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Abstract

In many practical applications of control engineering, the dynamical system under consideration is described by a compartmental network
system. This means that the system is governed by a law of mass conservation and that the state variables are constrained to remain non-
negative along the system trajectories. In such systems, network congestion arises when the inflow demand exceeds the throughput capacity
of the network. When congestion occurs, some links of the network are saturated with the undesirable consequence that there is an overflow
of some compartments. Our contribution in this paper is to show that congestion can be automatically prevented by using a nonlinear output
feedback controller having an appropriate compartmental structure.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In many practical applications of control engineering, the
dynamical system under consideration is described by a so-
called compartmental network system which is conservative
and positive. This means that the system is governed by a law of
mass conservation and that the state variables are constrained
to remain non-negative along the system trajectories.

The dynamics of compartmental systems with constant inputs
have been extensively treated in the literature for more than
thirty years (see the tutorial paper [19] and also, for instance,
[1,4,6,7,9,14,20–22,24,26]).

In contrast, the control of compartmental systems has re-
ceived much less attention. Recently, feedback control for set
stabilisation of positive systems (including compartmental sys-
tems) is a topic that has been treated in [2,3,5,17,18].

In this paper, we are concerned with another issue: the con-
gestion control problem. Network congestion arises in com-
partmental network systems when the inflow demand exceeds
the throughput capacity of the network. When congestion oc-
curs, some links of the network are saturated with the highly

∗ Corresponding author. Fax: +32 104 72380.
E-mail addresses: bastin@inma.ucl.ac.be (G. Bastin),

V.guffens@imperial.ac.uk (V. Guffens).

0167-6911/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.sysconle.2005.09.015

undesirable consequence that there is an overflow of some
compartments. Our purpose in this paper is to show that conges-
tion can be automatically prevented by using a nonlinear out-
put feedback controller having an appropriate compartmental
structure. More precisely, we propose an output feedback con-
trol scheme able to achieve the objective of congestion avoid-
ance and to satisfy an inflow demand that does not exceeds the
transmission capacity.

In order to emphasize the relevance of the congestion control
problem addressed in the present paper, we would like to refer
to two concrete, although rather different, applications that we
have previously treated:

1. The plugging phenomenon in grinding circuits is a well-
known critical industrial congestion problem. The dynamics
of grinding circuits may typically and efficiently be de-
scribed by compartmental network systems. The control
design presented in this paper is an interesting output feed-
back alternative to the state feedbak control strategies that
have been discussed in [2,11].

2. Congestion control in packet switched networks is an issue
that has received a lot of attention in the computer science
literature. We have shown in [12,13] that compartmen-
tal network systems can constitute a valuable fluid flow
modelling approach for such networks and can be used
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for analysing hop-by-hop congestion control strategies.
The congestion control approach followed in this paper is
different: it illustrates that compartmental fluid flow mod-
elling can also be used to address the so-called end-to-end
congestion control problem.

Compartmental network systems are defined in Section 2.
They have numerous interesting structural properties which are
well documented in the literature (see the references). Some of
these properties which are useful for our purpose are briefly
reviewed in Section 2. In particular, the equilibrium stability
properties of cooperative compartmental systems are empha-
sized. Our contribution is in Section 3, where the proposed
controller is presented. The main properties of the closed loop
system and the controller are studied. It is shown that the two
main objectives of the congestion control are achieved: (i) a
demand which is not in excess is automatically satisfied but (ii)
in case of an excess demand, an operation without overflow is
automatically guaranteed. Furthermore, if the controlled net-
work is cooperative, then the closed loop system has a unique
globally asymptotically stable equilibrium. A brief simulation
experiment is used in Section 4 to illustrate the validity of the
control scheme and some design issues. Some final comments
are given in Section 5.

2. Compartmental network systems

A compartmental network system is a network of con-
ceptual storage tanks called compartments as illustrated in
Fig. 1. Each node of the network represents a compartment
which contains a variable quantity xi(t) of some material
or immaterial “species” involved in the system. The vector
x(t) = (x1(t), x2(t), . . . , xn(t))

T is the state vector of the sys-
tem. Each directed arc i → j represents a mass transfer which
may hold for various transport, transformation or interaction
phenomena between the species inside the system. The trans-
fer rate, called flow or flux, from a compartment i to another
compartment j is a function of the state variables denoted
fij (x(t)). Additional input and output arcs represent the in-
teractions with the surroundings: either inflows bi(t) injected
from the outside into some compartments or outflows ei(x(t))

from some compartments to the outside.
The instantaneous flow balances around the compartments

are expressed by the following set of equations:

ẋi =
∑
j �=i

fji(x) −
∑
k �=i

fik(x) − ei(x) + bi, i = 1, . . . , n.

