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A Strict Lyapunov Function for Boundary Control of
Hyperbolic Systems of Conservation Laws

Jean-Michel Coron, Brigitte d’Andréa-Novel, and Georges Bastin

Abstract—We present a strict Lyapunov function for hyperbolic
systems of conservation laws that can be diagonalized with Rie-
mann invariants. The time derivative of this Lyapunov function can
be made strictly negative definite by an appropriate choice of the
boundary conditions. It is shown that the derived boundary con-
trol allows to guarantee the local convergence of the state towards
a desired set point. Furthermore, the control can be implemented
as a feedback of the state only measured at the boundaries. The
control design method is illustrated with an hydraulic application,
namely the level and flow regulation in an horizontal open channel.

Index Terms—Boundary control, conservation laws, hyperbolic
systems, Lyapunov function, partial differential equations.

I. INTRODUCTION

I N THIS paper, we are concerned with systems of conserva-
tion laws that are described by partial differential equations,

with an independent time variable and an inde-
pendent space variable on a finite interval . For such
systems, the boundary control problem that we consider is the
problem of designing control actions at the boundaries (i.e., at

and ) in order to ensure that the smooth solution
of the Cauchy problem converges to a desired steady-state.

This problem has been previously considered in the literature.
A first important result of asymptotic stability was presented by
Greenberg and Li [1] in the case of second-order systems of
conservation laws. This result was later deeply generalized to

th-order systems by Li-Tatsien in [2] (see also [3] for controlla-
bility results). These results were established by systematically
utilizing the explicit evolution of the Riemann invariants along
the characteristics. They have been applied for the control of
networks of open channels in our previous papers [4]–[6] and
in Leugering and Schmidt [7].

In this paper, a different approach that uses Lyapunov tech-
niques is followed. This approach was first introduced in [4],
[5] where an entropy of the system was used as a Lyapunov
function having a semi-negative definite time derivative. How-
ever, with this choice of Lyapunov function, we were not able
to prove asymptotic stability due to compactness problems. In
this paper, in order to overcome this difficulty we exhibit a strict
Lyapunov function which is an extension of the entropy and is
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stated in terms of Riemann invariants but whose time derivative
can be made strictly negative definite by an appropriate choice
of the boundary controls. This function is related to a Lyapunov
function used in [8] for the stabilization of the Euler equation of
incompressible fluids. It is also similar to the Lyapunov function
used in [9] to analyse the stability of a general class of linear
symmetric hyperbolic systems. Our contribution in this paper is
to show how this kind of Lyapunov function can be extended
in order to analyse the stability of nonlinear hyperbolic systems
of conservation laws. For this class of systems, we give a the-
orem which shows that the boundary control allows to prove
the local convergence (in -norm) of the system trajec-
tories towards a desired set point. Furthermore, the control can
be implemented as a feedback of the state only measured at the
boundaries.

The considered class of conservative systems has a wide
range of potential engineering applications, including for
instance electrical transmission lines [10], gas flow pipelines
[11], [12], road traffic models [13] or heat exchangers [9].
In this paper, the control design method is illustrated with an
hydraulic application: the regulation of the level and the flow
in an horizontal reach of an open channel. For the sake of
simplicity, our presentation is limited to second order systems
(i.e., systems of two scalar conservation laws). However, as we
indicate in the conclusions, the method can be easily extended
to higher order systems provided they can be diagonalized with
Riemann invariants.

II. BOUNDARY CONTROL OF HYPERBOLIC SYSTEMS OF

CONSERVATION LAWS : STATEMENT OF THE PROBLEM

Let be a nonempty connected open set in . We consider
a system of two conservation laws of the general form

(1)

where
• and are the two independent variables: a time variable

and a space variable on a finite
interval;

• is the vector of
the two dependent variables;

• is the flux density.
We are concerned with the smooth solutions of the Cauchy

problem for the system (1) over under an initial
condition
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and two boundary conditions of the form

with and where
are the control actions.

