, up till now there has been a lack of

reliable sensors suited to real-time monitoring of the

process variables which are needed in advanced control

algorithms. Therefore, the earliest attempts at control of

a biotechnological process used no model at all. Suc-
cessful state trajectories from previous runs which had

been stored in the process computer were tracked using

open-loop control. Many industrial fermentations are

still operated using this method. The need for the devel-

opment of tracking controllers for the implementation
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of the (designed) open-loop profiles as well as the need

for on-line recalculation of the profiles in case of (large)

disturbances is apparent [2].

This article presents a unifying methodology for
optimization of biotechnological processes, i.e., optimal

adaptive control of which the rationale can be summa-

rized as follows. Model-based optimal control studies

(Minimum Principle of Pontryagin [17]) provide a the-

oretically realizable optimum. However, the real-life

implementation will fail in the first place due to mod-

eling uncertainties. On the other hand, model-indepen-

dent adaptive controllers can be designed, but there is a
priori no guarantee of the optimality of the results

obtained. The gap between both approaches is bridged

in two steps. First, heuristic control strategies are

developed with nearly optimal performance under all

conditions. These suboptimal controllers are based on

biochemical knowledge concerning the process and on a

careful mathematical analysis of the optimal control

solution. In a second step, implementation of these
profiles in an adaptive, model-independent way com-

bines excellent robustness properties with nearly optimal

performance. As an example, the design of a substrate

feeding rate controller for a class of biotechnological

processes in stirred tank reactors characterized by a

decoupling between biomass growth and product for-

mation is considered. A single as well as a multiple

limiting substrate production process is covered. Fur-
thermore, the concepts are applied to a non-perfectly

mixed chemical conversion process in which space

dependency has to be taken into account explicitly. It

is shown that, under the simplifying assumptions of

steady-state and plug flow behavior, optimization in

space of tubular reactors is very similar to optimization

in time of well-mixed reactors.
2. General optimal control framework

Optimization of fed-batch fermentations has been

traditionally sought with respect to the volumetric sub-
strate feed rate while keeping the substrate concentra-

tion in the feed fixed. Formulating the problem with the

feed rate as the control variable yields a singular optimal

control problem. Due to limited success in singular

control theory, most of the fed-batch fermentation

processes considered so far have been limited to low-

order processes, described by no more than four mass

balance equations (see, e.g., [15,31]). General computa-
tional algorithms have been developed by Lim et al. and

Modak et al. for the optimal volumetric feed rate pro-

files for such fermentation processes [20,22].

Since most of the reported attempts to convert the

singular control problem in a non-singular one (e.g.,

[14,18,21,27,38]) result in practical implementation

problems, we adopt the traditional point of view, i.e.,
singular optimal control with the volumetric substrate

feed rate as the manipulated variable.

As a case study, we consider processes with a de-

coupling between growth and production. It will be
shown that the determination of the switching times in

the feed rate profile can be simplified a lot by incorpo-

rating as much as possible microbiological/(bio)chemical

knowledge concerning the process under consideration.

The case studies considered further in this paper

belong to the following model class:

dxðfÞ
df

¼ f½xðfÞ� þ b � u with f0 < f < ff ð1Þ

with xðfÞ the state vector and u the scalar control input

(both possibly restricted by physical constraints such as

upper and lower bounds), and f the independent vari-
able t (time) or z (the one-dimensional spatial coordi-

nate). Subscripts 0 and f denote the initial and final

value, respectively. As can be seen, the nonlinear model

(1) is affine in the input u.
The performance criterion to be minimized is a sum

of a terminal and an integral cost:

J ½u� ¼ h½xðffÞ�|fflfflfflffl{zfflfflfflffl}
Terminal cost

þ
Z ff

0

g½xðfÞ�df|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Integral cost

ð2Þ

Observe that performance measure (2) is assumed not to

depend explicitly on the control input u. The problem
statement is then the following:

Find an admissible control which causes the given

system to follow an admissible trajectory while at the

same time minimizing the performance criterion.

According to the Minimum Principle of Pontryagin

[17] the Hamiltonian H, equal to the sum of (i) the

integrand of the integral cost and (ii) the product of the

costate vector p with the right hand side of the balance

equations, i.e.,

H ¼ g½xðfÞ� þ pTf½xðfÞ� þ pTb � u,/þ w � u

must be minimized in order to minimize performance

criterion (2).