(1)

These equations express that, for each compartment, the rate
of accumulation of the quantity xi is just the difference be-
tween the inflow rates fji , bi and the outflow rates fik , ei .
In the equations, only the terms corresponding to actual links
of the network are made explicit. Otherwise stated, all the
bi , ei and fij for non-existing links do not appear in the
equations.
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Fig. 1. Example of compartmental network.

The model (1) makes sense only if the state variables xi(t)

remain non-negative1 for all t : xi(t) ∈ R+. The flow functions
fij and ei are defined to be non-negative on the non-negative
orthant fij : Rn+ → R+, ei : Rn+ → R+. Similarly, the inflows
bi are defined to be non-negative bi(t) ∈ R+∀t . Moreover, it
is obvious that there cannot be a positive flow from an empty
compartment

xi = 0 �⇒ fij (x) = 0 and ei(x) = 0. (2)

Under condition (2), if fij (x) and ei(x) are differentiable, they
can be written as

fij (x) = rij (x)xi, ei(x) = qi(x)xi

for appropriate functions rij (x) and qi(x) which are defined
on Rn+, non-negative and at least continuous. These functions
are called specific flows (or also fractional rates). In this paper,
we shall assume that the specific flows rij (x) and qi(x) are
continuously differentiable and strictly positive functions of
their arguments in the positive orthant:

rij (x) > 0 and qi(x) > 0 ∀x ∈ Rn+.

In other words, we assume that the flows fij and ei vanish only
if xi = 0. It is a natural assumption which is satisfied in many
physical and engineering models described by compartmental
models.

With these definitions and notations, the compartmental sys-
tem (1) is written

ẋi =
∑
j �=i

rj i(x)xj −
∑
k �=i

rik(x)xi − qi(x)xi + bi

i = 1, . . . , n. (3)

State-space models of this form are used to represent, for
instance, industrial processes (like distillation columns [25],
chemical reactors [17], heat exchangers, grinding circuits [11]),
queuing systems [8] and communication networks [12], eco-
logical and biological processes [19,26], etc.

1 Notation. The set of non-negative real numbers is denoted R+ = {a ∈
R, a �0} as usual. For any integer n, the set Rn+ is called the “positive
orthant”.
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Compartmental network systems have numerous interesting
structural properties which are widely documented in the liter-
ature (see the references). Some of these properties are listed
hereafter.

First of all, as expected, a compartmental system is positive.

Definition 1 (Positive system (e.g. [23])). A dynamical system
ẋ = f (x, t) x ∈ Rn is positive if

x(0) ∈ Rn+ �⇒ x(t) ∈ Rn+ ∀t �0.

Property 1 (A compartmental network system is a positive
system). The system (3) is a positive system. Indeed, if x ∈ Rn+
and xi =0, then ẋi =∑

j �=i rj i(x)xj +bi �0. This is sufficient to
guarantee the forward invariance of the non-negative orthant
if the functions rij (x) and qi(x) are differentiable.

The total mass contained in the system is

M(x) =
n∑

i=1

xi .

A compartmental system is mass conservative in the sense
that the mass balance is preserved inside the system. This is
easily seen if we consider the special case of a closed system
without inflows and outflows.

Property 2 (Mass conservation). A compartmental network
system (3) is dissipative with respect to the supply rate
w(t)=∑

i bi(t) with the total mass M(x) as storage function. In
the special case of a closed system without inflows (bi = 0, ∀i)

and without outflows (ei(x) = 0, ∀i), it is easy to check that
dM(x)/dt = 0 which shows that the total mass is indeed
conserved.