Steady-state: For constant control actions and
, a steady-state solution is a constant solution

which satisfies (1) and
the boundary conditions and .
Depending on the form of these boundary conditions, the
steady-state solution may be stable or unstable.

The boundary control problem is then the problem of
finding control actions and such that, for any
smooth enough initial condition , the Cauchy problem
has a unique smooth solution converging towards a desired
steady-state (called set point).

In this paper, we consider the special case where the following
hold.

1) System (1) is strictly hyperbolic, i.e., the Jacobian matrix
of the application ,

has two real distinct eigenvalues and
for all ; it is furthermore assumed that
these two eigenvalues of have opposite signs:

.
2) Each control action is expressed as a feedback of the

system state at the boundaries

III. CHARACTERISTIC FORM AND RIEMANN INVARIANTS

Under the previous assumptions, (1) is rewritten as

(2)

This system can be diagonalised with the Riemann invariants
(see, for instance, [14, pp. 34–35]). This means that there exists
a change of coordinates whose Jacobian
matrix is denoted

and diagonalizes in

with

Finding the change of coordinates requires to find
a solution of the first-order partial differential equation

. As it is shown in [14, pp. 34–35],
this partial differential equation can be reduced to the integration

of ordinary differential equations. Moreover, in many cases,
these ordinary differential equations can be explicitly solved by
using separation of variables, homogenity or symetry properties;
see, e.g., [15, pp. 146–147, 152] for examples of computations of
Riemann invariants.

In the coordinates , the system (2) can then be
rewritten in the following (diagonal) characteristic form:

(3)

or

(4)

with and , the
eigenvalues of expressed in the coordinates.

We observe that the two quantities
and can then be viewed as the total time
derivatives and of the functions and
at a point of the plane, along two curves having slopes

and

These curves are called characteristic curves and the solu-
tions are called characteristic solutions. Since

and on the characteristic curves, it fol-
lows that and are constant along the characteristic
curves. This explains why the characteristic solutions are called
Riemann invariants.

The change of coordinates is clearly defined up to a con-
stant. It can, therefore, be selected in such a way that
and the control problem can be restated as the problem of deter-
mining the control actions in such a way that the characteristic
solutions converge towards the origin. Our contribution in this
paper is to propose and analyse a control design method based on
a strict Lyapunov function that is presented in the next section.

IV. A STRICT LYAPUNOV FUNCTION FOR BOUNDARY CONTROL

DESIGN

Let us consider the linear approximation of the characteristic
form (4) around the origin

(5)

with and .
With a view to the boundary control design, the following

candidate Lyapunov function is introduced:

with

and with positive constant coefficients and . As we have
mentioned above, this function is related to the Lyapunov func-
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tion used in [8, Def. of , p. 1886] for the stabilization of the
Euler equation of incompressible fluids. It is also similar to the
Lyapunov function used in [9] to analyse the stability of linear
symmetric hyperbolic systems.

The time derivative of along the trajectories of the linear
approximation (5) is

which implies

It can be seen that the two last terms depend only on the Rie-
mann invariants at the two boundaries, i.e., at and at

. The control laws and can then be defined
in order to make these terms negative along the system trajecto-
ries.

A simple solution is to select such that

(6)

and such that

(7)

with . The time derivative of the Lyapunov function
is then written

(8)

Since , we can select such that

Then, we can select and such that

which implies readily that

(9)

Then, it can be seen that along the trajectories
of the linear approximation (5) and that if and only if

(i.e., at the system equilibrium).
In the next section, we will show that such boundary controls

for the linearized system (5) can also be applied to the nonlinear
system (4) with the guarantee that the trajectories locally con-
verge to the origin.

V. CONVERGENCE ANALYSIS

In the previous section, the inequality ensures
the convergence in -norm of the solutions of the linear
system (5). As we will see hereafter, in order to extend the anal-
ysis to the case of the nonlinear system (4), it will be needed to
prove a convergence in -norm (see, for instance, [16,
Ch. 16, Sec. 1]).