The costate vector p satisfies the following system of

differential equations:

dp

df

�
¼ � oH

ox

�
¼ � og½xðfÞ�

ox
� pT

of½xðfÞ�
ox

with pðffÞ ¼
oh
ox

����
ff

ð3Þ

2.1. Extremal control determination

Because of the specific structure of model (1), a

Hamiltonian function which is affine in the control input

is obtained. As a result, the optimal control is of the
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bang-bang type, with the possibility of singular arcs

depending on the value of w:

• if w > 0, then u�ðfÞ ¼ uMIN

• if w ¼ 0 for z 2 ½fi; fiþ1�, then u�ðfÞ ¼ usingðfÞ
• if w < 0, then u�ðfÞ ¼ uMAX

uMIN and uMAX represent the lower and upper bound on

the control input, respectively. Since the Hamiltonian

does not explicitly depend on f (i.e., the time coordinate

t in a well mixed reactor case or the spatial coordinate z
in a plug flow reactor case), the Hamiltonian is constant
when evaluated along an extremal trajectory.

2.2. Singular arc analysis

As previously mentioned, the term w is equal to zero

on a singular interval ½fi; fiþ1�, failing to provide, as

such, an expression for the singular control law usingðfÞ.
The latter is then obtained by repeatedly differentiating

w with respect to f until u appears explicitly.

Following some algebraic manipulations a general

expression for the control on the singular arc can be

found:

usingðfÞ ¼
og½xðfÞ�

ox
þ pT of½xðfÞ�

ox

h i
d� o2g½xðfÞ�

ox2
bþ p od

ox

h i
f½xðfÞ�

o2g½xðfÞ�
ox2

bþ pT od
ox

h i
b

ð4Þ

In this paper the concepts of optimal adaptive control

will be illustrated with three case studies. The first two

are fed-batch case studies focusing on optimization in

time. The last case study is a tubular reactor process

to illustrate optimization in space.

2.3. Case studies

2.3.1. Optimization in time (f ¼ t)
Fed-batch production processes relying on more than

one limiting substrate, can be represented by following

mass balance equations: 1

d

dt

S
N
X
P
V

266664
377775

|fflffl{zfflffl}
xðtÞ

¼

�rSX
�rNX
lX

pX � kP
0

266664
377775

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
f½xðtÞ�

þ

CS;in 0

0 CN ;in

0 0

0 0

1 1

266664
377775

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
b

uS
uN

� �
|fflffl{zfflffl}

u

ð5Þ

X [gDW] denotes the micro-organism, S [g] the car-
bon source, N [g] the nitrogen source and P [g] the
1 These balance equations easily simplify to a one limiting substrate

case when the mass balance equation and the feeding of the second

substrate, e.g., N , is neglected. Extension to more than two substrates

is straightforward.
product. The input uS [L/h] is the volumetric flow rate of

the limiting carbon source while uN is the volumetric

flow rate of the limiting nitrogen source. V [L] is the

volume of the reactor, and CS;in [g/L] and CN ;in are the
limiting carbon source concentration and limiting

nitrogen source concentration in the feed, respectively.

Further, rS ¼ l=YX=S þ p=YP=S þ m is the specific carbon

source consumption rate (the extended linear law) with

YX=S [gDW/g] the yield coefficient of biomass on the

carbon substrate, YP=S the yield coefficient of product on

substrate and m [g/(gDWh)] the maintenance constant.

rN ¼ l=YX=N is the specific nitrogen source consumption
rate with YX=N [gDW/g] the yield coefficient of biomass

on nitrogen. At this stage, the shape of the specific

growth rate l [1/h] and the specific production rate p
[1/h] as function of the limiting concentrations is still

arbitrary (i.e., monotonically increasing or non-mono-

tonic). Finally, k [1/h] is the product hydrolysis or deg-

radation constant.
2.4. Optimization in space (f ¼ z)

In contrast with the above example of homoge-

neously mixed systems, a large amount of (bio)chemical

processes is operated in (tubular) reactors where space

dependency has to be taken into account explicitly. As a

proto-type example of tubular reactor systems we focus
on the most basic system, i.e., a steady-state plug flow

reactor, surrounded by a cooling/heating jacket, in

which an exothermic first order reaction takes place. The

system is described by following energy and mass bal-

ance equations which fit in the framework of Eq. (1)

in which f denotes the spatial variable z [29].