The system (3) is written in matrix form as

ẋ = A(x)x + b, (4)

where A(x) is a so-called compartmental matrix with the
following properties:

1. A(x) is a Metzler matrix, i.e. a matrix with non-negative
off-diagonal entries

aij (x) = rji(x)�0

(note the inversion of indices !).
2. The diagonal entries of A(x) are non-positive

aii(x) = −qi(x) −
∑
j �=i

rij (x)�0.

3. The matrix A(x) is diagonally dominant

|aii |(x)�
∑
j �=i

aji(x).

The invertibility and the stability of a compartmental matrix
is closely related to the notion of outflow connectivity as stated
in the following definition.

Definition 2 (Outflow and inflow connected network). A com-
partment i is said to be outflow connected if there is a path
i → j → k → · · · → � from that compartment to a compart-
ment � from which there is an outflow q�(x). The network is
said to be fully outflow connected (FOC) if all compartments
are outflow connected.

A compartment � is said to be inflow connected if there is
a path i → j → k → · · · → � to that compartment from a
compartment i into which there is an inflow bi . The network is
said to be fully inflow connected (FIC) if all compartments are
inflow connected.

Property 3 (Invertibility and stability of the compartmental ma-
trix [9,19]). The compartmental matrix A(x) is non-singular
and stable ∀x ∈ Rn+ if and only if the compartmental network
is FOC. This shows that the non-singularity and the stability of
a compartmental matrix can be directly checked by inspection
of the associated compartmental network.

The Jacobian matrix of the system (4) is defined as

J (x) = �[A(x)x]
�x

.

When the Jacobian matrix has a compartmental structure, the
off-diagonal entries are non-negative and the system is therefore
cooperative [15,16]. We then have the following interesting
stability property.

Property 4 (Equilibrium stability with a compartmental Ja-
cobian matrix). Let us consider the system (4) with constant
inflows: bi = constant ∀i.

(a) If J (x) is a compartmental matrix ∀x ∈ Rn+, then all
bounded trajectories tend to an equilibrium in Rn+.

(b) If there is a compact convex set D ⊂ Rn+ which is forward
invariant and if J (x) is a non-singular compartmental ma-
trix ∀x ∈ D , then there is a unique equilibrium x̄ ∈ D

which is globally asymptotically stable (GAS) in D.

A proof of part (a) can be found in [19, Appendix 4], (see
also [10,15]). Part (b) is a concise reformulation of a theorem
by Rosenbrock [25] (see also [26]).

Property 4 requires that the compartmental Jacobian matrix
be invertible in order to have a unique GAS equilibrium. This
condition is clearly not satisfied for a closed system (without
inflows and outflows) that necessarily has a singular Jacobian
matrix. However, the uniqueness of the equilibrium is preserved
for closed systems that are strongly connected.

Property 5 (Equilibrium unicity for a fully connected closed
system). If a closed system with a compartmental Jacobian
matrix is strongly connected (i.e. there is a directed path i →
j → k → · · · → � connecting any compartment i to any
compartment �), then, for any constant M0 > 0, the hyperplane
H ={x ∈ Rn+ : M(x)=M0 > 0} is forward invariant and there
is a unique GAS equilibrium in H.
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This property is a straightforward extension of Theorem 6
in [24].

3. Congestion control

Network congestion arises in compartmental network sys-
tems when the inflow demand exceeds the throughput capacity
of the network. The most undesirable symptom of this kind of
instability is an unbounded accumulation of material in the sys-
tem inducing an overflow of the compartments. Our purpose in
this paper is to show that congestion can be automatically pre-
vented by using a nonlinear output feedback controller having
an appropriate compartmental structure.

The congestion control problem is formulated as follows.
We consider a compartmental network system with n compart-
ments, m inflows and p outflows, and we assume that

1. The network is FIC and FOC;
2. The links of the network have a maximal transfer capacity:

0�fij (x)�f max
ij and 0�ei(x)�emax

i , ∀x ∈ Rn+;
3. The compartments of the network have a maximal capacity:

xmax
i , i = 1, . . . , n;

4. There is an inflow demand denoted di on each input of the
network: it is the inflow rate that the user would like to inject
into the system or, otherwise stated, that the user would like
to assign to the inflow rate bi .

Then, congestion may occur in the system if the total demand
exceeds the maximal achievable throughput capacity of the net-
work which is limited by the maximal transfer capacity of the
links. When congestion occurs, some links of the network are
saturated with the highly undesirable consequence of an over-
flow of the compartments that supply the congested links.