Thus, we consider the nonlinear system (4)

(10)

By computing the time derivative of along the solutions of
this system, we get

with

In the previous section, we have considered linear boundary
conditions (6), (7). Here we assume more general nonlinear
boundary conditions. More precisely, we assume that the
boundary control functions and are chosen such
that the boundary conditions have the form

and (11)

whith functions and we denote

and

Moreover, we introduce the following notations:

and

We then have the following lemma.
Lemma 1: If , if the positive real constants

satisfy inequalities (9), there exist positive real constants
such that, if then

along the solutions of (10) with the boundary conditions (11).
Proof: See the Appendix.
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In contrast with the linear analysis of Section IV, it appears
readily from Lemma 1 that we cannot just complete the Lya-
punov stability analysis with the function but that we have to
examine the dynamics of the variables and and
consequently to extend the definition of the Lyapunov function.

By a time differentiation and using the model (10), it is readily
shown that and satisfy the following dynamics:

(12)

and the associated boundary conditions

(13)

Obviously, and are compact
notations for the values of the functions and evaluated at

and respectively.
In fact, we will need also to examine the dynamics of the

spatial second order derivatives of and , which are
denoted as

and which satisfy the following dynamics:

(14)

with the associated boundary conditions shown in (15) at
the bottom of the page, where and

are compact notations for the values of the functions
and evaluated at and

respectively while the func-
tions and are defined as

A key point for the analysis is that the linear approximations
(around zero) of systems (12) and (14) have the following form:

Both systems have exactly the same form as the linear approx-
imation (5) of the original system (10). Then, in order to prove

that the solutions of the global system (10)–(14) converge to
zero, it is quite natural to consider an extended Lyapunov func-
tion of the form

(16)

where and have the format of

In the following two lemmas, we then examine the time deriva-
tives of the functions and along the solutions of the
closed-loop system (10)–(15).

Lemma 2: If , if the positive real constants
satisfy inequalities (9), there exist positive real constants

such that, if ,
then

along the solutions of the systems (10)–(12) with the boundary
conditions (11)–(13).

Lemma 3: If , if the positive real constants
satisfy inequalities (9), there exist positive real constants

such that, if ,
then

along the solutions of the systems (10)–(14) with the boundary
conditions (11)–(15).

(15)
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Fig. 1. Reach of an open channel delimited by two adjustable overflow spill-
ways.

The proofs of Lemmas 2 and 3 follow a line that is entirely
similar to the proof given in Appendix for Lemma 1. We there-
fore omit these proofs because we believe that they would be
superfluous and would just needlessly lengthen the paper.

We are now in a position to complete our Lyapunov conver-
gence analysis. We start with the analysis of the global Lya-
punov function (16): .

Lemma 4: If , if the positive real constants
satisfy inequalities (9), there exist positive real constants

and such that, if , then

along the solutions of the closed-loop system (10)–(15).
Proof: See the Appendix.

We then have our main convergence result.
Theorem 1: There exist positive real constants such

that, for any initial conditions in sat-
isfying the compatibility conditions

and such that

the closed-loop system (10) with boundary conditions (11)
has a unique solution which is continuous from into

and satisfies

Proof: See the Appendix.

VI. APPLICATION TO LEVEL AND FLOW CONTROL IN AN

HORIZONTAL REACH OF AN OPEN CHANNEL

In the field of hydraulics, the flow in open-channels is gener-
ally represented by the so-called Saint Venant equations which
are a typical example of a system of conservation laws.

We consider the special case of a reach of an open channel
delimited by two overflow spillways as represented in Fig. 1.

We assume that
1) the channel is horizontal;
2) the channel is prismatic with a constant rectangular section

and a unit width;
3) the friction effects are neglected.