d

dz

T

C

� �
|ffl{zffl}
xðzÞ

¼
� DH

qCpv
k0Ce

�E
RT � 4h

qCpdv
T

� k0
v Ce

�E
RT

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

f½xðzÞ�

þ
4h

qCpdv

0

" #
|fflfflfflffl{zfflfflfflffl}

b

u

with T ð0Þ ¼ Tin; Cð0Þ ¼ Cin ð6Þ

C, T and u represent the reactant concentration, reactor

temperature and the jacket fluid temperature (i.e., the

manipulated variable), respectively. Explanation of the
other symbols can be found in [29].
3. Optimal control in time (f= t)

3.1. Single substrate production process

As an example of a single substrate (S), growth de-

coupled production process, the penicillin G production

process is considered, in which the specific growth rate

as well as the specific production rate (and thus r
through the extended linear law relation) are assumed to

be functions of substrate concentration CS only. As



798 I.Y. Smets et al. / Journal of Process Control 14 (2004) 795–805
such, the mass balance equation for the nitrogen source

N as well as its inflow rate in Eq. (5) can be discarded.

The specific growth rate lðCSÞ is monotonically

increasing (Monod or Contois kinetics) and the specific
production rate pðCSÞ is non-monotonically increasing

(Haldane kinetics) as illustrated in Fig. 1.

When maximizing the final amount of product

J ½u� ¼ �PðtfÞ ð7Þ

with the final time tf free and the total amount of carbon

source that can be added fixed, Eq. (4) is translated into
following optimal feed rate during the singular produc-

tion phase [35,36]:

uS;singðtÞ ¼
rCXV

CS;in � CS
þ k

� p3V ðp0X � l0P Þ
X ðCS;in � CSÞðp1r00 � p2l00 � p3p00Þ ð8Þ

where a prime denotes derivation with respect to sub-

strate concentration, and pi is the costate associated with

component xi of the state vector x. Note that this

expression is linear in the specific product decay rate k,
and is a feedback law of state variables only (it can be

shown that the costates p1 and p2 depend linearly on p3).
Furthermore, the second term requires knowledge of an
analytical expression of the derivatives of all specific

rates up to second order.
0
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Fig. 1. Specific growth and production rates for penicillin G produc-

tion process. Left plot: Monod type growth kinetics. Right plot:

Haldane type production kinetics.
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Fig. 2. Optimal control. Left plot: optimal substrate feed rate profile u�ðtÞ. R
and product amount PðtÞ profiles.
The optimal solution (unbounded control and state

and free initial substrate concentration CSð0Þ) for the

penicillin fed-batch fermentation case study is summa-

rized in Fig. 2 and will be further explained below. The
parameter and numerical simulation values can be

found in [8].
4. Heuristic control strategies in time (f= t)

4.1. Single substrate production process

The most important drawbacks of the optimal con-

trol solution as outlined above for the single substrate

production process can be summarized as follows:

(1) Optimal control is a very model sensitive technique.

It requires a complete knowledge of the process

model, including an analytic expression for all spe-

cific rates. Since in biotechnology this assumption
is in practice never fulfilled, the optimal profile is

generally calculated using a highly simplified model

describing the process more or less correctly only

from a qualitative view-point. Therefore, the result-

ing optimal profiles can be used only to increase the

insight into both the process and the quality of the

model.

(2) For the maximization of the final product amount
P ðtfÞ, the optimal feed rate profile is obtained in

complete state feedback form except for the switch-

ing time t2 between the batch growth phase and the

singular production phase (Fig. 2). In general, t2
must be determined numerically in advance.

(3) Necessary and sufficient conditions can be derived

for which t2 also becomes a function of state vari-

ables only [33]. However, even if a perfect process
model could be available which satisfies all condi-

tions to obtain the complete optimal solution in

closed loop, real-life implementation is still ham-

pered by the lack of reliable sensors suited to real-

time monitoring of the process variables needed in

the controller. Besides a perfect analytical knowl-
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edge of all specific rates and corresponding parame-

ters, the control during the singular phase usingðtÞ re-
quires on-line measurements of all state variables S,
X , P , and V [35,36].

Therefore, it is very useful to construct suboptimal

strategies that do not suffer from the above difficulties,

at the expense of as small as possible a decrease in

performance. In [35–37] nearly optimal heuristic con-

trollers for both the substrate concentration CS (heuristic

CS-control) and the overall specific growth rate l (heu-

ristic l-control) are designed. As an example, in this
paper heuristic CS-control is considered, which can be

motivated from both the microbiological and mathe-

matical point of view.