In order to allow for congestion control, we assume that,
when necessary, the inflow rates bi(t) injected into the network
may be mitigated and made lower than the demand di(t). This
is expressed as bi(t) = ui(t)di(t), 0�ui(t)�1 where ui(t)

represents the fraction of the inflow demand di(t) which is
actually injected in the network. We assume furthermore that
the outflow rates ei(x(t))�yi(t) are the measurable outputs of
the system. With these definitions and notations, the model is
written in state space form:

ẋ = A(x)x + B(d)u, (5)

y = C(x)x (6)

with obvious definitions of the matrices B(d), C(x) and the
vectors d, u, y.

The control objective is then to define an output feedback
controller that is able to achieve the demand as best as possible
while avoiding overflows. In order to solve this problem we
propose a dynamical nonlinear controller of the following form:

żi = yi − �(zi)
∑
k∈Qi

�kidk (i ∈ Iout),

uj (z) =
∑
k∈Pj

�jk�(zk) (j ∈ Iin)

demand

di

MUX

Compartmental

Network
System

Output yi

inputs ui

Fig. 2. Structure of the closed loop system.

with the following notations and definitions:

(a) Iin is the index set of the input nodes (|Iin| = m);
(b) Iout is the index set of the output nodes (|Iout| = p);
(c) R is the set of node pairs (j, k) (with j ∈ Iin and k ∈

Iout) such that there is a directed path in the network from
the input node j to the output node k;

(d) Pj = {k : (j, k) ∈ R} ⊂ Iout is the index set of the output
nodes that are reachable from the input node j;

(e) Qi = {k : (k, i) ∈ R} ⊂ Iin is the index set of the input
nodes from which the output node i is reachable;

(f) �jk (with (j, k) ∈ R) are design parameters such that
0��jk �1 and

∑
k∈Pj

�jk = 1;
(g) � : R+ → R+ is a monotonically increasing and continu-

ously differentiable function with �(0)=0 and �(+∞)=1.

The rationale behind the construction of this control law is il-
lustrated in Fig. 2. The controller has a compartmental struc-
ture with as many compartments as outputs yi in the controlled
network. Each compartment of the controller is virtually fed
with a copy of one of the outflows of the controlled network.
Then, the flows going out of the controller compartments are
distributed among the control inputs uj (this is represented by
a multiplexer in Fig. 2) in such a way that there is exactly one
connection from a network output k to a network input j through
the controller for each (j, k) ∈ R (i.e. if there is an inverse
connection between a network input j and a network output k
through the controlled network).

In matrix form, the control law is written

ż = G(d)F (z)z + y, (7)

u = K(z)z (8)

with G(d)= diag{∑k∈Qi
(−�kidk), i ∈ Iout} and obvious def-

initions for the vector z and the matrices F(z) and K(z). It
follows that the closed loop system obtained by combining the
network (5)–(6) with the controller (7)–(8) is written(

ẋ

ż

)
=

(
A(x) B(d)K(z)

C(x) G(d)F (z)

) (
x

z

)
�L(x, z)

(
x

z

)
. (9)

Let us now analyse the main properties of the control law
(7)–(8) and of the closed loop control system (9).
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(1) We first observe that the matrix L(x, z) in (9) is a com-
partmental matrix parametrized by d. The closed loop (9) is
thus a closed compartmental network system. The closed loop
system is therefore a positive system (Property 1). Moreover,
since the system is closed, the storage function

M(x, z) =
n∑

i=1

xi +
p∑

j=1

zj

is invariant (Property 2) and the state trajectories with
non-negative initial conditions are confined in the compact
invariant set:

H = {(x, z) ∈ Rn+ × R
p
+ : M(x, z) = M(x(0), z(0)) = � > 0}.

(2) It follows readily that the state variables are bounded:

0�xi(t)�� (i = 1, n) and 0�zj (t)�� (j ∈ Iout).