The flow dynamics are described by a system of two laws of
conservation (Saint-Venant or shallow water equations), namely
a law of mass conservation

and a law of momentum conservation

where represents the water level and the water
velocity in the reach while denotes the gravitation constant.
The system is written under the form (2) as follows:

with the matrix defined as

The control actions are the positions and of the two spill-
ways located at the extremities of the pool and related to the
state variables and by the following expressions:

(17)

(18)

where denotes the water level above the pool (see Fig. 1) and
is a characteristic constant of the spillways.

For constant spillway positions and , there is a unique
steady-state solution which satisfies the following relations:

The control objective is to regulate the level and the velocity
(or the flow rate ) at the set points and (or

), by acting on the spillway positions and .
The eigenvalues of the Jacobian matrix

are generally called characteristic velocities. The flow is said to
be fluvial (or subcritical) when the characteristic velocities have
opposite signs
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The Riemann invariants can be defined as follows:

By using the relations (6) and (7) for the control definition, com-
bined with the spillway characteristics (17) and (18), the fol-
lowing boundary control laws are obtained:

where .
It can be seen that both controls have the form of a state feed-

back at the two boundaries. In addition, it can be emphasized
that the implementation of the controls is particularly simple
since only measurements of the levels and at
the two spillways are required. This means that the feedback
implementation does not require neither level measurements in-
side the pool nor any velocity or flow rate measurements.

VII. CONCLUSION

In this paper, we have presented a strict Lyapunov function
which can be used for the boundary control design for second
order systems of conservation laws and to analyse the conver-
gence of the closed-loop system towards the equilibrium. We
have the following additional comments:

1) The Lyapunov function that we have used in this paper
is similar to the Lyapunov function used in [9]. It should,
however, be stressed that in [9] this Lyapunov function is
used to analyse the stability of a special class of linear sym-
metric hyperbolic systems. Our contribution in this paper
has been to show how the Lyapunov function can be ex-
tended to in order to analyse the stability
of nonlinear hyperbolic systems of conservation laws by
proving a convergence in norm.

2) In the special case where , the Lyapunov function
is just an entropy function of the system under charac-

teristic form linearised in the space of the Riemann coor-
dinates. In [4] and [5], the interested reader will find an
alternative approach of the boundary control design where
the entropy is used as such (i.e., without linearisation) as
a Lyapunov function inside the space of the system phys-
ical coordinates. It must however be emphasized that the
entropy is not a strict Lyapunov function because its time
derivative is not negative definite but only semi negative
definite [as we can see by setting in (8)].

3) Theorem 1 (with the -norm instead of the
-norm) follows from the previous works [1]

and [6]. In the latter reference however the convergence
analysis is different: It does not make use of a Lyapunov
function but is obtained from a general theorem on the
stability of the classical solutions of quasilinear hyperbolic
systems. As it is well known, an interest of having an ex-
plicit Lyapunov function is that it is a guarantee of control

robustness. Indeed, we could extend our analysis to the
more general system
with and for small enough perturbations

and . This kind of generalisation
would certainly be more difficult to address with the
approach of [1] and [6].

4) In order to solve the control problem, we have selected the
particular simple boundary conditions (6) and (7). How-
ever, obviously many other forms are admissible provided
they make negative. For instance it can be interesting
to use controls at a boundary which depend on the state at
the other boundary, hence introducing some useful feed-
forward action in the control (see e.g., [18]).

5) For the sake of simplicity, our presentation was restricted
to second order systems of conservation laws. From our
analysis, it is however very clear that the approach can
be directly extended to any system of conservation laws
which can be diagonalised with Riemann invariants. It is
in particular the case for networks where the flux on each
arc is modelled by a system of two conservation laws (see,
e.g., [17]).

APPENDIX

A. Proof of Lemma 1

Lemma 1: If , if the positive real constants
satisfy inequalities (9), there exist positive real constants

such that, if ,
then

along the solutions of the system (10) with the boundary condi-
tions (11).