4.1.1. Microbiological and experimental motivation

The construction of a nearly optimal profile for the

type of biotechnological processes under consideration

can be based on the concept of a biphasic fermentation.

(1) Growth phase ½0; t2�. During the growth phase the

specific substrate-to-biomass conversion rate l is fo-

cused. For the control needed reference is made to
the optimal control results: in the case of an un-

bounded input uS , an unconstrained state vector x,

and a free initial substrate concentration CSð0Þ, the
growth phase is a batch phase. A general strategy

is that the fraction agrowth of the total amount of sub-

strate available a, which is consumed for biomass

accumulation during the growth phase, must be added

as fast as possible in order to obtain the highest pos-

sible value of l.
(2) Production phase ½t2; t3�. During production the spe-

cific production rate p is focused. As shown in Fig.

1, p exhibits a maximum as a function of the sub-

strate concentration CS . So, it is a reasonable control

objective to keep the substrate concentration during

the production phase constant at the level CS;p which

maximizes p. For instance, in the case of Haldane
kinetics, CS;p equals ðKPKIÞ1=2. Therefore, as soon

as CSðtÞ equals CS;p, the feed rate switches from

uSðtÞ ¼ 0 to

uS;production ¼
rCXV

CS;in � CS
ð9Þ

which keeps substrate concentration CS constant

during production. Controller (9) is shut off when all

substrate a has been added at time t ¼ t3, or equiv-
alently, when V ðt3Þ ¼ Vf . As in the case of optimal

control, the fermentation continues in batch ½uðtÞ ¼
0; t3 < t < tf � until the net product formation rate

dP=dt equals zero at t ¼ tf .

Obviously, the switching time t2 (Fig. 2) is known in

closed loop: the production phase starts when the sub-
strate concentration CS becomes equal to CS;p. As a re-

sult, the optimization problem has been reduced to the

one-dimensional optimization of the initial substrate con-

centration CSð0Þ, or more generally, of the fraction agrowth
of the total substrate amount available.

A further refinement of this strategy consists of

optimizing the value of the substrate concentration level

during production (denoted by C�
S , which plays the role

of a setpoint). In other words, during production CS is

kept constant, but not necessarily at the value CS;p

which maximizes p. As in the case of optimal control,

optimization of final product amount reduces to a
two-dimensional optimization problem. The degrees of

freedom are the initial substrate concentration CSð0Þ––or
more generally, the fraction agrowth––and the substrate

concentration setpoint C�
S during production. Heuristic

control strategies for other combinations of monotonic

and non-monotonic growth and production kinetics,

can be found in [8].
4.1.2. Mathematical justification

With respect to Eq. (8) it is shown in [35,36] that the

proposed heuristic CS-controller reduces to the optimal

profile if (and only if) (i) the performance index is
independent of final time tf , (ii) the specific rates l and p
are functions of CS only, (iii) k ¼ 0, and (iv) the pro-

duction phase starts when the substrate concentration

CS reaches the level which maximizes the ratio p=r. In
cases where (some of) these conditions are not satisfied,

the proposed heuristic CS-controller is at least a very

good approximation of the optimal solution.
4.2. Multiple substrate production process

To illustrate optimization of a multiple substrate fed-

batch process, the production of PHB (poly-b-
hydroxybutyric) acid in an aerobic culture of Alcaligenes

eutrophus is considered. The mathematical model (pre-

sented in Eq. (5)) is based on following a priori knowl-

edge. Two limiting substrates are needed for the

microbial growth: fructose as carbon source S and

ammonia as nitrogen substrate N . The intracellular

production of PHB acid, by fructose degradation, can

take two different paths: the first being associated with
the growth but with a very small yield (and therefore

neglected in this case study); the second being enzyme

catalyzed and completely inhibited by nitrogen N . The

shape of the specific rates for growth l and production p
as function of the two limiting substrates is shown in

Fig. 3. Endogenous metabolism is neglected.

The aim is again to maximize the final amount of

product P by manipulating the incoming flow rate, i.e.,
both flow rates uS and uN in this case study. The final

time tf is free and the total amount of carbon S and

nitrogen N is fixed.



0
0

µ(C
S
)

0
0

µ(C
N

)

0
0

CS [g/L]

π(C
S
)

0
0

CN [g/L]

π(C
N

)

C
S, µ

µ
MAX

Fig. 3. Specific growth and production rates as function of the limiting

substrates for the PHB fed-batch production process.
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Since the process occurs in two phases (i.e., a growth

phase followed by a production phase) following heu-

ristic strategy will be close to optimal:

(1) Growth phase

• uN : add all nitrogen available at time¼ 0, since

lðCNÞ increases monotonically with CN .