Hence, the first objective of the congestion control is achieved
with the proposed controller: provided � is smaller than the
maximal capacity of the compartments xmax

i , we have the guar-
antee that no overflow can occur. Furthermore, we observe that
the value of � depends on the initial conditions (x(0), z(0)).
In many practical applications, it is a natural operation to start
the system with empty compartments x(0) = 0. The value of
� is then freely assigned by the user which selects the initial
conditions of the controller state variables zj (0) and hence the
value of � = ∑p

j=1 zj (0).
(3) As expected, the controls uj (z) (i.e. the fractions of

the inflow demand achieved by the controller) are confined in
the interval [0, 1]. Indeed, under condition (g) above we have
0��(zk)�1 ∀zk ∈ R+ which, together with condition (f),
implies:

0�uj (z) =
∑
k∈Pj

�jk�(zk)�
∑
k∈Pj

�jk = 1.

(4) Because the controlled network is FIC and FOC, and due to
the structure of the controller, it is readily verified that the closed
loop system (9) is necessarily a strongly connected closed com-
partmental system (or is a partition of separate strongly con-
nected closed compartmental systems). On the other hand, if
the controlled network has a compartmental Jacobian matrix,
then the closed loop system also has a compartmental Jacobian
matrix. Then, for a constant inflow demand d, the closed loop
system has a single GAS equilibrium in the positive orthant
(Property 5).

(5) The choice of the function � is free provided it satisfies
the above condition (g). An appropriate choice is to select an
hyperbolic function of the form:

�(zj ) = zj

zj + ε

with ε a small positive constant. This function is of interest
because it can be made arbitrarily close to a unit step function
by taking ε small enough. In more mathematical terms, for
any arbitrarily small � > 0, there exist a small enough ε > 0
such that |1 − �(zj )|�� ∀zj ��. Let us now assume that, for
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Fig. 3. Topology used for the numerical example.

a given constant inflow demand d, the closed loop system (9)
has a stable equilibrium (x̄, z̄) ∈ H with z̄i ��. Then, for this
equilibrium, we have
∑

i∈Iout

ȳi =
∑

i∈Iout

ei(x̄) =
∑

i∈Iout

∑
k∈Qi

�ki�(z̄i)dk



∑

i∈Iout

∑
k∈Qi

�kidk (because �(z̄i) 
 1)

=
∑

k∈Iin

⎛
⎝∑

i∈Pk

�ki

⎞
⎠ dk

=
∑

k∈Iin

dk

⎛
⎝because

∑
i∈Pk

�ki = 1

⎞
⎠

In that case, we see that the total outflow
∑

i∈Iout
ȳi is arbitrar-

ily close to the total inflow demand
∑

k∈Iin
dk . Consequently,

the second objective of the congestion control may be achieved
with the proposed controller: a demand which is not in ex-
cess can automatically be satisfied by the feedback controller.
It must however be emphasized that this property is not inde-
pendent from the choice of the design parameters �ki . Indeed,
for each steady-state output ȳi at the equilibrium, we have

ȳi = ei(x̄) =
∑
k∈Qi

�ki�(z̄i)dk .

It follows that the condition �(z̄i) 
 1 may be satisfied only
if each parameter �ki is close to the steady-state flow fraction
that would go from input k to output i in the open-loop sys-
tem. In less technical terms, the control parameters �ki must
be adapted to the network in order to achieve the demand as
best of possible. If those parameters are not well adapted, there
can be a performance degradation which is the price to pay in
order to control the congestion and avoid buffer overflows.

(6) The proposed congestion controller has an interesting
robustness property. In order to build the control law (7)–(8)
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Fig. 4. Demand (or controlled demand) and compartment occupancy in open loop (left) compared with the closed loop case (right).

only the structure of the controlled compartmental network
must be known. But the control law is independent from the
knowledge of the specific flow functions rij (x) and ei(x). This
is quite important because in many practical applications, an
accurate knowledge of these functions is precisely a critical
modelling issue.

4. A simulation experiment

In this section, a numerical example that illustrates the prop-
erties of our controller is presented. The ability of the control
law to prevent overflows during congestion periods is first val-
idated and the performance of the controller is then discussed.
The topology used for this example is shown in Fig. 3.