Proof: By computing the time derivative of along the
solutions of (10), we get

The three terms of this expression are successively considered.
First term:

This expression is written as
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where denotes a quadratic approximation of obtained for
small and with

We have

which is negative as we have already shown in Sec-
tion III. Moreover, the residual part is at least cubic w.r.t

and (i.e., for small
and ).

Second term:

We introduce the notations

Then, we have

with

Clearly, from the definitions of and , we have that is at
least cubic w.r.t and

It follows readily that for a small enough real positive there
exists a large enough real positive such that

as long as

Third term:

with

Obviously, under the assumptions of the lemma, there exists a
large enough positive real such that

This completes the proof of Lemma 1.

B. Proof of Lemma 4

In the proof of Lemma 4, we will use the following inequal-
ities that hold for functions and for some
positive real constant

(19)

(20)

(21)

(22)

Inequalities (19) and (20) are obvious. Inequality (21) is the
usual Sobolev inequality (see, for instance, [19, Th. VII, p. 129])
where the constant depends on only. Inequality (22) results
from a straightforward application of the Cauchy–Schwarz in-
equality.

Lemma 4: If , if the positive real constants
satisfy inequalities (9), there exist positive real constants

and such that, if , then

along the solutions of the closed-loop system (10)–(15).
Proof: From Lemmas 1–3, the time derivative of the global

Lyapunov function satisfies the following
inequality:

with .
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We shall now compute upper bounds for the integral terms
that appear in this expression. There exist real positive constants

(independent from ) such that

(23)

The first inequality is an application of (19). The second in-
equality is an application of (21). The third inequality results
from the definitions of the Lyapunov functions and .

There exist real positive constants and (independent
from ) such that

(24)

The first inequality is obvious. The second inequality is an ap-
plication of (19). The third inequality is an application of (21).
The fourth inequality results from the definitions of the Lya-
punov functions and .

There exist real positive constants and (independent
from ) such that

(25)

The first inequality is an application of (19). The second in-
equality is an application of (21). The third inequality results
from the definitions of the Lyapunov functions and .

There exist real positive constants and (independent
from ) such that

(26)

The first inequality is an application of (20). The second in-
equality results from a simultaneous application of both (21)
and (22). The third inequality results from the definitions of the
Lyapunov functions and .

Now, using inequalities (23)–(26) that we have just estab-
lished, there exist a positive real constant such the time
derivative of the global Lyapunov function
may be further upperbounded as

Then, for any such that , there exists such
that

which, in turn, implies that

(27)

In addition we may observe that if is taken small enough then
(27) implies that

. This makes the use of Lemmas 1–3 legitimate in the proof
of Lemma 4.

C. Proof of Theorem 1

Theorem 1: There exist positive real constants such
that, for any initial conditions in sat-
isfying the compatibility conditions shown in the equation at the
top of the next page, and such that

the closed-loop system (10) with boundary conditions (11) has a
unique continuous solution in for which
satisfies



10 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 52, NO. 1, JANUARY 2007

Proof: We thus consider the smooth solutions of the
Cauchy problem (10), (11) with initial condition
in . By a smooth solution we mean a map

satisfying the closed-loop system (10) with boundary conditions
(11) and initial condition ,
with being an interval containing 0.

From [16, Ch. 16, Prop. 1.18, p. 364], we know that two
smooth solutions of the Cauchy problem (10), (11) with the
same initial condition are equal on the intersection of their in-
terval of definition. (Actually, [16] deals with instead of
but the proof can be easily adapted.)

Furthermore, concerning the existence of smooth solutions
to the Cauchy problem, we have the following result from [16,
Ch. 16, Prop. 1.5, p. 365]. There exists such that, for
every initial condition satisfying
the above compatibility condition (CC), if every solution
of the Cauchy problem (10), (11) with the initial condition

in
satisfies

for every , then this Cauchy problem
has a solution defined on . (Again, the proof in [16]
deals with instead of but it can be easily adapted.)

Let such that

Then it follows from Lemma 4 that Theorem 1 holds with
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