• uS : keep the carbon source concentration CS con-

stant at some reference level C�
S . An appropriate

initial guess is C�
S ¼ CS;l, the concentration which

maximizes lðCSÞ.
(2) Production phase

• uN ¼ 0 since PHB synthesis is inhibited by N .

• uS : add the remaining amount of fructose as fast

as possible, since pðCSÞ increases monotonically

with CS .

Obviously, the switch between both phases occurs as
soon as nitrogen N has been completely exhausted. The

process is stopped as soon as dP=dt ¼ 0.

Extension towards more than two limiting substrates

can be found in [34].
5. Linearizing control in time (f= t)

With respect to a real-life implementation, the heu-

ristic controller (9) has the following advantages over

the optimal controller (8). First, the switching time t2
between growth and production (and thus the complete

control) is known in closed loop as a function of the

state: CSðt2Þ ¼ C�
S . Second, as for the modeling uncer-

tainty problem, only the specific substrate consumption

rate r is required. Third, as for the on-line monitoring

problem, the number of state variables to be measured

on-line has been reduced by one: there is no need for a
measurement of the product P . This is an important

advantage in cases where the product remains (almost)

completely in the liquid phase of the reactor. Finally, the

most important advantage is that the given optimal
control problem––namely, optimization of the final

product amount P ðtfÞ at some unknown final time tf––
has been replaced by a more common regulator prob-

lem––namely, regulation of substrate concentration CS

to some setpoint C�
S for all time t during production––

for which feedback control loops can be developed.

However, a real-life implementation is still far away.

Two important problems remain to be solved.

Problem 1 (The monitoring problem). Although the

number of unknowns has been reduced, the heuristic CS-

controller still needs on-line measurements––or at least

reliable estimates––of substrate S, biomass X , volume

of the liquid phase V , and of the specific substrate

consumption rate r.

Problem 2 (The stability problem). The closed loop

stability is not guaranteed a priori. From the general

model (5) the closed loop dynamics during production

for substrate concentration CS when using controller (9)

are simply:

dCS

dt
¼ 0

Clearly, even a small disturbance can move substrate

concentration irreversibly away from its desired value

C�
S , resulting in performance degradation.

In the following it is illustrated how to design con-

trollers based on the heuristic approach that do not

suffer from the above drawbacks.
5.1. The stability problem

The second problem is considered first. When

replacing the optimal controller (8) by the heuristic

controller (9) the control objective becomes more real-

istic, namely setpoint control or more generally tracking

of a reference profile. The heuristic controller (9) per-

forms well if there are no disturbances, measurement
errors, etc., and if the switch from growth to production

occurs exactly when CSðt2Þ ¼ C�
S . As in general these

assumptions are not fulfilled, some mechanism must be

incorporated in control law (9) which controls the

tracking error. At this point the principle of linearizing

control can be used. An introduction and several appli-

cations in bioreactor control can be found in [5] and

the references therein.

(1) Focusing again on the one limiting substrate fed-

batch case study, the control variable is the volumet-

ric feed rate uS , while the controlled variable is the
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substrate concentration CS . So an input/output model

for this case is simply the differential equation of

the substrate concentration:

dCS

dt
¼ �rCX � CS

uS
V

þ CS;in
uS
V

ð10Þ

This input/output model (which is linear in the

control uS) is of relative degree one: the control uS
appears explicitly in the first derivative (with respect

to time t) of the controlled variable CS.

(2) A linear stable (s is a strictly positive given number)

reference model for the tracking error is then

dðCS � C�
SÞ

dt
¼ �sðCS � C�

SÞ ð11Þ

Note that the reference model is of the same degree

as the input/output model. At this point, the refer-

ence signal C�
S may be time-varying.

(3) A nonlinear linearizing controller is obtained by elim-

inating dCS=dt between (10) and (11):

u0 ¼
rCX þ dC�

S
dt � sðCS � C�

SÞ
CS;in � CS

V

In the application considered here, a constant sub-

strate concentration during the production phase

is desired, so:

u0 ¼
rCXV

CS;in � CS
� s

ðCS � C�
SÞ

CS;in � CS
V ð12Þ

In most practical situations the control action (i.e.,
the feeding pump capacity) is bounded. The result-

ing controller during the production phase is then:

uS;production ¼
u0 if 06 u0 6UMAX

0 if u0 6 0

UMAX if u0 PUMAX

8<: ð13Þ
Remark 1. Obviously, this controller reduces to heu-

ristic controller (9) if the tracking error ðCS � C�
SÞ equals

zero.
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Remark 2. As motivated in [35], an important advan-

tage over the heuristic controller (9) is that controller

(13) can be implemented from t ¼ 0 on, by considering

C�
S as the setpoint from t ¼ 0 on.