The closed-loop compartmental system is defined as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = d1u1(z) − v1(x1),

ẋ2 = d2u2(z) − v2(x2),

ẋ3 = �13v1(x1) + �23v2(x2) − v3(x3),

ẋ4 = �14v1(x1) + �24v2(x2) − v4(x4),

ż3 = v3(x3) − �(z3)(�13d1 + �23d2),

ż4 = v4(x4) − �(z4)(�14d1 + �24d2)

with

u1(z) = �13�(z3) + �14�(z4),
u2(z) = �23�(z3) + �24�(z4)

and

vi(xi) = �ixi

1 + xi

, �i = 120, i = 1, . . . , 4,

�(zj ) = zj

� + zj

, � = 10−3, j = 1, 2.

4.1. Congestion control

The parameters �i =120 can be interpreted as the maximum
output flow of each compartment. The demands d1(t), d2(t) are
shown in Fig. 4(A) where it can be seen that d1(t) is set to a
constant (d1 = 100) and that d2(t) is piecewise constant and
jumps from d2 = 50 to d2 = 100 at time t = 5. The maximum
inflow rate at compartment 4 is �14d1 + �24d2 = 140 for t > 5
which is greater than the maximum output rate of this compart-
ment. Consequently, in open loop, network congestion starts at
t = 5. This is observed in Fig. 4(B) where we can see that for
t > 5, the state variable x4 increases almost linearly and with-
out bound.

In contrast, the closed loop behaviour may be observed in
Fig. 4(D) where it appears that all the state variables, including
x4, remain bounded. This result is obtained with the adapted
parameters:

�13 = �13, �14 = �14, �23 = �23, �24 = �24. (10)

The initial conditions are set to x(0) = (0, 0, 0, 0)T and z(0) =
(30, 30)T. It can be verified that x4(t) is bounded by a value
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Fig. 5. Evolution of the control variables u1(t) (left) and u2(t) (right) when the controller is adapted to the topology compared to the non-adapted case.

smaller than �=60. Fig. 4(C) shows how the controlled demand
is modulated in order to prevent the overflow. Interestingly, the
control variables u1 and u2 both converge to the value 0.84
yielding a total inflow rate of 117.8 at compartment 4, which is
slightly smaller but very close to the maximum possible outflow
rate of that compartment.

4.2. Performance

The role of the selection of the control parameters �ij may
be appreciated in Fig. 5 which compares the evolution of the
control variables u1(t) and u2(t) when these parameters are
adapted to the topology and when they are not. The adapted
case corresponds to Eq. (10) and the non-adapted case is
given by

�13 = 0.3, �14 = 0.7, �23 = 0.4, �24 = 0.6. (11)

During the first five seconds when the system is not congested
it can be seen that the control variables take a value very close
to u1 =u2 = 1 for the adapted case as expected. The demand is
therefore satisfied and the controller is transparent. In contrast,
for the non-adapted case, the control variables take a value close
to 0.9 even though there is no congestion in the system. It means
that the controller slightly limits the achievable performance
of the system in the absence of congestion: it is the price to
pay in order to avoid the risk of congestion when the controller
parameters are not well adapted. But obviously in both cases,
the controller is able to maintain the stability of the system and
the boundedness of the state during the congested period. It
is also worth noting that the parameter adaptation requires the
knowledge of the flow fractions �jk only but neither the values
of the demands d1, d2 nor the knowledge of the rate functions
vi(xi).

5. Conclusions

Our contribution in this paper was to show that congestion
in compartmental network systems can be automatically pre-
vented by using a nonlinear output feedback controller having
an appropriate compartmental structure. We have shown that
two main objectives are achieved with the proposed controller:

a demand which is not in excess is automatically satisfied but,
in case of an excess demand, an operation without overflow is
guaranteed provided the design parameter � is smaller than the
maximal capacity of the compartments.

There are obviously many additional issues that could be in-
vestigated regarding this congestion control strategy. We may
mention for instance the influence of the choice of the param-
eters �jk on the performance of the congestion control. A rel-
evant issue is certainly to design on-line parameter adaptation
schemes in order to optimize some performance criterion. In
particular, the proposed control law should be able to efficiently
accommodate a bursty demand (i.e. a piecewise constant de-
mand with short peaks in excess). Another issue is the extension
of the congestion control to compartmental network systems
with lags as discussed e.g. in [22,20]. Moreover, the conges-
tion control should certainly be improved by combining state
and output feedback in the realistic case where the content xi

of some internal compartments is accessible for measurements.
Finally an open issue is also to derive decentralised extensions
of the control with a view to the application to large-scale
networks.
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