The above is illustrated for the penicillin G fed-batch

fermentation in Fig. 4 where it is assumed that the

measurements are all perfect and that there are no dis-

turbances. Observe that the nonlinear linearizing con-

troller (13) becomes positive before CS reaches C�
S . This

guarantees a smooth transition in the substrate con-

centration profile at the start of the production phase.
This behavior can be obtained using a small value of s
(e.g., s ¼ 1) in the reference model (11). On the other

hand, a large value of s increases the stability margin,

tracking behavior and disturbance rejection. This can be

easily seen when calculating the closed loop response of

substrate concentration CS . Since s is at the disposal of

the user, it can be used to search for an optimal trade-off.
5.2. The monitoring problem

In the following sections the first problem is consid-

ered, i.e., monitoring of all variables required in con-
troller (13). Possible solutions depend on which

measurements are available on-line. The remaining

variables are then estimated on-line using software sen-

sors. The here presented algorithm is based on the

minimal modeling concept introduced and discussed in,

e.g., [5,12]. In this approach no assumption is made

concerning the exact analytical structure of the specific

rates required in the control law, thus circumventing the
modeling and corresponding parameter identification

problem. Instead, they are treated as time-varying

parameters which are estimated on-line. By doing so, the

nonlinear linearizing controller (13) is made adaptive

and can be implemented independently of the––usually

unknown––analytical expression for the specific rates.

While adaptive control based on on-line measure-

ments of the substrate concentration CS is treated in,
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e.g., [35], we will focus here on the availability of on-line

biomass concentration measurements.

5.2.1. Biomass concentration measurements

On-line measurements of the biomass concentration

are provided in our research group by the Biomass

Monitor (BM 214-M, Aber Instruments LTD, Aber-

ystwyth, UK). This device measures the dielectric per-

mittivity of microbial suspensions. Application of an

electric field in a cell suspension causes a shift in the ions
present resulting in a polarization of the cell mem-

brane which behaves as a capacitor. Consequently, the

capacitance is a measure of the induced charge separa-

tion due to the presence of viable cells. Dead cells or

cells with ruptured membranes do not add to the

capacitance signal [11]. This capacitance signal has

proven to be a reliable measurement during several

fermentations including yeast experiments (with baker’s
yeast [9] and Candida utilis [24]) as well as bacterial cell

cultures (e.g., activated sludge [23]).

5.2.2. Specific growth rate observer

Following state-observer-based estimator for the

specific growth rate is proposed (for more details refer-
ence is made to [5]):

dcCX

dt
¼ l̂CX � u

V
CX � xðCX � cCX Þ

dl̂
dt

¼ cCX ðCX � cCX Þ
ð14Þ

where a ^ denotes an estimated quantity and x [1/h] and

c [L2/(g2 h2)] are tuning functions. When selecting these

tuning functions equal to x ¼ 2k [1/h] and c ¼ k2=C2
X ,

the dynamics of the corresponding error system are

governed by the (double) eigenvalue �k. Fine-tuning of
the observer reduces to selecting a suitable value for k to

ensure a trade-off between convergence rate and noise

sensitivity. As such, the tuning of this so-called Bastin

and Dochain observer is comparable with the tuning of

the high-gain observers proposed by [13], which are in

fact only differing slightly in terms of the expression for

the tuning parameter c. Alternative observers, such as

an Extended Kalman Filter (EKF) and the so-called
robust PI2 l-observer of [1] are not considered here. The

implementation of the former, although frequently

proposed, is quite complex without guaranteeing sta-

bility and convergence within finite time. The latter is

not a valid alternative due to the need for on-line mea-

surements of the substrate concentration which are

assumed not to be available in this study.

5.2.3. Experimental validation of the specific growth rate

observer

5.2.3.1. Tuning of the observer. Experimental validation

of the CX based l-observer is reported in [9,10,24]. To

enhance the real-life performance several modifications
are proposed. The first modification is introduced to

avoid negative values of the estimated specific growth

rate when the biomass concentration signal is low.

Different strategies are possible to tackle this problem.
The lowering of the c tuning factor by introduction of a

constant factor CX ;c is one possible solution. c is then

equal to k2=ðCX ;c þ C2
X Þ. Another option relies on setting

bounds for l̂. During the experimental validation of the

specific growth rate estimator for the growth of Candida

utilis [24] the first option was to be preferred with CX ;c

equal to 4pF2. Secondly, the choice of the optimal

tuning factor and the initial value of the estimated spe-
cific growth rate, have proven to be of major importance

for the convergence of the estimated value to the true

value of the specific growth rate. Higher tuning factors

are preferred in order to achieve fast convergence of the

estimation and diminish the impact of incorrectly de-

fined initial estimated specific growth rate values. For

higher tuning factors, however, it is advisable to use

filtered capacitance data in the estimator to prevent re-
sults with very unrealistic values of the specific growth

rate. In [24] a Butterworth filter with a cutoff frequency

of 0.0005 Hz and order 1 is proposed while in [9] the use

of a second order Butterworth filter is illustrated.

5.2.3.2. Monotonic and non-monotonic growth kinetics.

While assuming that on-line measurements of the sub-

strate concentration are not available, but only on-line

measurements of the biomass concentration CX (and,

based on these, on-line estimates of the specific growth

rate l) can be supplied, a control law similar to control

law (12) can be derived. The control objective is refor-
mulated from reaching a desired setpoint for the sub-

strate concentration C�
S to reaching a desired setpoint for

the specific growth rate l� (note that keeping the specific

growth rate at a certain setpoint can also be the prime

objective):

u ¼ rCX

CS;in � C�
S

V � sl
l� l�

CS;in � C�
S

V ð15Þ

with sl [g/L] a strictly positive tuning factor.
In case of monotonic kinetics for l, controller (15)

performs well as illustrated in Fig. 5. After a start-up

phase (not shown) control law (15), combined with the

CX based l-observer (14), is able to keep the process, i.e.,

a growth process of Saccharomyces cerevisiae in a 5 L

computer controlled bioreactor, at the desired setpoint

of 0.12 1/h. Even the jump to a different setpoint (i.e.,

0.15 1/h) after 850 min is tracked. Note that the specific
growth rate for baker’s yeast is generally assumed to be

a non-monotonically increasing kinetics. However, the

species dealt with here, showed only very moderate

inhibition effects.

If inhibition effects cannot be neglected, non-mono-

tonic kinetics have to be dealt with. A setpoint of the

specific growth rate l� corresponds then with two values
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for the substrate concentration, i.e., the desired setpoint

C�
S and a so-called associated substrate concentration

C�
S;a. Therefore, mechanisms must be incorporated to

assure the convergence to the desired setpoint. As ex-

plained in [28], this can be done by introducing a switch

factor.

u ¼ rCX

CS;in � C�
S

V � slf
l� l�

CS;in � C�
S

V ð16Þ

The switch factor f is equal to +1 or )1 depending on

(i) the positioning of the desired setpoint CS with respect

to the CS;l value and (ii) the evolution of the specific
growth rate (i.e., increasing or decreasing) as is pre-

sented in the flow chart of Fig. 6.
6. Optimal control in space (f= z)

The case studies that have been treated so far are

assumed to occur in perfectly mixed reactors. The

hypothesis of homogeneously mixed systems is however

not always valid. A large amount of (bio)chemical
+1=inif

0- t <-µ (t         )∆µ(t)

µ*µ(t) - < 0

Cs*-Cs,in

σ Cx V τµ-=u f

= +1f

Cs*< Cs

= -1f

f

Y

Y N

NY

Fig. 6. Non-monotonic growth kinetics: decision alg
processes is operated in (tubular) reactors where space

dependency has to be taken into account explicitly. Due

to the increased complexity of such processes, analytical

optimal control solutions are very scarce [7,32] and one
mostly relies on numerical optimization (e.g., with

control vector optimization techniques [6]). Under the

simplifying assumption of steady-state plug flow be-

havior, analytical control solutions for a tubular reactor

as described by the energy and mass balance equation

(6) are presented in [29]. Obviously, the optimization

task shifts now from the time to the space domain, but,

as outlined in [30], generic properties for the optimiza-
tion in both domains exist.

As an illustration, following cost criterion is consid-

ered:

J ½u� ¼ ð1� AÞJ1½u� þ AJ2½u�

,ð1� AÞ½CðLÞ� þ A
Z L

0

½T ðzÞ � Tin�2

K
dz

with A [–] the trade-off coefficient between terminal and

integral cost and Tin [K] the fluid inlet temperature. K
is a constant (set equal to 250,000), introduced to

equalize the order of magnitude of the two terms.

The terminal cost part minimizes the concentration of

the reactant at the end of the tubular reactor and is

therefore a measure for the process efficiency. The

integral cost part penalizes the deviation of the reactor
temperature T from the inlet temperature to minimize

the risk of temperature run-away and/or formation of

hot spots.

From the general analysis of the extremal control

sequences presented in the first sections it is clear that

the control will be of the bang-singular-bang type.

Since in this example the integral cost part gðxðzÞÞ is
not a function of the reactant concentration C, Eq. (4)
reduces to following singular control:

usingðzÞ ¼ T þ DHd
4h

k0Ce�
E
RT ð17Þ

At this stage, the optimal control law is an open loop

control law associated to which are model uncertainty

and monitoring problems as mentioned before. The

combination of the singular control expression with the
=inif -1

=f +1

µ*µ(t) - < 0

0- t <-µ (t         )∆µ(t)

µ- *µ(t)

Cs*-Cs,in
V

µ

= -1

N

Y

N Y

N

orithm for switch factor f in control law (16).



Table 1

Optimal adaptive control: a unifying approach

Optimal control model sensitive, open loop

fl microbiological/biochemical process knowledge

mathematical analysis of the optimal control solution

Heuristic control model-independent control objective

fl linearizing control

Optimal adaptive control adaptive state and parameter estimation robust, nearly optimal

performance

804 I.Y. Smets et al. / Journal of Process Control 14 (2004) 795–805
balance equation of the temperature (Eq. (6)) reveals,

however, that this control keeps the reactor temperature

constant along the singular arc. Again a reference profile

is provided for which adaptive tracking controllers can

be designed.
7. Discussion and conclusions

To conclude this paper it can be stated that the

framework of optimal adaptive control (summarized in a

schematic way in Table 1 still offers interesting per-

spectives to obtain robust and practically realizable,

nearly optimal control solutions for (bio)chemical con-

version processes. The design consists of the following

steps:

Step 1. Derivation of the optimal control solution to the

given optimization problem, under the assumption of

a perfectly known process model.

Step 2. Derivation of nearly optimal heuristic control-

lers, based on a careful analysis of the optimal control

solution of Step 1 from both the biochemical and the

mathematical point of view. This second step itself
consists of:

(1) Detection of process variables which characterize

the optimal control solution, such as a concentra-

tion or a specific rate.

(2) Construction of a reference profile for the charac-

teristic process variable as a function of time.

As such, the optimization problem of Step 1 is re-

placed by a more common tracking control problem, for
which feedback control loops are designed in Step 3.

Step 3. Nonlinear adaptive implementation of the de-

rived heuristic controller in two steps:

(1) Embedding of the heuristic controller within a

nonlinear linearizing controller.

(2) Adaptive estimation of the states and parameters

which are not available on-line. According to the

minimum modeling principle, no assumption is
made concerning the exact analytic nature of

the specific rates needed in the control algorithm.

Apart from the in this paper described indirect opti-

mization method, a lot of progress has been made in

direct optimization methods which transform the origi-

nal infinite dimensional problem into a finite nonlinear
programming (NLP) problem by either complete

parameterization of the state and control vectors or

parameterization of control vectors only (i.e., CVP

techniques). Although these methods lead to case spe-

cific solutions since they rely on numerical optimization

strategies, their power must not be underestimated.

Banga and coworkers provide an up-to-date overview of

the existing methods for bioreactor optimization [3].
As they illustrate, the performance of hybrid methods,

combining the advantages of deterministic and sto-

chastic methods, is remarkable.

Given the complexity of the majority of todays’

industrial applications, straightforward analytical re-

sults from, e.g., the Minimum Principle of Pontryagin

are hard to obtain. Therefore, we believe the future of

optimal control of (bio)chemical production processes,
will rely on a combination of direct and indirect opti-

mization methods. If a simplified representation of the

process exists for which an analytical result can be ob-

tained with an indirect approach, these optimal profiles

can serve as a starting point for numerical direct opti-

mization algorithms when the complexity of the process

representation is increased. A similar approach for

parameter identification for (bio)chemical processes
proved already successful in the past [4] and ongoing

research along these lines (with respect to control) will

be reported by the authors in the future.
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